Algorithm 1 Answer to Question 1 (pseudo-code) α ← 0.35 δ ← 0.06 σ ← 0.20 k∗ ← σ δ 1 1−α k1 ← 0.5 · k∗ for t ← 1 to 50 do yt ← kα t it ← σyt kt+1 ← (1 − δ) kt + it end for return k51/k∗ Algorithm 2 Answer to Question 1 (Matlab implementation) c l e a r a l l ; alpha = 0 . 3 5 ; delta = 0 . 0 6 ; sigma = 0 . 2 0 ; kstar = ( sigma/ delta )ˆ(1/(1 − alpha ) ) ; k (1) = 0.5∗ kstar ; f o r t = 1 : 50 y ( t ) = k ( t )ˆ alpha ; i ( t ) = sigma∗y ( t ) ; k ( t+1) = (1− delta )∗k ( t ) + i ( t ) ; end disp ( k (51)/ kstar ) 8 Algorithm 3 Answer to Question 2 (pseudo-code) α ← 0.35 δ ← 0.06 σ ← 0.20 k∗ ← σ δ 1 1−α k1 ← 0.5 · k∗ for t ← 1 to 50 do yt ← kα t it ← σyt ct ← yt − it kt+1 ← (1 − δ) kt + it if t ≥ 2 then gt−1 = yt yt−1 − 1 end if end for plot {t, ct} 50 t=1 and {t, it} 50 t=1 on the same vertical axis plot {t, yt} 50 t=1 and {t, gt} 49 t=1 on separate vertical axes Algorithm 4 Answer to Question 2 (Matlab implementation) c l e a r a l l ; alpha = 0 . 3 5 ; delta = 0 . 0 6 ; sigma = 0 . 2 0 ; kstar = ( sigma/ delta )ˆ(1/(1 − alpha ) ) ; k (1) = 0.5∗ kstar ; f o r t = 1 : 50 y ( t ) = k ( t )ˆ alpha ; i ( t ) = sigma∗y ( t ) ; c ( t ) = y ( t ) − i ( t ) ; k ( t+1) = (1− delta )∗k ( t ) + i ( t ) ; i f t >= 2 g ( t −1) = y ( t )/y ( t −1) − 1; end end plot ( 1 : 5 0 , c , 1 : 5 0 , i ) ; legend ( ’ c ’ , ’ i ’ ) ; f i g u r e ; plotyy ( 1 : 5 0 , y , 1 : 4 9 , g ) ; legend ( ’ y ’ , ’ g ’ ) ; 9