Example：Weather transitions

where
R is rain，
O is overcast，and
S is sunshine．

Represented as a transition matrix

		$t+1$			
		R	O	S	
	R	0.50	0.25	0.25	
t	O	0.25	0.50	0.25	
	S	0.50	0.50	0.00	

Such a square array is called the matrix of transition probabilities, or the transition matrix.

We denote the probability that, given the chain is in state i today, it will be in state $j n$ days from now $p_{i j}^{(n)}$.

What is the probability that it will be overcast in two days if it is overcast today?

Represented as a transition matrix

The weather today is known to be overcast. This can represented by the following vector:

$$
\mathbf{x}^{(0)}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]
$$

The weather tomorrow (one day from now) can be predicted by

$$
\mathbf{x}^{(1)}=\mathbf{x}^{(0)} \Pi=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0.50 & 0.25 & 0.25 \\
0.25 & 0.50 & 0.25 \\
0.50 & 0.50 & 0.00
\end{array}\right]=\left[\begin{array}{lll}
0.25 & 0.50 & 0.25
\end{array}\right]
$$

The weather two days from now can be predicted by

$$
\mathbf{x}^{(2)}=\mathbf{x}^{(1)} \Pi=\left[\begin{array}{lll}
0.25 & 0.50 & 0.25
\end{array}\right]\left[\begin{array}{lll}
0.50 & 0.25 & 0.25 \\
0.25 & 0.50 & 0.25 \\
0.50 & 0.50 & 0.00
\end{array}\right]=\left[\begin{array}{l}
0.3750 \\
0.4375 \\
0.1875
\end{array}\right]^{\prime}
$$

cont'd

The weather n days from now can be predicted by

$$
\mathbf{x}^{(n)}=\mathbf{x}^{(0)} \Pi^{n}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0.50 & 0.25 & 0.25 \\
0.25 & 0.50 & 0.25 \\
0.50 & 0.50 & 0.00
\end{array}\right]^{n}
$$

and in the limit

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbf{x}^{(n)} & =\lim _{n \rightarrow \infty} \mathbf{x}^{(0)} \Pi^{n} \\
& =\lim _{n \rightarrow \infty}\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0.50 & 0.25 & 0.25 \\
0.25 & 0.50 & 0.25 \\
0.50 & 0.50 & 0.00
\end{array}\right]^{n}=\left[\begin{array}{lll}
0.4 & 0.4 & 0.2
\end{array}\right]
\end{aligned}
$$

