

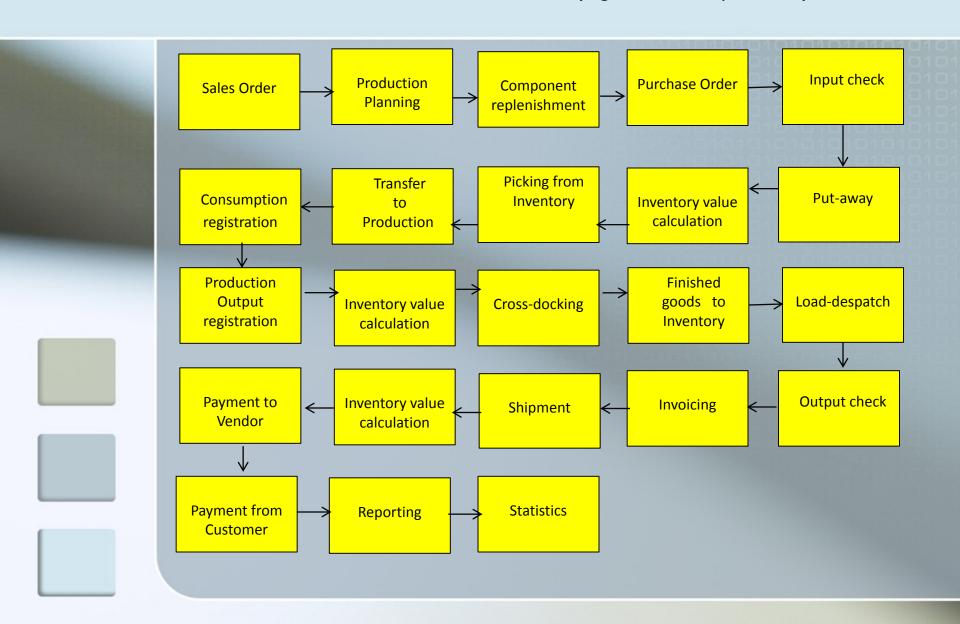
ERP Project Activities

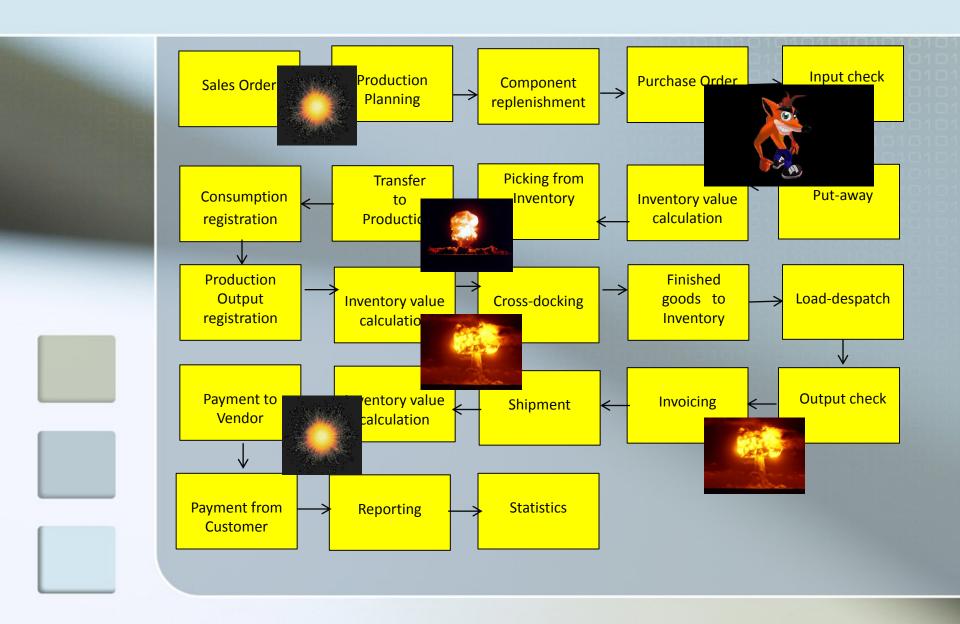
Skorkovský, ESF MU, Department of Business Economics , version 20140917

Countries from where you probably came

- France
 Greece
 Uruguay
 Germany
 - Ukraine
 - Kazakhstan

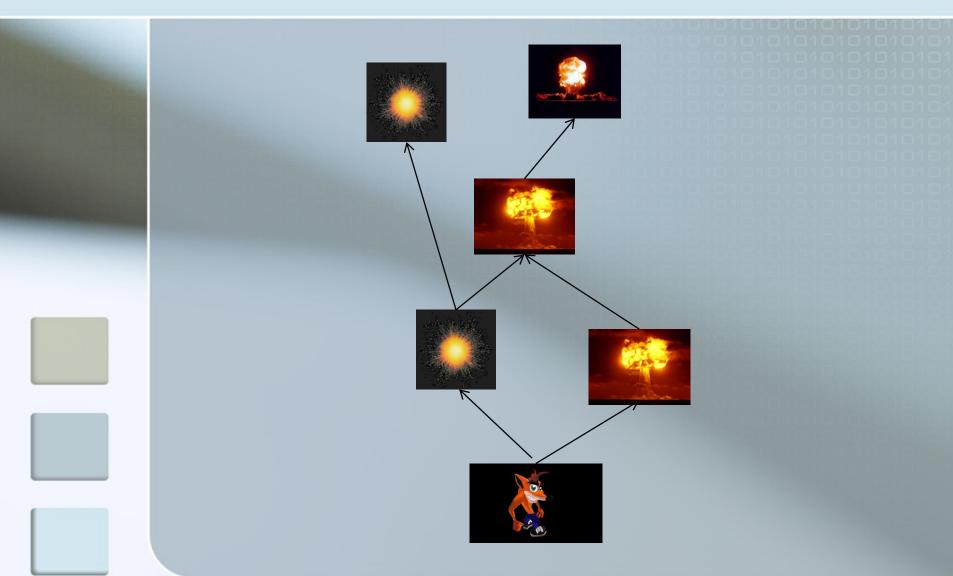
Teacher


- Department of corporate economy (V. Floor)
- External free lance consultant on contract www.navertica.com
- Training manager Navertica South Africa
- 1730@mail.muni.cz; miki@econ.muni.cz; jaromir.skorkovsky@navertica.com


Your main task (not organised set of processes)

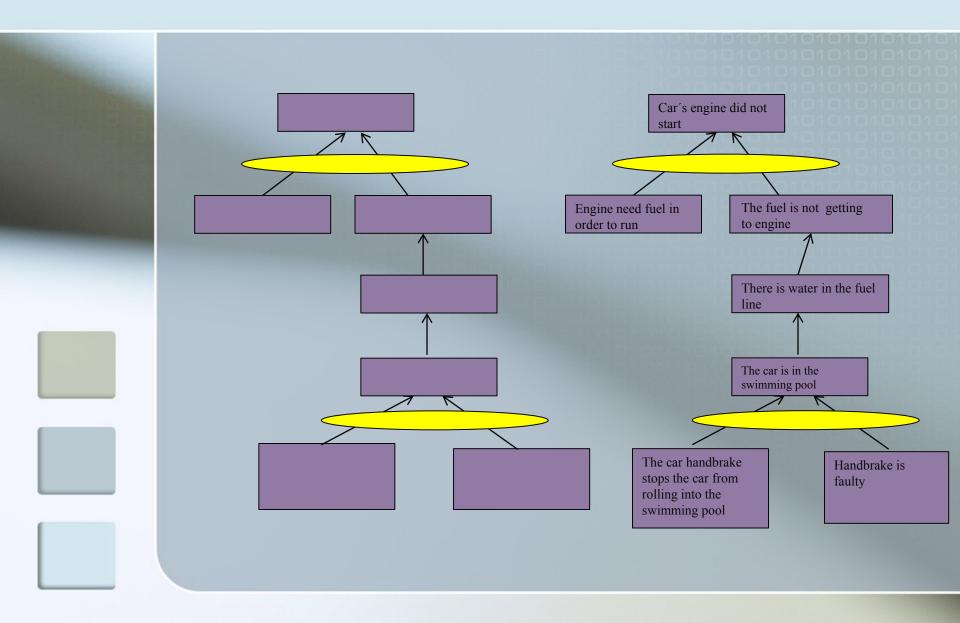
		15		010101010 010101010 010101010	10000	10101010101 10101010101 10101010101 10101010101	0101 0101 0101 0101
	Load-despatch		Purchase Order	Reporting	00000	Statistics	
	Consumption registration		Production Output registration	Inventory value calculation		Output check	
	Delivery		Production Planning	Sales Order		Component replenishment	
	Transfer to Production		Put-away	Cross-docking		Input check	
	Finished goods to Inventory		Picking from Inventory	Invoicing		Payment	

Your main task (organised set of processes)



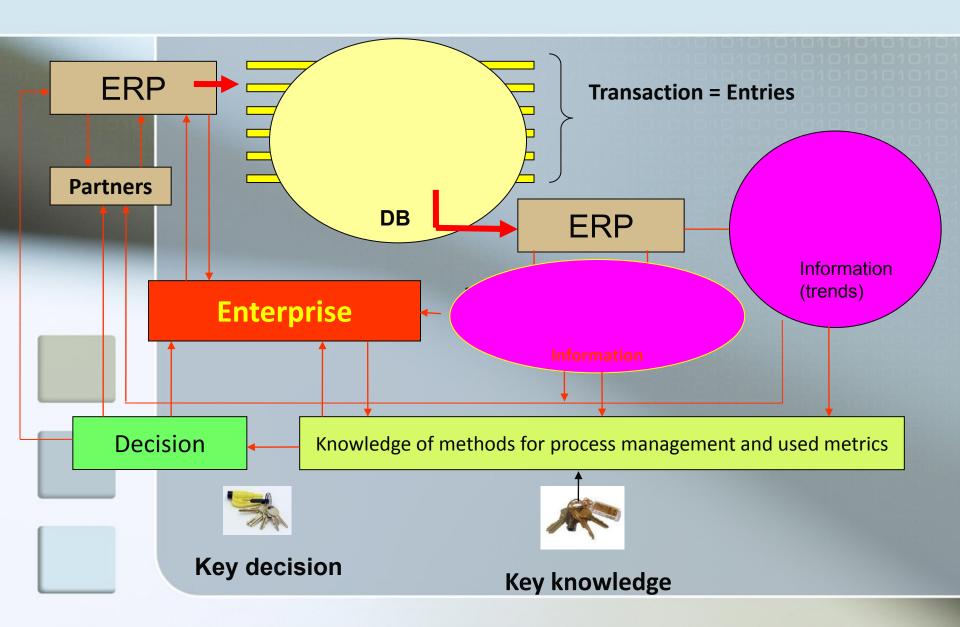
Your main task (possible problems, bottlenecks,..)

Your main task

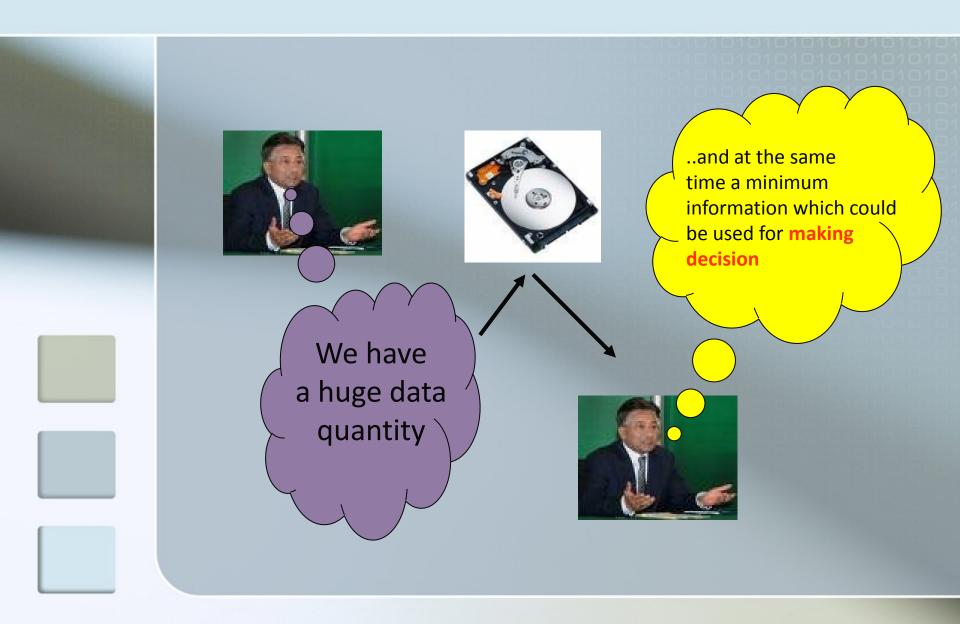

(Search problems - HOW ??? Measure impacts -HOW ??? and Destroy - HOW ???)

Some events and some undesirable effects

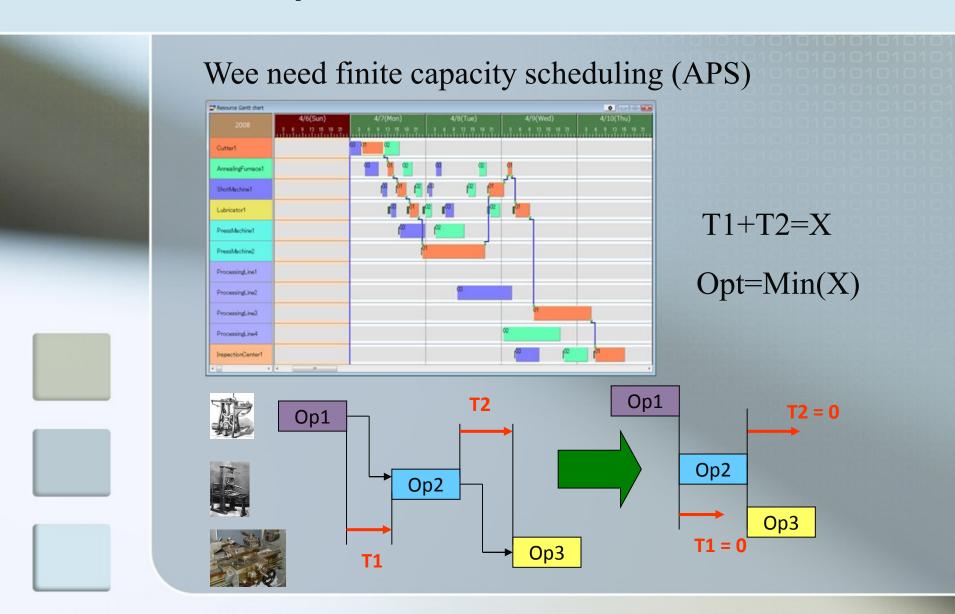
- The car is in the swimming pool
- The fuel is not getting to the engine
- Handbrake is faulty
- There is water in the fuel line
- Car's engine did not start
- Engine need fuel in order to run
- The car handbrake stops the car from rolling into the swimming pool


Your main task – model problem

Methods (not sorted so far !!!!!!!!)


- Theory of Constraints how to control efficiently
- Critical Chain project management issue
- Ishikawa Fishbone Diagram quality management
- Pareto Analysis – quality management
- OLAP (On-Line Analytic Processing) data management
- Kepner –Tregoe method –decision making
- MaxMax and MaxMin (Hurwitz) decision making
- SWOT marketing, analysis
- ERP Statistics and reporting mail tool
- Balanced Scorecard company strategy
- Little's law production planning
- And many, many more.....

Simplified diagram of ERP usage



Purchase Sales **Processes** Orders->Sub-Load and Load-> Quotes->Net change calculation-> ->Batch tracking ->Order->Vendor batch tracking -> ->Output Quality check->Picking ->Shipment ->Input Quality check->Receive, Put-away-> -> Invoicing -> Applying payments ->Invoicing ->Payment **ERP**

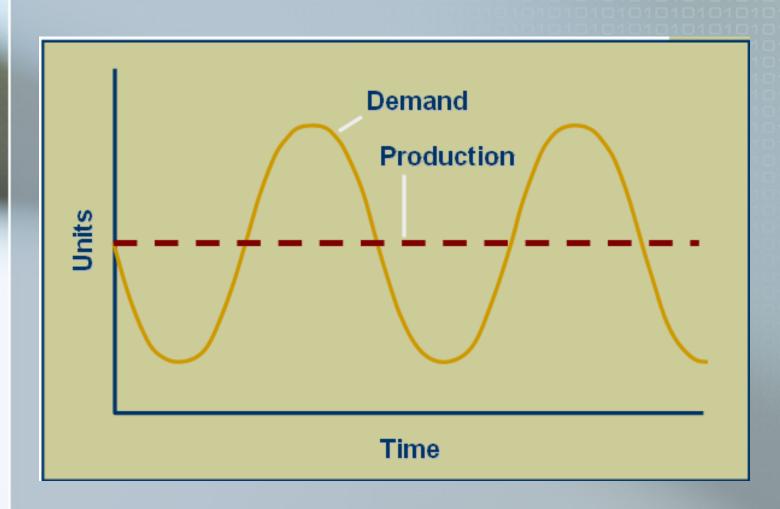
Main problem (one of many)

Main problem II (need of reliable data)

Why we cannot manage it?

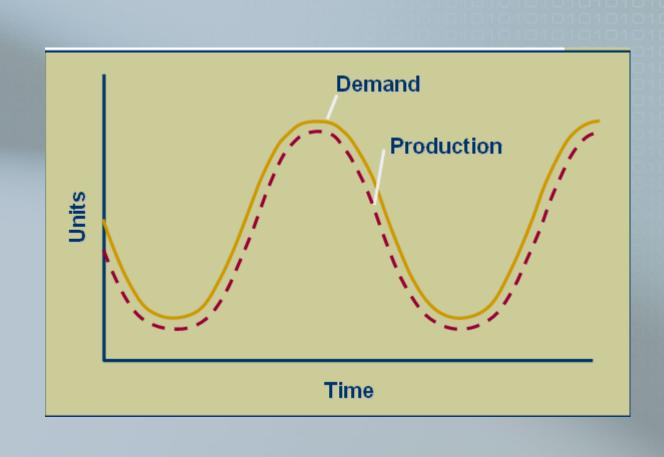
Unclear priorities, bad = SOP,....

(SOP = Standard Operation Procedures)


SOUTH AFRICAN project

Level production

Level production strategy

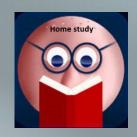

Period	Sales Forecast (kg)	Production plan (kg)	Inventory (kg)
Spring	80 000,00	100 000,00	20 000,00
Summer	50 000,00	100 000,00	70 000,00
Fall	120 000,00	100 000,00	50 000,00
Winter	150 000,00	100 000,00	0,00
	10101010	400 000,00	140 000,00
Hiring cost/worker	1	00,00	
Firing cost/worker	5	00,00	
Production cost/kg		2,00	
Inventory carrying cost /kg		0,50	
Production cost/kg/worker/quarter Production capapcity of one worker	10	00,00	
Beginning work force (workers)	1	00,00	

Russell & Taylor
Operations Management
Sixth Edition, p.586-595

Cost of Level Production Strategy (400,000 X \$2.00) + (140,00 X \$.50) = \$870,000

Chase demand

Chase demand strategy


Period	Sales Forecast (kg)	Workers needed	Workers hired	Workers fired
Spring	80 000,00	80,00	0,00	20
Summer	50 000,00	50,00	0,00	30
Fall	120 000,00	120,00	70,00	0
Winter	150 000,00	150,00	30,00	1101010101
	Ososion os a	81616161	100,00	50,00

Cost of Chase Demand Strategy (400,000 X \$2.00) + (100 x \$100) + (50 x \$500) = \$835,000

Chase demand without optimization (Chase demand strategy)

Chase demand				Cost	835000
Workers start	100				
Products/worker/Quarter	1 000	Production cost	2,00	Firing cost	500
Inventory start	0	Inventory cost	0,50	Hiring cost	100
			Demand/1000		
QUARTER	Demand	Production	Need for workers	Hired	Fired
Spring	80000,00	80000,00	80	0	20
Summer	50000,00	50000,00	50	0	30
Autumn	120000,00	120000,00	120	70	0
Winter	150000,00	150000,00	150	30	0
Total	400000,00	400000,00		100,00	50,00

Cost of Chase Demand Strategy (400,000 X \$2.00) + (100 x \$100) + (50 x \$500) = \$835,000

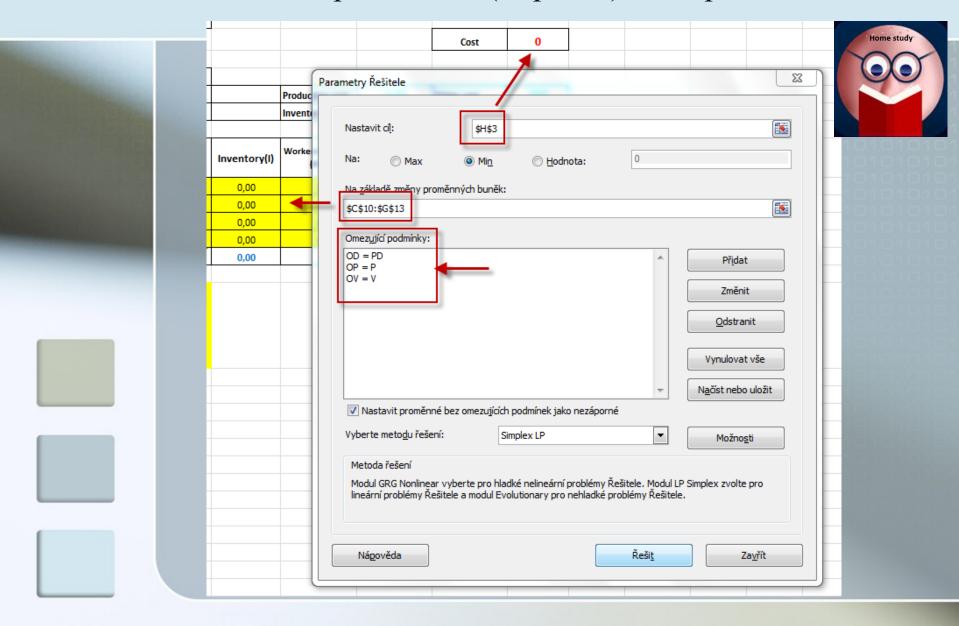
Chase demand with optimization (step one)

	Page 594 Ruseel and Taylor								
_	Chase demand					Cost	0		
-		100							
_	Workers start Product/worker/Q	1 000		Production cost	2,00	Firing cost	500		
	Inventory start	0		Inventory cost	0,50	Hiring cost	100		
Q	Demand (P)	Production (V)	Inventory(I)	Workerd needed (PD)	Hired (H)	Fired (F)	Demand constraints (OP)	Production constraints (OV)	Workforce constrtaints (OD)
1	80000,00	0,00	0,00	0	0	0	0	0	100
2	50000,00	0,00	0,00	0	0	0	0	0	0
3	120000,00	0,00	0,00	0	0	0	0	0	0
4	150000,00	0,00	0,00	0	0	0	0	0	0
Celkem	400000,00	0,00	0,00		0,00	0,00	1		
		Solver will put solution here					These cells contain constraint formulas : Example 14.3.	Hor	ne study

Chase demand with optimization (step two) – constraints formulas

		Demand	
Demand constraints	V1-I1	80000	0101010
	I1+V2-I2	50000	0101010
	I2+V3-I3	120000	01010101
	I3+V4-I4	150000	0101010
		Workers needed =PDi	01010101
Production constraints	1000*PD1	1000* PD1	0101010
	1000*PD2	1000* PD2	0101010
	1000*PD3	1000* PD3	0101010
	1000*PD4	1000* PD4	0101010
		H=hired, F= fired	
Workforce constraints	100+H1-F1=PD1		Home study
	PD1+H2-F2=PD2		00
	PD2+H3-F3=PD3		
	PD3+H4-F4=PD4		

Chase demand with optimization (step three) – setup of the objective function



Minimize: 100*(H1+H2+H3+H4) + 500 *(F1+F2+F3+F4) + 0,50* (I1+I2+I3+I4) + 2*(V1+V2+V3+V4)

This formula is necessary to put to excel (cell cost)

	Nacist externi data	Pripojeni	Pripojeni Seradit a fil				
H	3 ▼ (*)	<i>f</i> _x =H7*F1	4+H6*G14+F7	*D14+F6*C14	_		
Α	В	С	D	Е		G	Н
	Page 594 Ruseel and Tayl	or					
	Chase demand					Cost	0
Н	Workers start	100					
	Product/worker/Q	1 000		Production cost	2,00	Firing cost	500
	Inventory start	0		Inventory cost	0,50	Hiring cost	100

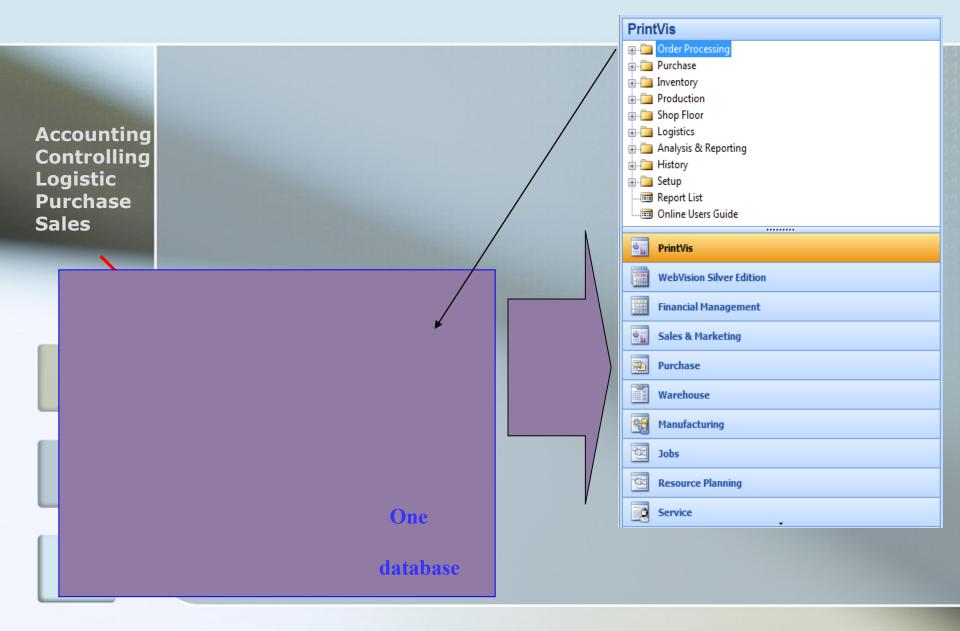
Chase demand with optimization (step four) – setup of the solver

Chase demand with optimization (step five) – solution created by Solver

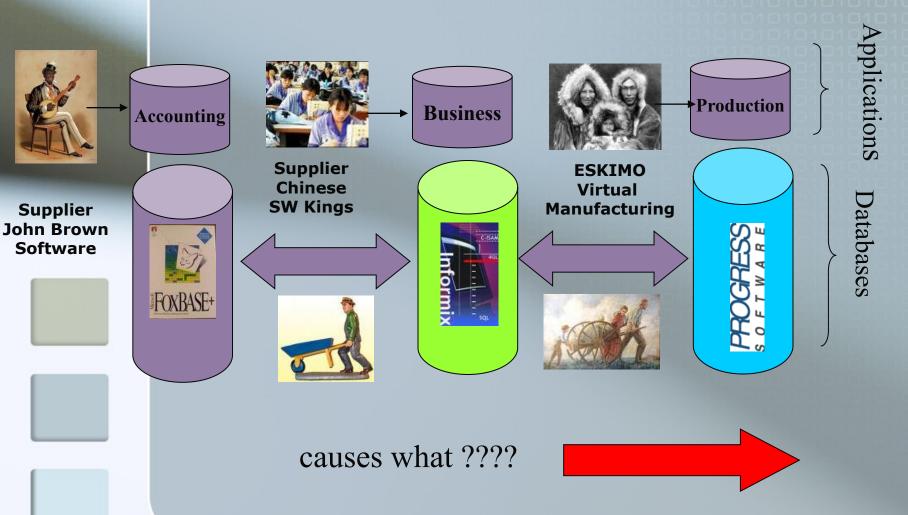
					010101	010101	01010	10101	01010
	Page 594 Ruseel and Taylor								
	Chase demand					Cost	832000		
	Workers start	100							
	Product/worker/Q	1 000		Production cost 2,00 F	Firing cost	500			
	Inventory start	0		Inventory cost	0,50	Hiring cost	100		
Q	Demand (P)	Production (V)	Inventory(I)	Workerd needed (PD)	Hired (H)	Fired (F)	Demand constraints (OP)	Production constraints (OV)	Workforce constrtaints (OD)
1	80000,00	80000,00	0,00	80	0	20	80000	80000	80
2	50000,00	80000,00	30000,00	80	0	0	50000	80000	80
3	120000,00	90000,00	0,00	90	10	0	120000	90000	90
4	150000,00	150000,00	0,00	150	60	0	150000	150000	150
Celkem	400000,00	400000,00	30000,00		70,00	20,00			
		Solver will put solution here					These cells contain constraint formulas: Example 14.3.		

A simple business case....(example)

- Printing Company in Upper Lower Corner village somewhere in backwoods has a small problem :
 - They use for managing printing procedures:
 - a very basic economic system Sunshine written by Six grade student (a son of the owner) – written in Pascal
 - another different systems for quotes calculation,
 logistics, production planning and control written in :
 - v obsolete FOX PRO



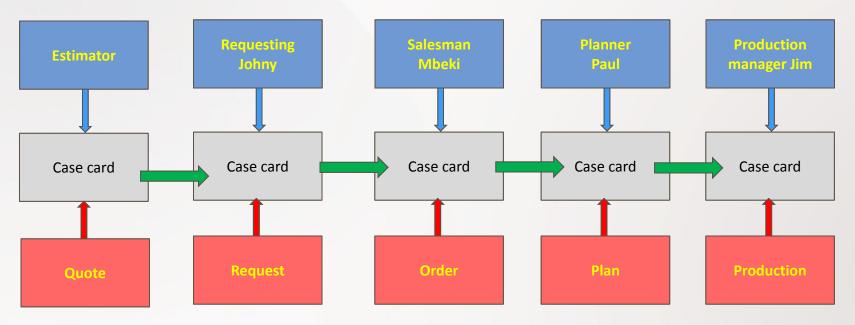
- by 3 different programmers from 3 different companies
- MS Office



Solution fully integrated to standard ERP package

Actual situation (example)

Effects


- difficult upgrades of applications
- difficult communication between different applications
- reduplicated data (redundant data)
- non actual data->bad decisions
- etc.

A simple business case (printing industry)....example - benefits

- Competitive market could requires for instance:
 - fast reaction to quotes
 - variable quotes and their immediate costing (calculation) -> pricevariability
 - shortening of delivery times
 - shortening lead times and cycle times -> fast reaction
 - reduction of inventory values (paper, colors)->higher liquidity
 - quality improvement ->8D reports should be used
 - processes driven by flexible workflow -> flexible op management
 - exact evaluation of finished jobs (production orders) in order to know real costs -> better cost control
 - feed backs to external and internal signals such as :
 - reasons of quotes dismissals (why ???????)
 - reason of unexpected costs (why ???????)

PrintVis Workflow (in order to find easily e.g. Flexo order)

A simple business case....

- Competitive markets also requires :
 - Modern and efficient SW tools to control these processes :
 - prepress: desktop publishing, computer to plate, ...
 - purchase of material (paper, colors,..)
 - imposition (how to put locate texts on the paper)
 - printing using different technologies (sheets, rotary press,..)
 - production planning and shop floor control
 - finishing operations such as
 - cutting
 - gathering
 - stitching

- special printing operations
- flexible invoicing
- on-line accounting and so on and so on

Printing machine

A simple business case....

Bottlenecks (TOC) – Threats (SWOT):

- obsolete information system, which requires all time some changes, patches,...
- all parts of information system form an heterogeneous is IT tools heterogeneous hydra: finance management, costing, production, inventory, HR,... ,which never provides user with real picture of the business!!!!!!
- inaccurate data from one application is inherited by another one, so the picture of the business always late
- Costing depends on human failing factors
- one author of every single subsystem
- these authors never meet each other to coordinate their efforts...

A simple business case....

Bottlenecks (TOC) – Threats (SWOT):

- internet auctions favour competitors which are cheaper and faster
- the size of paper and colour purchase orders are based on inexact assessment of purchasers (if we have a lot of orders, types of papers, various machines and so on, the optimum assignment of the purchase batches sizes is beyond ability of human being with paper and pencil)

Gaza gate ——

A simple business case....

- Messiah arrives and says : "I have for you this :"
 - modern and flexible and standard ERP system
 - background of IT company with tradition and experience
 - background of global IT vendor

- the knowledge of printing industry
- printing application fully integrated with standard ERP
- Arriving applicant must:
 - understand processes in printing industry (or any other base on chosen branch)
 - be able to write printing application using development tools (languages) of standard ERP system
 - implement the solution
 - OR instead of these three blue marked points to find already existing vertical solution for printing industry, which is used all over the globe

A simple business case....

Finding a vertical is right!

Let say, that we have found a foreign company having already
 Print SOLUTION developed (NovaVision), which was implemented
 200-times and in different languages

One database only

Other standard ERP modules:

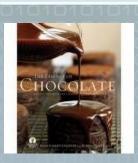
Service Management Human Resources Business Analytics.. Accounting

Logistics

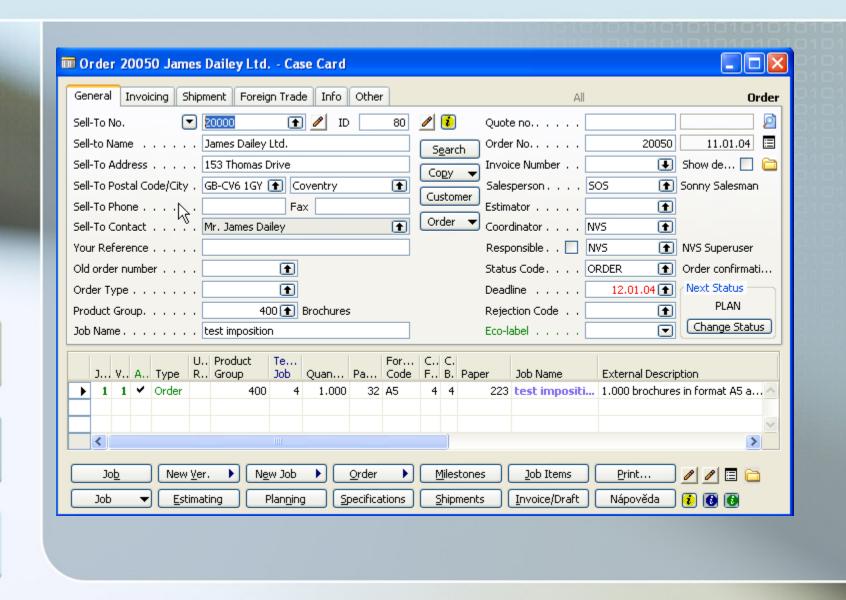
Purchase and Payables

Sales and Receivables

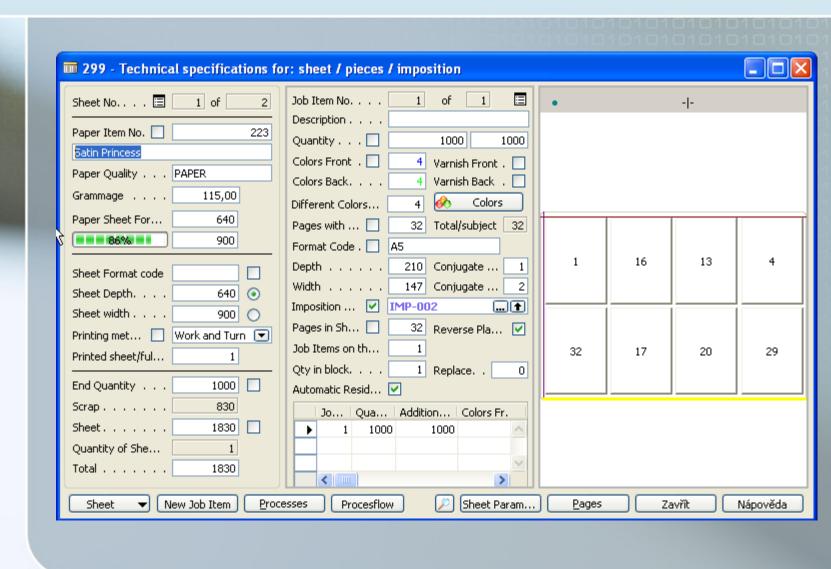
Standard production


CRM

A simple business case....project management – introduction


Live Meeting:

- application setup
- basic functions and a "sweet points"
- business case workflow (all the stages)
- Customer was happy and awaited consequential actions
- Vendor signs a contract about localisation and selling in pre-determined geographical areas



A simple main form of printing application **PRINT** integrated to ERP Navision

Another form of printing application **PRINT** integrated to ERP Navision (imposition and colours)

A simple business case....

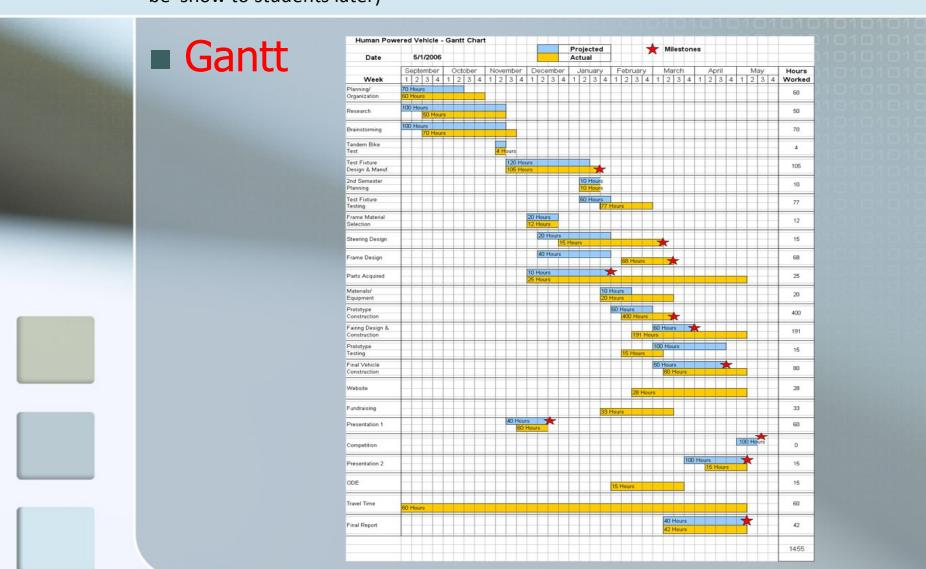
Some reasons which persuaded ERP vendor to sign a contract with vendor of vertical solution PRINT:

- local market analysis (SWOT, GAP Analysis, BPM,BSC, Pareto, Ishikawa Fishbone diagram, TOC, CCPM....)
- expectation of repetitive sales promising market segment ->CRM application (pains and benefits)
- analysis of the competitors-> CRM
- possible co-operation with other PRINT experts abroad (sales of services)

Project entries...

- acquire necessary printing industry knowledge
- introduction training provided by supplier of PRINT application (vertical solution)
- team building
- budget (costs "business plan"- revenues)
- language localization ENG->CZE
- modification ERP and a Print for Czech conditions (market specifications and legislation)
- cope with inner application

Project entries..


- translation of marketing material (fact sheet) and its printing in compliance with predefined templates
- creation of PWP presentation for selling
- prospect prediction segments of market
- naming of benefits "selling against"
- presentation to chosen prospects and reaction to questions- use of feedbacks to improve knowledge of printing industry
- Print price list generation

Project entries...

- "Kick-Off" meeting
 - when, who, what and why (Kick-Off)
 - PWP presentation
 - ■invitation, graphic design
 - selling invitation and follow-up
 - **■** Kick-Off
 - mapping of interests, business strategy modification and resource planning

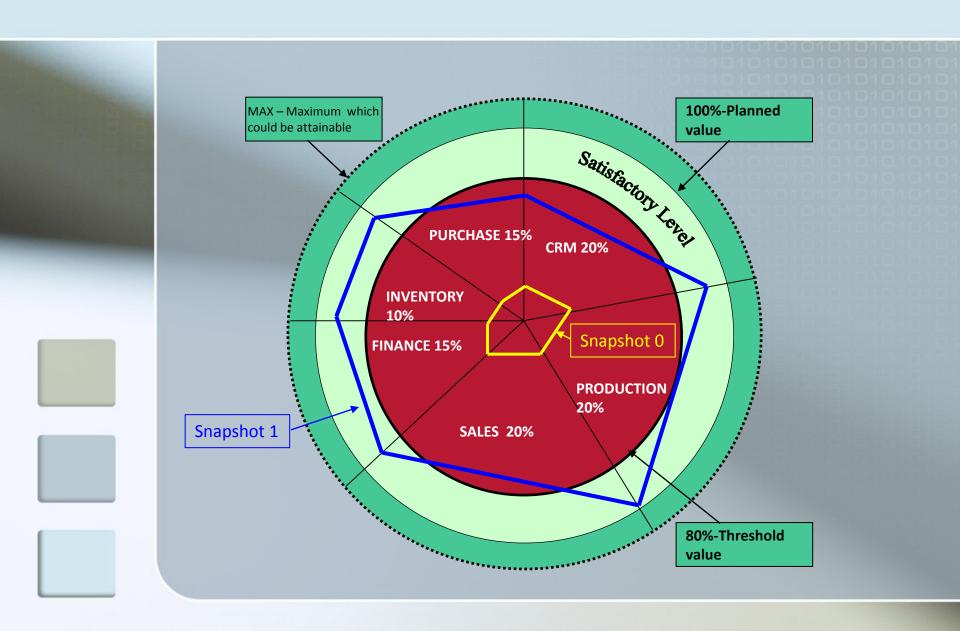
Project entries...(will be part of Critical Chain theory, which will

be show to students later)

Project entries...

- Contract signature with pilot customer
- System implementation (only some important activities are mentioned here..)
 - feasibility study, analysis, target solution draft
 - introduction training
 - system customization will be shown in DynamicsNAV
 - tests of introduced modifications
 - data transfers and setup of technological "master data"
 - generation and selling licences and HW tools such as servers, ...
 - change management

Project entries...


Activities

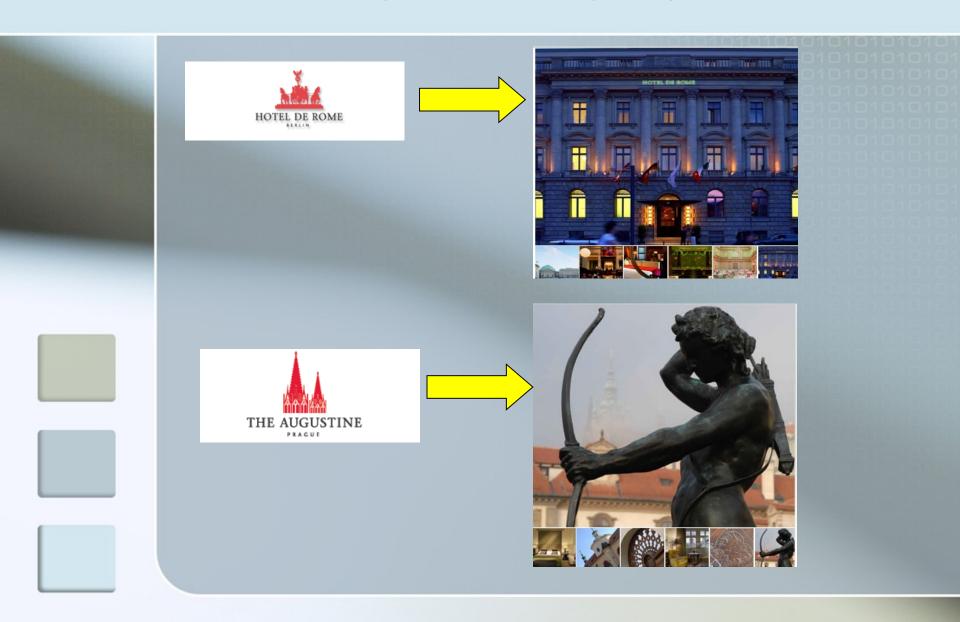
System implementation (only some important activities are mentioned here..)

- training with real data in the ERP system
- stock taking and transfer of balances on accounts
- sharp start
- support and surveillance

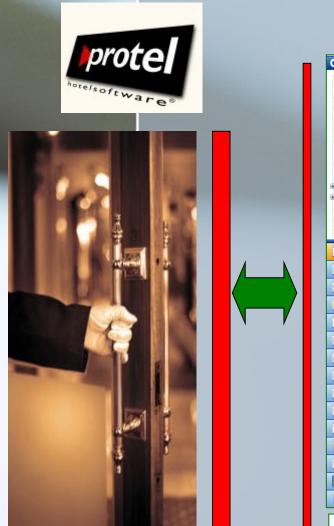
Necessary knowledge for project management

Project successful? (from Snapshot 0 -> Snapshot 1)

Another possible project.



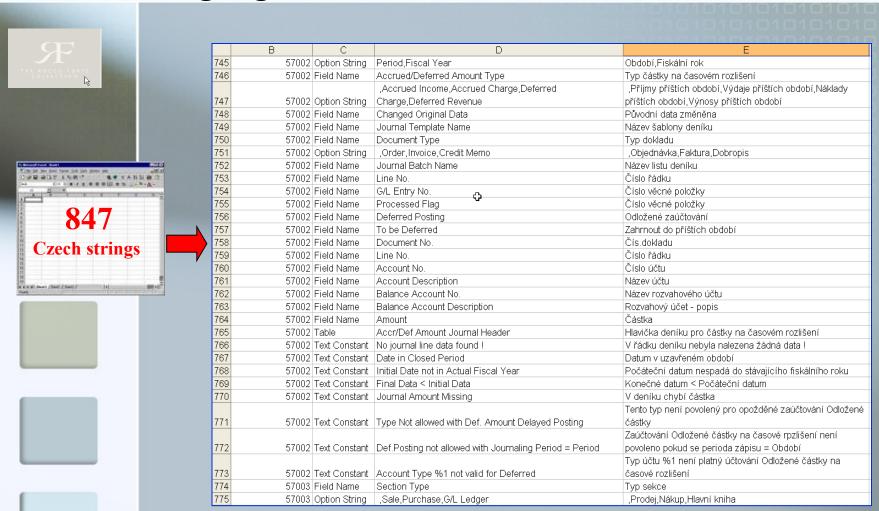
- Hotel chain Rocco Forte * * * * *
- Where? (Great Britain 2x, Scotland 1x, Germany 2x, Prague 1x, Rome, Florence, CH, Russia)
- **SW choice** (chosen company for delivery standard accounting package of ERP and cooperation with author of hotel vertical solution : Serenissima Informatica, Padova)
- Choice of local partner (CZ MS Dynamics NAV partner X : requirements -> stability, knowledge of international business, languages, references- testimonial abroad, ..)
- Milano (server farm for all hotels)
- All hotels using same chart of account (USoA=Uniform System of Accounts) simple consolidation (IFRS)
- Choice of hotel SW and accounting SW

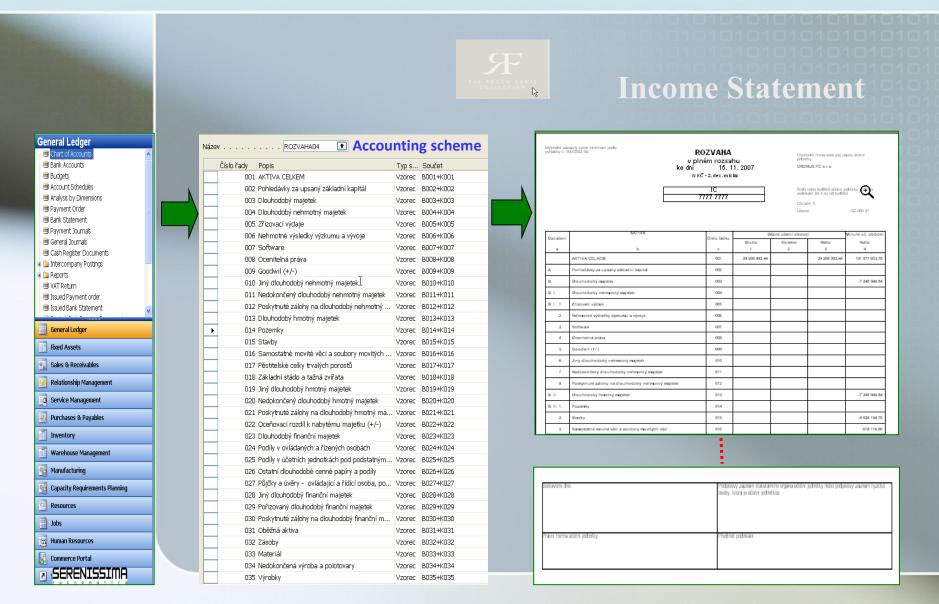

Another possible project...

Another possible project

Basic Concept (survey)

Microsoft Dynamics




Dataport

Translation of text strings used for communication Protel<->Dynamics NAV to Czech language (necessary knowledge of terminology and language)

Balance sheet (generation using accounting schemes –

will be introduced to students)

Uniform System of Accounts

_	.						-		
No.	Name	▼ Income/Balance	▼ Account Type	▼ Mapping	▼ count synte	Analytic	▼ 0	zech description	1010
0213300	T CHIZION TONIO	parameesmeet	1 wasing	fie der	313	11.20	LUVULKY		1010
0047500	Other Debtors - Insurance Advances Premium Payment	Balance Sheet	Posting		381	100	Náklady	příštích období - pojištění zaměstnan	ců
0067700	Prepaid rent	Balance Sheet	Posting		381	200	Náklady	příštích období - nájemné	
0069000	Prepaid Insurance	Balance Sheet	Posting		381	300	Náklady	příštích období - pojištění budovy a o	dpovědnosti
0069500	Prepaid Licences & Permits	Balance Sheet	Posting		381	310	Náklady	příštích období-licence a povolení	
0070000	Prepaid Maintenance Contracts	Balance Sheet	Posting		381	400	Náklady	příštích období - provozní náklady	
0070300	Prepaid Sales & Marketing	Balance Sheet	Posting		381	500	Náklady	příštích období-Sales& Marketing	
0070350	Prepaid - Property taxes	Balance Sheet	Posting		381	600	Náklady	přístích období - daň z nemovitosti	
0141000	Financing Costs	Balance Sheet	Posting		381	700	Náklady	příštích období - náklady na financova	ání
0141100	Brand	Balance Sheet	Posting		381	800	Náklady	příštích období - rebranding	
0155000	Pre Opening Cost	Balance Sheet	Posting		381	900	Náklady	na zprovoznění hotelu	
0250010	GRNI-Stores	Balance Sheet	Posting		383	100	Výdaje p	říštích období - stock	
0250050	GRNI Non Stores	Balance Sheet	Posting		383	200	Výdaje p	říštích období – non-stock	
0249000	Deferred Income	Balance Sheet	Posting		384	100	Výnosy p	ríštích období	
0249100	Deferred Income Other	Balance Sheet	Posting		384	200	Výnosy p	rříštích období - jiné	
0249500	Deferred Income - Subscription	Balance Sheet	Posting		384	300	Výnosy p	říštích období	
0021000	Guestledger (Accrued Income)	Balance Sheet	Posting		385	100	Příjmy p	říštích období - nevyfakturované tržby	
0048500	Accrued Income - other	Balance Sheet	Posting		385	200	Příjmy p	říštích období-ostatní	

Accrued Revenues (revenues generated in the future periods)

Income (still not created)

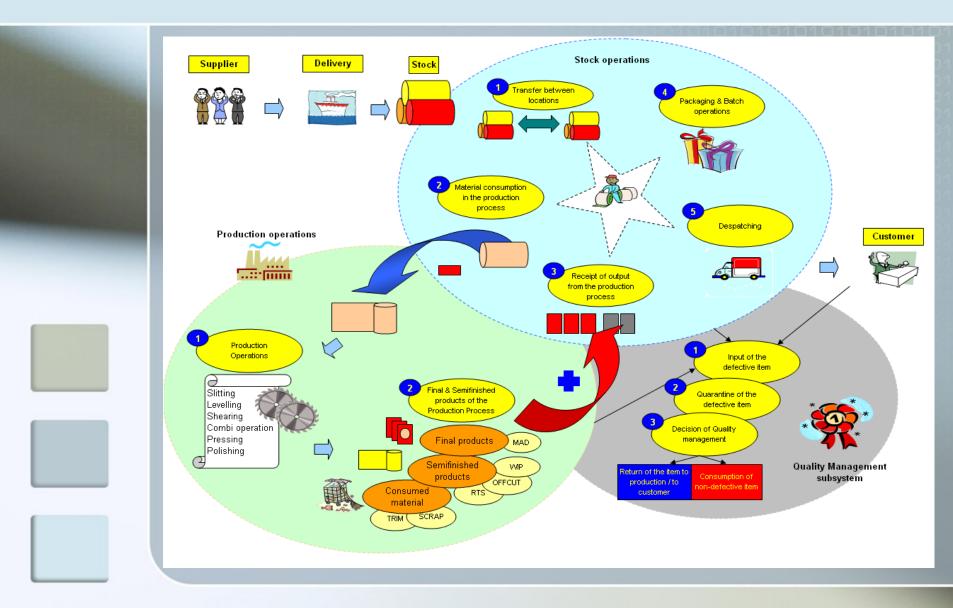
General Ledger

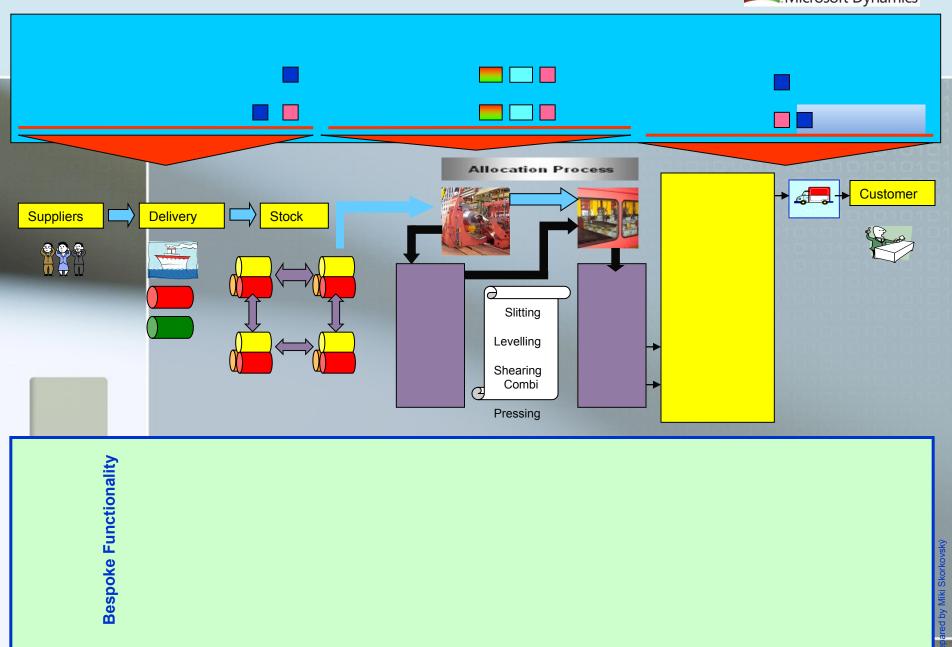
Customer

Accrued and Deferrals

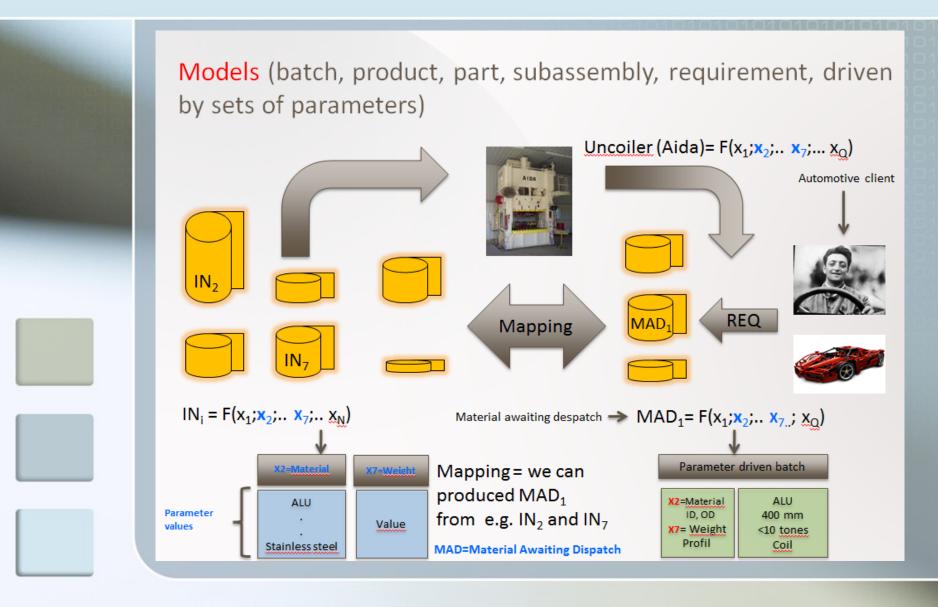
Deferrals: It means when You receive an Invoice for Service; Service provided partially in one Fiscal Year, and Partially for the following Fiscal Year. Ex.: In November You receive an Invoice for IT Service provided from November 2007 until June 2008.

You have to charge 2 Months for 2007 and 6 Months for 2008 Fiscal Year. In other words Deferred Costs happens when You receive in advance an Invoice for Services provided in the future. It's possible to have the same also for Revenues


Accrued:

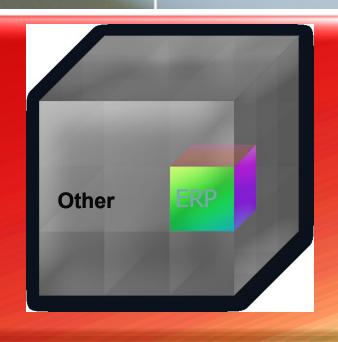

Ex.: In May 2008 You receive an invoice for Services provided from November 2007 until May 2008. Normally You have to charge in advance, Cost for Services for November and December 2007 without any Invoice, and You balance this Cost with special Accounts. This happens very often in Hotel management because, for management control,

they have to produce every month Profit & loss report. It's more or less like a Year close done on every Month.


In other words Accrued Costs happens when You receive an Invoice for Services after the Service was provided. The same can happens also for revenues.

Another possible project –Automotive, Appliances, packaging industry

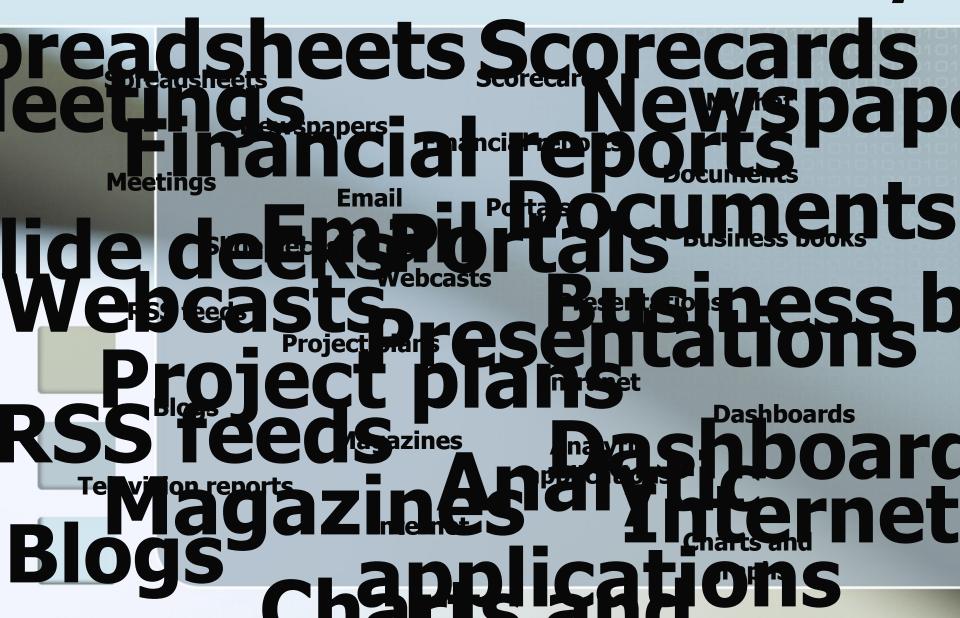
Mapping prinicples


Knowledge of methods, which are necessary for project management and process management

- Theory of Constraint (will be introduced-72 slides)-seminar work!!!!
 - Critical chain methodology
 - Thinking tools
 - Throughput Accounting ->go to wikipedia
- Balanced Scorecard (will be introduced)
- SWOT a Gap Analysis (You should know it, I guess...)
- Quality management (Ishikawa and Pareto- will be introduced)
- ERP system and its logic (will be introduced- 28 hours)
- Logistics (warerhouse management)
- Finance Management and Controlling
- Production Management (MRP, MRP-II, JIT and DBR)
- Decision making tools (Kepner Tregoe-will be introduced)

Knowledge of methods, which are necessary for project management and process management

- Legal aspects of contracts
- Cost management
- Foreign languages
- Basic knowledge of IT architecture will be introduced
- Methods used for project management
- Business Analytics Will be shown later
- Methods supporting decision making
- Risk management
- Basics of marketing


Business Analytics – some reason why to discuss

- The data is not all in the ERP
- The tools are rigid and hard to learn
- The tools don't reflect how we work today
- They don't span the continuum of needs

Information Overload

IM/C

What Users Need

CEO

"I need to know that the people in my organization have the right goals in place to understand and execute on the strategic initiatives of the company."

VP, Operations

"I need better visibility into my cost of operations so I can target specific cost that won't have a negative impact."

VP, Sales and Marketing

"I need better visibility into our pipeline performance so I can focus on deals that help me grow business with my most profitable customers."

CFO

"I need to improve our analytics capabilities so we can understand our current business performance and do a better job of planning for the future."

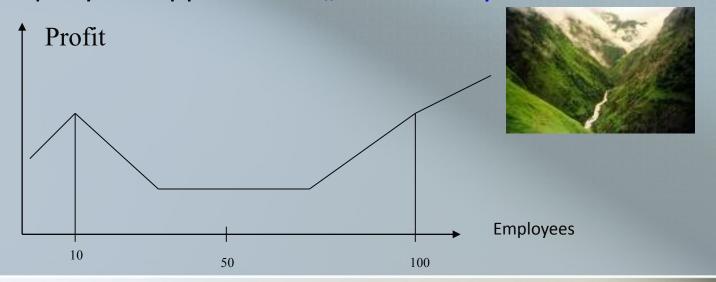
Sales Rep

"I need to have the right demographic information so I can better target my opportunity prospecting."

Customer Support Rep

"I need better access to information to make better decisions on cross-sell and up-sell opportunities."

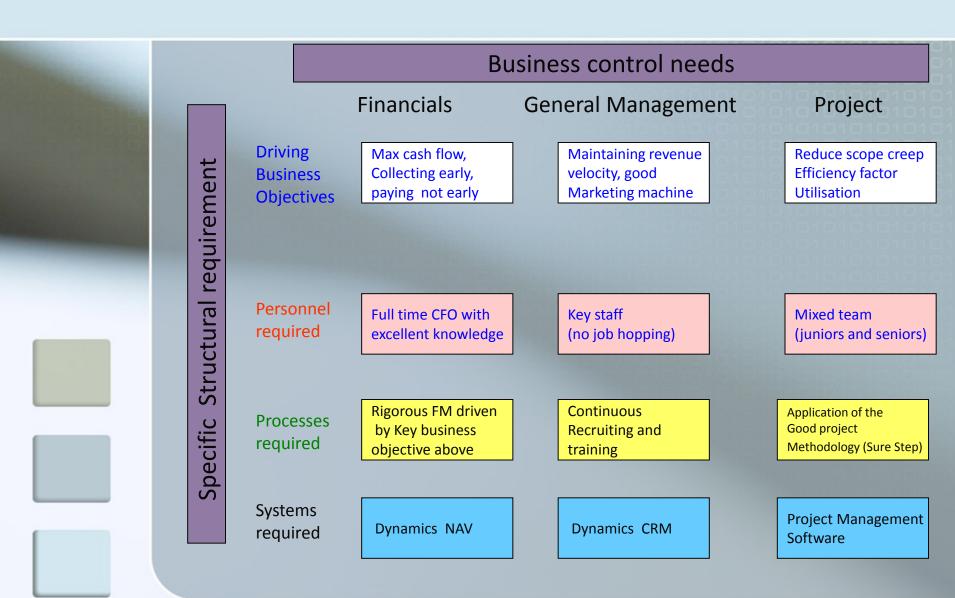
Initially, most partners business are run by one or two founders, who manage every part of the business : sales and marketing, project management, service delivery management, accounting, sub-load and load, collection, HR and many many more....



Those guys are responsible for performing all day-to-day functions of their business

- As their business grows over 10 employees, it is impossible to perform all their role properly.
 - Cash flow becomes erratic (chaos)
 - Projects go offside,
 - Filling pipeline is a struggle
 - Revenue stays still strong but profitability drops
- Company is trapped in the "Profit Valley"

- How to escape the profit valley?
- How to avoid it ?
- First key
 - Maintain revenue velocity and the momentum of the new customer adds. You cannot afford to take the foot of the gas if you want to climb out of the valley
 - The portfolio of the customers must be some smaller and some larger
- Second key
 - Maintain high level of service quality to avoid discounting and efficiency factor
 - Sure Step methodology of project Management
 - Help desk
 - Right tools and right people


Third key

- Financial management control and cash flow is the king
- Invoice quickly and pay consistently (but not early !!!)
- To maintaining Cash- to-Cash cycle as short as possible
- Fourth key
 - Software package handling all aspects of financial customer relationship and project management
- Cash-to-Cash Cycle will be shown during TOC and Critical chain chapters

Thanks for Your Attention

Will be placed on IS.MUNI.CZ in the study materials

If everyone pulls at the different end of the rope, than your project results will be a mess... (see rule 99 %)