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Environmental sciences usually deal with compositional (closed) data. Whenever the concentration of
chemical elements is measured, the data will be closed, i.e. the relevant information is contained in the ratios
between the variables rather than in the data values reported for the variables. Data closure has severe
consequences for statistical data analysis. Most classical statistical methods are based on the usual Euclidean
geometry — compositional data, however, do not plot into Euclidean space because they have their own
geometry which is not linear but curved in the Euclidean sense. This has severe consequences for bivariate
statistical analysis: correlation coefficients computed in the traditional way are likely to be misleading, and
the information contained in scatterplots must be used and interpreted differently from sets of non-
compositional data. As a solution, the ilr transformation applied to a variable pair can be used to display the
relationship and to compute a measure of stability. This paper discusses how this measure is related to the
usual correlation coefficient and how it can be used and interpreted. Moreover, recommendations are
provided for how the scatterplot can still be used, and which alternatives exist for displaying the relationship
between two variables.
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1. Introduction

The consequences of working with closed data in univariate data
analysis have recently been demonstrated (Filzmoser et al., 2009b).
Most importantly, the classical standard deviation should not be
calculated for the original variables and used in connection with
closed data. Histograms and density traces are frequently used to
study the structure of univariate data and to provide an idea about
their distribution. Due to the special geometrical properties of com-
positional data – they are not represented in the standard Euclidean
space but rather have curvilinear properties (from the Euclidean point
of view) and plot on the simplex (Aitchison, 1986; Egozcue and
Pawlowsky-Glahn, 2006) – these graphics will invariably provide a
wrong impression of the data distribution when used with the raw,
untransformed data. The best available transformation for composi-
tional data (almost all data presented in environmental sciences are
compositional) is the isometric logratio (ilr) transformation as
suggested by Egozcue et al. (2003). It allows the correct representa-
tion of compositional data in Euclidean space (Filzmoser et al., 2009b),
which is appropriate and necessary whenever distances between
observations are of importance because it reflects the standard geom-
etry everybody is used to. Only when following such a transformation
is it possible to get a realistic impression of the underlying distribution
of a single variable and to choose the appropriate statistical tools for
further data analysis (e.g., robust methods if there are still outliers).
Because environmental data are often very right skewed, the
graphical inspection of the data has most often been done with log-
transformed data. Filzmoser et al. (2009b) could show that the log
transformation will provide results that are almost equal to the ilr
transformation up to element concentrations of 10 wt.%. This
fortunate property of the log transformation is, however, lost when
entering bivariate data analysis.

This paper will investigate the consequences of working with
compositional data during bivariate data analysis. Here the user is
most often interested in plots showing the strength of the relationship
between two variables or in the correlation between a pair of vari-
ables in a dataset. However, the traditional interpretation of these
plots assumes an underlying Euclidean geometry. Just as in the
univariate case, the compositional data must first be transformed in
order to get an unbiased impression of the relationship between two
variables. Inmany cases a simple log transformation of each variable is
used before proceeding with a scatterplot of a variable pair, or prior to
calculating the Pearson correlation coefficient. This procedure is
incorrect for compositional data, because the log transformation
results in an incorrect representation of the bivariate data. The
problem was recognised many years ago in classical geochemistry,
studying the relation between major and trace elements in rocks. The
problem has been discussed in some text books (e.g. Rock, 1988, —
“the problem looms particularly large in geology”), however, without
presenting a real solution. Some authors havemore intuitively tried to
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avoid closure via plotting scattergrams of ratios rather than of single
variables (e.g. Miesch et al., 1966; Pearce, 1968) and in Russia
correlation diagrams in which major elements are expressed as ratios
to the total O content of a rock were used even earlier (Podolsky,
1962; Ivanov, 1963). Such ratios are unconstrained, however, their
common denominators introduce other correlation problems (Rock,
1988). Aitchison (1986) lays the foundations of how to work with
compositional data, however, this work is written at a level that a
non-mathematician will have difficulties to understand. Due to the
fact that classical statistics are all that is taught in most undergrad-
uate, earth and environmental sciences classes, the consequences of
continuing with data analysis in the wrong geometry have not been
fully understood and have never reached the wider geo- and envi-
ronmental science community.

1.1. Transformations for compositional data

The key reference to the statistical analysis of compositional data is
Aitchison (1986). Thus, for more than 20 years the nature of this
special type of data and how to deal with it has been known but little
is done about it. Some expert groups are aware of the problem and are
working on it, but have difficulties in reaching the wider scientific
community. One problem may be that not only the statistical
treatment but also the vocabulary is somewhat different from the
standard case: the term “variables” is replaced by “compositional
parts”, or simply by “parts”. Accordingly, aD-part composition is a row
vector x=(x1, …, xD) in which all components are positive real
numbers carrying only relative information. The latter property
distinguishes this type of data from ordinary multivariate data, in
which the information is absolute. For example, a person's height or
weight is usually given by absolute numbers, while the concentration
of chemical elements in the soil is provided as proportion of a whole,
e.g. as parts per million (ppm). When measuring all components of
the soil sample, they would sum up to 1 or 100%, or 1 million ppm.
Due to this constant sum constraint inherent in the data, the
geometrical space is not the usual (Euclidean) space, but the so-
called simplex sample space (Aitchison, 1986; Egozcue and Paw-
lowsky-Glahn, 2006). It is important to realise that this is also valid if
not all possible compositional parts are available, i.e. even when the
sum of the compositional parts is smaller than one. In this case one
speaks about subcompositions. The geometry of compositional data is
nowadays known under the name Aitchison geometry. As a
consequence, the distance between two observations is not measured
by the Euclidean distance that is used in daily life, but by the so-called
Aitchison distance (Aitchison et al., 2000). Standard statistical
procedures, like drawing a histogram, or computing the arithmetic
mean, have thus to be based on the Aitchison geometry (Filzmoser et
al., 2009b). Fortunately, there is a convenient way to transform com-
positional data from the simplex sample space to the usual Euclidean
space, namely by the family of logratio transformations (Aitchison,
1986; Egozcue et al., 2003). There are two transformations that
provide a one-to-one relationship from the simplex to the standard
Euclidean space with good geometric properties: the centered
logratio (clr) transformation (Aitchison, 1986) and the previously
mentioned ilr transformation (Egozcue et al., 2003). The clr trans-
formation results in a multivariate observation y=(y1, …, yD) and is
defined as

y = ln
x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Thus, each compositional part is divided by the geometricmeanof all
parts, and the logarithm provides the representation in the Euclidean
space. Although this transformation is frequently used in practice, it
has two severe drawbacks: (a) the sum of the resulting parts is zero, i.e.
y1+…+yD=0, and (b) the transformation is subcompositionally
incoherent (Aitchison, 1986). The latter property means that when
different subsets of variables (parts) are considered (e.g. because
different sets of elements are reported bydifferent laboratories), the clr-
transformed results differ in general. This has serious consequences for
bivariate data analysis, because usually a data set consists of more than
two variables, but any chosen bivariate subset of interest would not
reflect the original data. The ilr transformation, which chooses an
orthonormal basis on the hyperplane formed by the clr transformation
provides a solution to this problem. In other words, the ilr transforma-
tion results in a multivariate observation z=(z1, …, zD−1) in (D−1)-
dimensional Euclidean space, and the new ilr variables are “technical”
constructions according to a chosen basis, like

z = z1;…;zD−1ð Þ;zi =
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based on the original data. If only two parts, e.g. the two-part
subcomposition (x1, x2), are considered, Eq. (2) simplifies to

z =
1ffiffiffi
2

p ln
x1
x2

: ð3Þ

The ilr variable z is only univariate, but it includes all the relevant
information between x1 and x2 which is in fact contained in their (log)
ratio.

Fig. 1 visualises the functionality of the ilr transformation for two-
part compositions. In both pictures compositional data summing up to
a number between 0 and 1 (filled circles) are depicted. Since only the
ratio between the two parts of an observation is relevant, it is possible
to vary the points along the straight lines from the origin without any
loss of information. Thus, the data points could also be projected on
the 135° line where both parts sum up to 1. Applying the ilr
transformation gives the new axis parallel to this line, and for each
data the new position on the ilr axis can be traced. In the left picture
the distances between the data points on the ilr axis are irregular,
while in the right picture they are regular. The input data leading to
these patterns are, in the first case, data for which the ratios between
the parts are regular, i.e. 0.1, 0.2, …, 0.9, 1/0.1, 1/0.2, …, 1/0.9, and,
in the second case they aremultiples, i.e. 1, 2, 4, 8, 16, and 1/2, 1/4, 1/8,
1/16. The points on the ilr axis contain only univariate information,
which can be summarised by the boxplot indicated in the figure.
Specifically the length of the box representing the spread of the points
is informative as a measure of the stability of the two compositional
parts.

A disadvantage of the scale used in the ilr space (Fig. 1) is that the
numbers are difficult to interpret. For example, a ratio of x1/x2=10
would plot at position 1=

ffiffiffi
2

p� �
ln 10ð Þ = 1:63. It will thus be more

convenient to rescale the axis according to log(x1/x2), compared to
Eq. (3). The ratio x1/x2=10 will then plot at log(10)=1, indicating
the orders of magnitudes (number of powers) by which x1 and x2
differ. This scale will be used in all subsequent plots for the ilr space.

1.2. Stability measure for compositional parts

Considering Fig. 1 for identifying the strength of the relationship
between the two compositional parts, it is obvious that the correlation
coefficient as usually defined is no longer appropriate. This problem
was discussed many years ago (Pearson, 1897; Chayes, 1960), but it is
still often neglected. In both data examples shown, the usual
correlation coefficient would be negative, but because any of the
data points could be shifted along the indicated lines without loss of
information, this coefficient is meaningless. Instead, a measure for the
univariate ilr-transformed data is required, and this has already been
defined for logratios by Aitchison (1986) using the concept of the



Fig. 1. Geometrical explanation of the ilr transformation for two-part compositions. Left picture: regular increase of the ratios; right picture: multiple increase of the ratios.
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variation matrix as a measure of stability. Consider the parts x1 and x2,
and their logratio expressed by the ilr variable z by Eq. (3). Then var(z)
serves as ameasure of stability of the two parts, where “var” stands for
the variance. Low variability means that the ratio x1/x2 is nearly
constant, i.e. for all observations the two parts show about the same
ratio. On the other hand, high variability reflects very different ratios
of the two parts among the observations. One could normalise the
measure of variability to the interval [0,1] by defining

cor x1;x2ð Þ = exp −var zð Þð Þ; ð4Þ

see Buccianti and Pawlowsky-Glahn (2005). A variability tending to
zero causes a value tending to 1, and large variability relates to a result
approaching zero. The notation of the result refers to a correlation
coefficient of the ilr variable, which will be denoted as ilr correlation
in the following. However, it is not a correlation in the usual sense but
just a normalization of the ilr variance.

Although these concepts were presented in the specialised
literature several years ago, it is not yet clear how to deal with
them in practice. Are the results generally different from those
achieved by the traditional way of analyzing data, e.g., calculating the
usual correlation coefficient for variable pairs? When will differences
occur? The goal of this paper is to allow the reader to get a certain
feeling for these relatively new concepts and for the consequences of
the continued use of unsuitable techniques with the data at hand.
Both approaches are compared for a number of practical examples
and new plots are introduced that can help to give insight into the real
relationship between variable pairs.

2. Correlation coefficients based on different transformations

Correlation coefficients result in numbers lying in the range−1 to
+1, which express the relationship between two variables. The
Pearson correlation is the traditional way to compute a correlation
coefficient, and it measures the linear relationship between two
variables (see, e.g., Reimann et al., 2008). Since environmental data
frequently show a skewed distribution, the variables are often log-
transformed prior to computing the Pearson correlation coefficient.
The question is, however, whether such correlation coefficients will
really provide useful and reliable information for compositional data,
where only ratios contain the relevant information and not the values
of the single variables themselves.

The correlation coefficient is considered as an indication of the
causal relationship between two variables. It is well known that this is
not necessarily true (e.g. the example of the spurious correlation
between number of babies and storks). There may exist a third,
“lurking”, variable that the other two variables are independently
related to and that causes a high correlation between otherwise
unrelated variables. For compositional data it is, in principle, possible
to take into account all variables, because if they can bemeasured they
would sum up to 1. In this case, such artificial correlations as those
described before, can never appear. However, since ratios between
the parts need to be considered, the situation becomes difficult in
another sense. For example, the traditional correlation coefficient can
only be applied to balances, resulting from an ilr transformation (see
Filzmoser and Hron, 2009).

Fig. 2 shows scatterplots of the log-transformed variables (upper
row) with plots of the ilr-transformed variables (lower row). The ilr
transformation results in univariate variables, plotted on the vertical
axes (the horizontal axes correspond to the index of the observa-
tions). The underlying data are taken from the Kola moss layer, a data
set with about 600 samples of terrestrial moss analyzed for the
concentration of several (39) chemical elements (see Reimann et al.,
2008). The data are available in the R-package StatDA as data frame
moss (see Filzmoser and Steiger, 2009).

On top of each figure information about the variable relationships
is printed: in the top row the Pearson correlation coefficients of the
log-transformed data are provided, while in the bottom row the
(empirical) variance of the ilr-transformed variables is given, together
with the ilr correlation measure, see Eq. (4). The variable pairs were
selected in order to observe different scenarios for the log-trans-
formed data: high correlation (upper left), lack of correlation (inner
two in upper row), and negative correlation (upper right). For the
vertical axes of the ilr-transformed data the same scale was used in
order to emphasize the differences in variability: the two figures on
the lower left show ilr variables with low variability (high ilr
correlation), while those in the two figures on the lower right show
high variability (low ilr correlation). At first glance, the results for the
ilr correlations are surprising and counter-intuitive: there seems to be
no relationship to the correlations from the log-transformed data.
Using the example plots in Fig. 2, it is possible to distinguish three
situations from a non-compositional point of view:

• Positive correlation (upper left picture of Fig. 2): Co and Cu increase
by the same order of magnitude, they differ approximately by a
factor of 100. In other words, their ratio is almost constant which
leads to an ilr variable with very small variance. However, high
correlation of the log-transformed (or untransformed) data does not
necessarily lead to small ilr variance. For instance, if both variables
show a strong linear relationship, but their ranges are very different,
the ilr variance will get higher, because the ratio between the
variables is instable.

• Lack of correlation (both upper middle pictures in Fig. 2): both Ca
and Zn vary by about one and a half orders of magnitude, leading to



Fig. 2. Log-transformed (upper row) and ilr-transformed (lower row) variable pairs from the Kola moss layer, together with measures of association.

4233P. Filzmoser et al. / Science of the Total Environment 408 (2010) 4230–4238
a small ilr variance. On the other hand, Ni varies by six orders of
magnitude, while Rb varies much less. Consequently, their ratio
leads to high variability.

• Negative correlation (upper right picture of Fig. 2): as in the other
cases, only the stability of the ratio between the variables is a useful
measure of relationship. The stability is determined by the ilr
variance, which depends on the difference in orders of magnitude of
the single variables.

Summarizing, the correlation coefficient computed from the
closed data does not reflect the stability of the ratios of the variables
(ilr variance). This, however, is the only relevant information when
investigating the relationship between pairs of compositional parts. If
both variables show only small variation (like Ca and Zn), the stability
is automatically high (small ilr variance). If both variables show high
variation (Co and Cu), then the stability can only be high (high ilr
correlation) if the ratios are of similar size.

The 39 variables of the Kola moss data are now used in Fig. 3 to
compare the correlation coefficients of the log-transformed, the clr-
transformed, and the ilr-transformed data. In total there are 39⁎38/
2=741 different variable pairs. The left-hand picture compares the
Pearson correlation coefficients for the clr-transformed data with
those of the log-transformed data. Each point in the plot refers to a
variable pair, and thus there are 741 points in the plot. The point cloud
is rather unstructured. Only the highest correlations appear to be high
for both transformations, but generally the correlations for the log-
transformed and clr-transformed data are quite different. The middle
picture compares the Pearson correlation of the clr-transformed data
with the correlation of the ilr-transformed data, see Eq. (4). Again
there is no relationship between both measures. Finally, the right-
hand picture compares the Pearson correlation of the log-transformed
data with the correlation based on the ilr-transformed variables, with
no clear relationship between the outcomes. This exercise has been
carried out with other environmental science data sets, and the
picture is essentially always the same: the correlations based on
different versions of the transformation are generally very different.
Even the correlations of the log-transformed and the clr-transformed
data are, in general, not comparable. This demonstrates that working
in the wrong geometry will usually give wrong answers, which will
then lead to a completely different interpretation of the results of such
a dataset.

Note that the use of other correlation coefficients for the original
log-transformed data, like Spearman's rank or Kendall's tau, or even a
robust correlation coefficient (see, e.g., Reimann et al., 2008), does not
solve the problem. For example, because the data points can vary
along the straight lines from the origin without any loss of
information (Fig. 1), the ranks of the observations for the single
variables become meaningless, and Spearman's rank correlation
would yield just an arbitrary number, being close to the Pearson
correlation in case of log-normal distribution.

3. Correlation replaced by stability

The stability measure mentioned in Section 1.2 is based on an
estimation of the variance of the logratio of two compositional parts.
Other than the classical estimation by the empirical variance, more
robust versionswhichare less influencedbyoutlying observations, using
the MAD (median absolute deviation) or the IQR (interquartile range),
are possible (see, e.g., Reimann et al., 2008). The MAD is defined as

MAD zð Þ = 1:483⋅mediani jzi− z̃ j ð5Þ

where z ̃=median(z1, …, zn) is the median of the observations, and
the squared MAD is a very robust measure of variance.

Since ratios of parts account for the essential information of
compositions, and since the variance is considered as the basic statistical
information, the stability measure provides the key information about
how and inwhichway the data vary. So far, however, the focus has been
on bivariate data analysis and on the stability measure resulting from
the ilr variable of the two compositional parts, even if the full data
matrix included more than two variables. In a multivariate analysis,
different procedures should be used (see Section 5).

In order to develop some “feeling” for what the stability measure
may mean for real data, the Kola moss data set is used again, and an
investigation of the pairwise relationships between Ca and all other
available elements is carried out. Note that the focus is still on the



Fig. 3. Comparison of the correlation coefficients for different transformations of the Kola moss data. Each point represents the correlation of a variable pair.

4234 P. Filzmoser et al. / Science of the Total Environment 408 (2010) 4230–4238
relationship between the pairs, and not on the multivariate data. The
resulting ilr-transformed variables are shown in Fig. 4 in form of
boxplots, where the boxes are arranged by decreasing values of the
medians. Each boxplot represents the relationship of a variable pair
according to the ilr transformation from Eq. (3), and thus is
constructed like the boxplots presented in Fig. 1. The scale on the
vertical axis is already according to the orders of magnitudes of
variation between the pairs, see end of Section 1.1. The numbers on
top of the plot refer to the ilr correlation based on the squared MAD.
Almost all values plot above zero, and thus the element Ca is more
dominant in the composition, which is not surprising considering that
Ca is a major element in plants. Compared to U, Ca is, on average, more
than 5 orders of magnitude higher. The boxplots reveal many outliers
which are informative with respect to the data quality and
homogeneity. Some example pairs are shown in Fig. 5: the boxplot
of the pair Ca–Sc, with many outliers on both sides, is problematic
because of the data quality of Sc. Similarly, rounding effects of Y cause
various boxplot outliers. On the other hand, the boxplot for Ca–Ni
includes no outliers and shows a wide box, which results in a
relatively homogeneous data cloud in Fig. 5. Since Ni covers several
more orders of magnitude than Ca, the stability is small. Nickel is one
of the main elements emitted by industry in the survey area which
causes an unusual variability. In contrast, the elements Ca and K vary
in about the same range of only one and a half orders of magnitude,
which leads to a high stability (small box, few outliers). All major
plant nutrients show this behaviour (note the order of elements on
horizontal axis).

4. How to use scatterplots

A scatterplot is a bivariate plot presenting the observations of a
variable pair. The scatterplot is very informative because it can reveal
Fig. 4. Boxplot comparison of the pairwise relationships of Ca from
groups and outliers in the data, and it provides a graphical impression
of the relationship between the variables. In the context of com-
positional data, however, care has to be taken because of the
inappropriate geometry of scatterplots when using the original or
the log-transformed data. According to the arguments provided in the
previous sections, the shape of the point cloud in such a scatterplot
does not refer to a measure of correlation between the variables. One
could actually questionwhether it then still makes sense at all to draw
and study scatterplots with closed data.

A plot of a univariate ilr variable includes the relevant information
on the relation between the two variables. Is there any “loss of
information” if the scatterplot of the closed data is completely omitted
and ignored?

Fig. 6 shows, for selected elements of the Kola moss data set, a
modified scatterplot matrix, where the upper right part shows
scatterplots of the log-transformed variables, and the lower left part
presents boxplots for the ilr-transformed pairs according to Fig. 4.
Obviously, the “traditional” scatterplots show a lot of structure, which
is lost in the boxplots. The structure might be caused by subpopula-
tions in the data relating to various effects on the regional element
distribution like contamination or sea spray (see, e.g., Reimann et al.,
2008). The stability measure does not directly reveal such phenom-
ena: they might just lead to a certain reduction of stability and thus to
an increase of the boxes (see above, Ca/Ni in Fig. 5).

The scatterplot of the log-transformed data provides an impres-
sion of the bivariate data in the wrong geometry. Even worse, the
single variables are already expressed in the wrong scale (see
Filzmoser et al., 2009b), and the scatterplot does not account for the
ratios between the parts, which is considered as the relevant infor-
mation contained in compositional parts. Is it thus even “allowed” to
inspect such a bivariate plot?When looking at the scatterplot Cu versus
Ni in Fig. 6, it can be seen that samples showing high concentrations of
the Kola moss data to all other available elements in this layer.



Fig. 5. Scatterplots of selected variable pairs (log-transformed) from Fig. 4.
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Cu also have high Ni concentrations. If the maps for Cu and Ni would be
compared, they would essentially give the same impression. This is
important information for the practitioner who wants to know the
distribution of the chemical elements in the survey area, and both
elements are actually emitted in large amounts by the Russian nickel
industry (Reimann et al., 1998). Thus the observation in the scatterplot
as such obviously provides a correct result. Though it is true that the
stability between Cu and Ni is quite high, this does not automatically
Fig. 6. Scatterplot matrix for six selected elements of the Kola moss data: traditional scatte
variables in the lower left part. The numbers on top of the boxplots provide the ilr correlat
mean that their maps show the same structure. The ilr correlation
betweenMo and Sb is even higher (0.94), but the scatterplot looks very
different. In fact, it reveals a groupof observations in the lower right part
with a different behaviour. Is it “allowed” to focus on this group and, e.g.,
to go back to their locations in themaps ofMo and Sb?The answer is yes,
because this observation is not related to a statistical correlation
between the elements. Rather than looking at correlation, the
scatterplot is used as a tool for exploratory data analysis here, in order
rplots of the log-transformed variables in the upper right part, and boxplots of the ilr
ion.
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to detect unusual data behaviour. It would thus be incorrect to discuss a
high correlation between the log-transformed element concentrations
of Mo and Sb, and to point out deviations from this correlation (e.g. the
group of observations with unusually high Sb values). Such an
interpretation would be misleading because the reported “correlation”
ignores the remaining parts of the composition, which may be
responsible for the relationship. An exploratory procedure discovers
groups in the bivariate data, and usually aims to find an explanation by
going back to the univariate information.

Whenever using a scatterplot one thus needs to be very aware that
the points as such are presented in an incorrect geometry. Thus other
grouping information could still be hidden or deviations can be
incorrectly emphasized. On the other hand, the explorative approach
only tries to discover atypical data behaviour. This can be done as long
as no confirmatory procedure like a statistical test with model
assumptions is used, or a regression line is added indicating the
strength of the linear relation. In this exploratory sense, and only in
this sense, scatterplots still contain useful information. This informa-
tion should, however, never be interpreted in statistical terms. The
plot needs to be verified using other graphics, e.g. maps, to understand
and interpret the underlying geochemical processes.

5. Multivariate extensions

Bivariate statistical analyses–even when they are combined–
cannot replace a multivariate data analysis. A typical example was
shown in Fig. 6 with the scatterplot matrix. Although relationships
between all pairs are investigated, it is difficult to generate an “overall
picture” of the multivariate relationships. This is not surprising,
because the same problem is encountered also in the normal case,
using well-behaved (non-compositional) data. A standard tool for
investigating and presenting the multivariate data structure is the
biplot which is based on the overall correlation matrix (see, e.g.,
Reimann et al., 2008). It has just been demonstrated above that the
bivariate correlation does not make sense when working with
compositional data — can then a procedure like principal component
analysis (PCA) or factor analysis, building on the multivariate
correlation matrix make any sense?

For compositional data it is also possible to construct a biplot, but
here the basic question is how to transform the data. It is not sufficient
to put together all correlations resulting from the pairwise ilr
transformations, i.e. the numbers on top of the plots in Fig. 6, and to
apply the usual procedure for constructing the biplot. Here it is
necessary to transform the complete data matrix appropriately, and
this can be done by the ilr transformation shown in Eq. (2). The exact
procedure for constructing the biplot is presented in Filzmoser et al.
Fig. 7. Biplots for the Kola moss data set based on the log-transfo
(2009a); it is important to note that the interpretation of the biplot
differs from the usual interpretation (see Aitchison and Greenacre,
2002). This method was applied to all available elements (with
reasonable data quality) from the Kola moss layer. The biplot is thus
constructed with 31 elements, and the scatterplots presented in Fig. 6
form a subset of this complex data set. The results for the
compositional biplot are shown in Fig. 7 (right). The first two
principal components express about 51% of the total variability, and
thus they cannot reveal all the multivariate information (one would
have to inspect further principal components). Nevertheless, some
characteristic processes in the data become immediately visible: Co,
Cu and Ni are the main elements emitted by industry in the survey
area, and also As and Ag belong to this association of smelter-related
elements (lower right quadrant); an association of Pb, Tl, Th, U, Mo, Al,
and Si (upper left quadrant) reflects the deposition of terrigenous dust
on the mosses; and a Mg, K, P, Ca, S, Zn and Mn association is
characteristic of biological processes in the mosses. The association
Na, B and Sr indicates the input of marine aerosols along the coast.
Thus, major spatial and biological processes in the survey area
determine the first two principal components.

Since the stabilities of the ratios of the compositional parts form
the input to the compositional biplot shown in Fig. 7 (right), it is
possible to verify the element associations at least for the element
selection presented in the scatterplot matrix in Fig. 6 (lower left part).
For example, the ratios of the variable pairs Cu–Ni, Cu–Ag, and Ni–Ag
show high stability and thus they are closely related in the biplot. In
contrast, the pairs Mo–Cu and Cr–Ni refer to low stability, expressed
by larger distances between the rays representing the variables in the
biplot.

For comparison, also the (wrong) biplot based on the log-
transformed moss data is shown (Fig. 7, left). This is the version one
would see in the vast majority of environmental applications. The
difference to the ilr version is obvious. Most importantly, in the
“classical” biplot almost all the variables are arranged only in a half-
plane. This is a typical indication of working in the wrong geometry
with closed data: in the plot using the ilr-transformed data the effect
of opening the data is immediately visible. Still, the classical pro-
cedure works as it is supposed to work: the configuration of the
variables in this biplot approximates the correlationmatrix of the log-
transformed data in the best possible way. This can even be verified by
the element subset shown in the upper right part of the scatterplot
matrix (Fig. 6). However, due to using closed data the correlations
based on the log-transformed data do not reflect the real underlying
variable relationships, and thus the biplot is misleading. Without
knowing the processes that become so clearly visible when using the
ilr-transformed data, the user might arrive at a completely wrong
rmed variables (left) and on the ilr-transformed data (right).
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interpretation, e.g. that the majority of elements are co-emitted by
industry.

Note that both biplots shown in Fig. 7 are robust, i.e. they have
been constructed with the robust correlation matrix of the log-
transformed and ilr-transformed data, respectively (for details, see
Filzmoser et al., 2009a). This allows us to focus on the homogeneous
datamajority, and reduces the influence of data outliers. Nevertheless,
even a robust analysis performed on the log-transformed data is not
able to “repair” the artifacts of the geometry.

There are many other multivariate methods for presenting the
multivariate data structure of compositional data. Most importantly,
they all have to be based on an appropriate transformation, like the ilr
transformation, applied to the complete data matrix. A difficulty with
this transformation is the interpretation of the resulting ilr variables
(Egozcue and Pawlowsky-Glahn, 2005) which can be considered as
mathematical constructions, see Eq. (2). For an interpretation in terms
of the original variables the results of themultivariate analysis have to
be back-transformed, usually to the clr space. This was also the case in
Fig. 7 (right), and thus the “usual” interpretation of compositional
biplots (see Aitchison and Greenacre, 2002) is facilitated.

Filzmoser et al. (2009c) proposed factor analysis for compositional
data. In contrast to principal components, the factors are supposed to
be interpretable in terms of the original variables, and they can often
be assigned to certain processes in the data. Maps of the factor scores
will then show the regional distribution of these processes (for details,
see Filzmoser et al., 2009c).

6. Discussion

The discussion about an appropriate transformation of composi-
tional data needs to be based on the geometry inherent in the data,
and not on properties of the statistical distribution of the observed
data values. In other words, although a log transformation of the
variables may often result in a more symmetric statistical distribution,
sometimes even in a distribution that looks similar to a normal
distribution, this does not mean that the log transformation is suitable
for the subsequent statistical analysis of environmental data. The log
transformation can and should be used only in the univariate case, and
if the observed values for a variable are small enough (see Filzmoser et
al., 2009b), but it is inappropriate for investigating bivariate or
multivariate relationships. There are many papers describing the
special geometry of compositional data (see, e.g., Egozcue and
Pawlowsky-Glahn, 2006). The relatively new ilr transformation
allows the representation of compositional data in the standard
Euclidean space and does not result in singularity problems. The only
reason why the data should be transformed to Euclidean space is
because practically all the statistical “standard tools” are designed for
this space, and they can lead to wrong conclusions when used in
another space.

When using the ilr transformation to transfer the compositional
data into Euclidean space, bivariate plots become univariate. Now the
variability of the ilr-transformed variables provides information about
the relationship between two variables. The ilr transformation can be
viewed as a non-linear transformation resulting in univariate
information. The distances between the data points correspond to
the Aitchison distance reflecting the geometry of compositional data
(Egozcue and Pawlowsky-Glahn, 2006), but the scale of the new
univariate data is unfortunately not straightforward to interpret.
Rescaling the axis according to the simple logratio, and using the
logarithm to the basis 10, allows an interpretation in terms of the
difference of the original variables expressed in orders of magnitude.
The larger the variability, the smaller is the ilr correlation between the
compositional parts. The smaller the variability, the more stable is one
variable with respect to the other one, and thus the ilr correlation
measure gets higher. Variability can therefore be expressed as the
stability of one compositional part on the other one. This stability may
also be observed spatially in the case of spatial data. Highly varying
ratios of two elements in a survey area indicate low stability, and
consequently they result in low ilr correlation.

One of the simplest visualization tools, the scatterplot, representing
the data pairs measured on two variables in one plot, cannot be
interpreted in theusualway. It shouldonlybeused as anexploratory tool
in order to detect unusual data behaviour or data groups, but not in a
confirmatory sense. The tendency of the point cloud in a scatterplot does
not reflect the correlation as for traditional non-compositional data and
the plots should not be used tofind linear (or curve-linear) relationships.
The traditionalway of linear or non-linear regression relating a response
variable with an explanatory variable is not meaningful for composi-
tional data since the data points only include relative information.

It is important to note that the compositional nature is inherent in
the data structure even if the sum of the considered elements is not
constant or does not equal 100%. For example,when adding the element
concentrations of all the variables used in the biplots in Fig. 7, the sum
for the samples is on averageabout 12,000 mg/kg, i.e. the element
concentrations form only about 1% of the complete sample. This is even
more extreme in the bivariate case, where only two variables are of
interest for the statistical analysis. The inappropriateness of the usual
Euclidean geometry for compositional data, and the inappropriateness
of statisticalmethods relying on this geometry have been demonstrated
for both the bivariate and the multivariate cases.

7. Conclusions

The fact that compositional (i.e. practically all environmental) data
are not represented in the standard Euclidean space leads to severe
consequences during data analysis, which become especially serious
in the bivariate case. The scatterplot cannot be interpreted in the usual
way, though it can still be used in a truly exploratory data analysis
sense. Note that bivariate plots of different ratios, the classical solution
to the closure problem in petrology, do make sense. Correlation
coefficients based on raw or log-transformed compositional data
should not be calculated, the resulting values have no statistical
meaning. As a consequence, tests for lack of correlation are not
meaningful either for compositional data. It is not even clear how such
a test could be adapted appropriately for compositional data since any
such test should be based on the variance (or standard deviation) of
the corresponding ilr variable. Multivariate data analysis can provide a
solution to the loss of classical bivariate correlation analysis. Once the
data are opened (i.e. ilr-transformed) standard techniques like PCA or
factor analysis can again be used to study the relation between all
variables in the multivariate space even though these techniques are
based on correlations.
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