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Chapter 1

Problems of ordinal and discrete
quantitative data

There are a lot of dealing with ordinal data in social sciences e.g. taking a questionnaire
with a discrete ordered scale. For example, we can match a five-value scale with values of
“absolute disagreement - rather disagreement - neutral approach - rather agreement - absolute
agreement” with scores (i.d. numerical representaion) of 1 - 2 - 3 - 4 - 5. Whether the distance
among the scores represents reality, the scores can be e.g. 1 - 10 - 20 - 50 - 200. We have to
look out if the further mentioned statistical methods result in the same or not if the scores has
been 1 - 2 - 3 - 4 - 5 and 1 - 10 - 20 - 50 - 20 respectively. From the mathematical point of
view, the smoother the scale (a lot of values), the better the results, since it is possible to use
more statistical methods. But from the practice; it is quite hard to assure a sufficient number
of respondents willing to respond within a smooth scale.

We take discrete quantitative data also in discretization of the original continuous data.
E.g. values of “salary” can be categorized with intervals with interval means.

original values up to 10 000 10001-17500 17501-25000 25001-35000 35001-50000 more than 50000
new values 5000 13 750 21 250 30 000 42 500 75 000

We can then decide if the interval means would be considered as ordinal value scores or
whether we retain the quantitative character regarding the problem being researched.

1.1 Descriptive statistics

If there is a need to explore the data of one ordinal or a discrete quantitative value X at a
glance, we can use:
∙ METHODS FOR NOMINAL VALUES
Most of the time we are talking about frequency tables and relative frequency tables. They
are not so useful if X represents “a lot of” values.

∙ QUANTILES
Quantiles are useful even for skewed data. The indicator of “position” is median. Thanks to
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lower quartile (Q1) and upper quartile (Q3) we can demonstrate inter quartile range (IQR)
=Q3−Q1 that is useful for the indication of variability.

∙MEAN AND STANDARD VARIATION
Only under obezretnos can be used for ordinal and quantitative discrete data, if there is a
reasonable interpretation. It is quite problematic if the data stems from skewed distribution.

∙BOX-PLOTS
It is suitable to set up the box plots for ordinal data as:

- median as box plot center
- upper and quartile as box plot endings
- minimum and maximum as whiskers

We can further categorize the ordinal or quantitative discrete data box plot into number of
groups (e.g. men and women etc.). Box plot is also useful when assessing distribution of two
or more variables but they have to be measured in the same scale.

Example 1.1. In the Film.sta data, there are answers of 1322 respondents to the question:
“How do you assess impact of current movies on the youth?” The answers were made up on
5 value scale of: The impact I see as
Very positive(1) - Positive(2) - Neutral(3) - Negative(4) - Very negative(5).
Characterize the data by suitable descriptive statistics.

Solution
To be figure out during seminar. □

Example 1.2. In the data Household Marriage.sta, there are answers of 1346 respondents to
the question:
Question no. 1: “How important is the youth establish their own home and not live alongside
parents?”
Question no. 2: “How important is to get married?” There has been a 5 value scale possible:
Very important(1) - Quite important(2) - To same extent important(3) - Not so important(4) -
Absolutely not important(5).
Characterize the data by suitable descriptive statistics and compare the answers.

Solution
To be figure out during seminar. □

1.2 Two sample problems
We will be dealing with ordinal and quantitative discrete variable X in the two mutually in-
dependent groups and will be exploring whether these two groups are different regarding the
X . So that, in the problem 1.1 1.1 we can research if the spectrum of opinions about the
movie impact differs between men and women. The problem to be figured out is srovnánı́
two independent samples. We can alternatively formulate the problem through detection of
independence between ordinal or quantitative discrete variable X and dichotomic nominal
variable Y . So that, in the problem 1.1 1.1 we are researching if the variable “opinion about
movie impact” and “sex” variable are associated. We are going to analyze dependence of
two variables.
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∙ TWO SAMPLE t-TEST SUITABILITY
If we want to test hypothesis by the t-test:
H0 : The groups do not differ regarding controlled variable X
H1 : The groups differ regarding controlled variable X ,
there is a need of assumption that bot samples stem from normal distribution. This assump-
tion is not met for ordinal or discrete data always and theoretically the two-sample t-test
cannot be applied. From the practical point of view, we can use it with the reference to the
central limit theorem if the number of cases is “sufficiently” large. Two-sample t-test does
not need the normality; sufficient is if the sample means are normal, and with increasing
number of cases the distribution of both means is nearing the normal distribution. The more
the histograms of both groups differ from normal Gauss curve, the more cases are needed.
The means of symetric distributions are going to converge to

∙ SUITABILITY OF THE WILCOXON RANK SUM TEST USING (EQUAL WITH THE MANN-
WHITNEY TEST)
If we want to decide about non-dependence by the the Wilcoxon rank sum test:
H0 : The variable distribution X is the same in both groups.
H1 : The variable distribution X is not the same in both groups,
there is a need of assumption that both samples stem from continuous distributions. This
assumption is not met for ordinal or discrete data always and theoretically the Wilcoxon rank
sum test should not be used. From the practical point of view, this assumption can be ne-
glected if the scale is “sufficiently” large. (The number of values that the X variable operates
under must not be less than 4.) “The trick” how to make the scale more smooth despite being
clumsy for respondents is this: we ask by let’s say 5 different ways in the questionnaire on the
same question and all the 5 ”different” questions take the 5 value scale form. Subsequently,
we add up the respondent’s answers from these 5 questions. Now, we have got the smoother
21 value scale with the minimum of 5 and maximum of 25. The Wilcoxon rank sum test
is good at revealing the differences between distributions of the two groups, mainly if the
distributions differ only in shifting. If the histograms of the X variable are of the same or
similar shape, we can set the hypothesis as:
H0 : Medians of the X variable are the same in the both groups
H1 : Medians of the X variable are not the same in both groups.

∙ SUITABILITY OF �2 TEST OF INDEPENDENCE
Were the ranges of the sample to be “small” or the scale is made of “few” values, then the
t-test or the Wilcoxon rank sum test is not suitable. In this case it is recommended to neglect
the ordinality and the data take as nominal. Subsequently we will turn the test of the agree-
ment in the groups into the test of the independence between original X and the dichotomic
factor Y and undergo the �2 test of independence in the contingency table.

Example 1.3. For the problem 1.1 1.1 decide whether the opinion about the movie impact
differs in terms of women and men. Compare and interpret p-values of the all tests. In terms
of t-test notice the confidence interval for the population mean difference.

Solution
To be figure out during seminar. □
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1.3 k-sample problems
This section makes the section 1.2 more general for the k ≥ 3 groups. Analogically, instead
of the two sample t-test here comes ANOVA, instead of the Wilcoxon rank sum test there
will be Kruskal-Wallis test, and concerning �2 test of the independence the factor Y is going
to take k values.

Example 1.4. For the figure 1.2 1.2 consider next question (variable X). Divide the re-
spondents into groups by the nominal variable Y representing education that takes following
values: less than high school - high school or junior college - bachelor - graduate. The data
are in Household Marriage.sta file
Figure out whether the opinion spectrum about own domestic distribution differs in terms of
particular groups with education. Compare and interpret p-values of all possible tests. As far
as ANOVA is concerned, keep going with Tukey multi-comparing.

Solution
To be figure out during seminar. □

1.4 Paired data dependence
In this section, we will be dealing with two ordinal or quantitative discrete variables X a Y
and ways to measuring their association. The sample

(
X
Y

)
is two-dimensional, so that we

are researching the values of X and Y in terms of all respondents and we are wondering
about their association. So that, in the problem 1.2 1.2 we are researching whether (an how
much) the opinion about own domestic importance and marriage importance. There lots
of measures of association for ordinal data. The classic Pearson’s correlation coefficient is
absolutely unsuitable for ordinal and quantitative discrete data. This correlation coefficient is
suitable only for linear association measurement and assumes the sample from two-sample
normal distribution. The suitable measures of association between two ordinal or quantitative
discrete variables are:

1. Spearm’s �
2. Goodman a Kruskal’s 
3. Kendal’s �
4. Somers’s d

All the upper-mentioned measures take the values between -1 and 1 with the interpretation
similar to the Pearson’s correlation coefficient. The nearer the 0, the association is weaker;
and the nearer the 1 or -1, the association is stronger. The negative values represent “indirect”
assotiation - with increasing values of scores of one variable the values of the second variable
are decreasing. The positive values represent “direct” assotiation - with increasing values of
scores of one variable the values of the second variable are also increasing. ∙SPEARMAN’S
�
Details in the 11th lecture

- The figure rS (rS is sample estimation of �) is derived from the Pearson co-relation
coefficient in the way the original values are replaced by their sequence.

- That’s why the rS is independent on absolute values of scores and the distance among
them.

- Spearman’s coefficient rS is symmetric measure and do not differ the explained and
explaining variable.
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Thanks to rS of the Spearman’s � we can test hypotheses
H0 : � = 0 resp. � ≤ 0, � ≥ 0
H1 : � ∕= 0 resp. � > 0, � < 0
Before we introduce next association measures, new terms concordants and discordants need
to be launched. Imagine data of n respondents where every respondent answered two ques-
tions X and Y (we have scores for X and Y ). Now we are going to pair that respondents.
The number of pairs is n(n− 1)/2.
Five situations are possible (indices i and j represent ith and jth respondent; i ∕= j):

1. All the variables take the upper scores for one respondent than for the second respon-
dent. These pairs we label as concordant. Obviously, when most of the pair are con-
cordant, than X and Y associate “directly”. The number of concordant pairs we tag by
the C statistics.

2. In terms of variable X , there is a larger score value for the first respondent and score
value of the variable Y is larger for the second respondent. These pair are called discor-
dant. Obviously, when majority of pair are discordant, there is a negative association.
We can sign the number of discordant pairs as D.

3. There are the same scores for both X and Y in terms of the both respondents. We can
sign the number of such pairs as TXY .

4. There are the same scores for X variable from the two respondents but scores for Y
differ. We can sign number of such pairs as TX .

5. There are the same scores for Y variable from the two respondents but scores for X
differ. We can sign number of such pairs as TY .

By definition, the number of all pairs is n(n− 1)/2 = C +D + TXY + TX + TY
∙GOODMAN’S A KRUSKAL’S 
The value of  (we can sign the estimate of gamma as g) is derived from the probability
difference of concordant and discordant pairs.

- The formula for g estimate, , is based on proportions of concordant and discordant
pairs of respondents:
g = C

C+D −
D

C+D = C−D
C+D .

- g ∈ ⟨−1, 1⟩, and if all the pairs are concordant g = 1; and if all the pairs are discordant
g = −1.

- The value of g does not depend on absolute values of scores, even on distance among
them.

- g is a symetric measurement, it does not differ explaining and explained variable.

Since the Goodman’s and Kruskal’s  are only based on concordant and discordant pairs, the
association of X and Y variables is upper-estimated by the game. There are also asymptotic
tests of independence for .

∙SOMERS’S d
The construction is similar to , however, even equalities are concerned. d is featured in three
types depending on which equal pairs is based on.

- Asymmetric coefficient d(Y ∣X) = C−D
C+D+TY

only includes pairs that are unequal in
X . It is suitable when we are wondering if Y is dependent on X . (Y is explained
variable and X is explaining one. When X changes, what makes Y ?)
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- Asymmetric coefficient d(X∣Y ) = C−D
C+D+TX

includes only pairs without equality in
Y . It is suitable when we are wondering about dependence X on Y .

- Symmetric coefficient d = C−D
C+D+(TX+TY )/2

- d ∈ ⟨−1, 1⟩; In terms of asymmetry, the coefficient can take the form of 1 or -1 only if
the explained variable contains the same or more values than the explaining one.

- The value d is independent both on absolute values of scores and distances among.

∙KENDALL’S �
Kendall’s � is known in three versions:

- Coefficient �b = C−D√
(C+D+TX)(C+D+TY )

- �b is symmetric, it does not differ explaining and explained variable.
- �b ∈ ⟨−1, 1⟩; coefficient takes values of 1 or -1) only if not-zero frequencies on the

major (or minor) diagonal of squared contingency table are the same. So that, this
coefficient is suitable for squared tables if both variables X and Y are of the same
nember of values.

- In the contingency table, there is a relation between Cramer’s V and Kendall’s �b:
∣�b∣ = V

- The value of �b does not depend on absolute values of score or distances among.

Example 1.5. In problem 1.2 1.2 demonstrate all upper-mentioned associations between
variables ”opinion about own home importance” and ”opinion about marriage importance”.
Test the independence by the Spearman’s rank correlation coefficient. Regarding rS value
consider the significance of the test and its application. Compare the p-value of this test with
the p-value of the �2 test.

Solution
To be figure out during seminar.

□

1.5 Equality of distributions within paired data
In this and past section 1.4 we are having paired data stemming from a two-dimensional sam-
ple
(
X
Y

)
with n cases, where X and Y are ordinal or quantitative discrete variables. Unlike

the past section, where we were researching whether the X and Y are associated, in this sec-
tion we will be researching whether the distribution of these two variables differs. There is an
assumption of the same scale. The usual applications are: Respondents filled out a form (X
variable). Subsequently, some intervention came to fruition (respondents underwent training
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or operation, time passes etc.) and after that the same respondents filled out a questionnaire
of the same scale (Y variable). The question is apparent. Has the situation changed? From
the statistical point of view the question is if the distributions of X and Y variables are dif-
ferent. We are measuring the same by two different methods and we wonder about if the
both methods are equivalent. (For example, the same student is examined by two professors
- do the professors examine alike? The patient’s condition is assessed by two physicians -
are the findings the same?) In the problem 1.2 1.2, we can ask if the opinions about own
home living importance and about marriage importance differ - so if the distributions of the
answer depend on the question. For better orientation withing the data, we can use descriptive
statistics for both variables (attention for mean; rather median and spread between quartiles),
histograms and box plots. These descriptive statistics are useful but they fail to deal with “the
pairs”. The important piece of information is hidden in the differences in the respondents’
answers. By dealing with differences in the respondents’ answers only we “erase” the impact
of a particular respondent - his personal “features” that we do not care about. We care about
“intervences”. So that, we set up a sample Zi = Xi − Yi, i = 1, . . . , n. If there is no
difference in X and Y variable distribution, the majority of Z scores should be of zero value
or nearing zero

∙ SUITABILITY OF t-TEST
In case we want to decide about a hypothesis using a pair t-test:
H0 : The distribution of X and Y variable does not differ
H1 : the distribution of X and Y variable does differ,
there is a need of an assumption that the two-dimensional sample

(
X
Y

)
stems from two-

dimensional normal distribution. So that, Z = X − Y stems from one-dimensional normal
distribution and we can rewrite the hypothesis as:
H0 : the expected value of Z variable is zero
H1 : the expected value of Z variable is not zero.
However, the assumption of the two-dimensional normality is not met for ordinal or discrete
data always and theoretically the paired t-test should not be used. From the practical point of
view, we can use it with the reference to the central limit theorem if the number of cases is
“sufficiently” large, that means the more the histogram of Z variable differs from the normal
Gauss curve, the more cases are needed.

∙ SUITABILITY OF THE WILCOXON SIGNED RANK TEST FOR PAIRED DIFFERENCE
Should we want to test a hypothesis that distributions of X and Y do not differ with a Wilx-
cox pair test properly, the hypothesis must take this form:
H0 : The distribution of Z = X − Y variable is symmetric around zero
H1 : The distribution of Z = X − Y variable is not symmetric around zero.
In order to use this test properly, two assumptions should be met:

1. The sample of Z variable should stem from continuous distribution.
2. This distribution should be symmetric around a particular value.

ad 1. As in the section 1.2 1.2, the assumption of continuous distribution is not met for
ordinal or discrete data always and theoretically the Wilcoxon signed rank pair test
should not be used. From the practical point of view, we can that ignore if the scale is
“sufficiently” large.
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ad 2. Whether this assumption is not met, the null hypothesis might be declined not for dif-
ferent distributions of X and Y variables but thanks to skewed distribution of the Z
value. If the distribution of the Z is symmetric around a value, this value must be the
median in case H0 and the hypothesis can be formulated as:
H0 : median of Z variable is zero
H1 : median of Z variables is not zero.

∙ SUITABILITY OF THE TEST FOR NOMINAL VARIABLES
If the two-dimensional sample has “few” cases or the scale contains “few” values, the pair
t-test or the Wilcoxon signed rank pair test is not suitable. In this case, it is recommended to
ignore the ordinality and “descend” with the data as being nominal.
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Chapter 2

Multivariate analysis introduction

We are talking about multivariate methods when all the n objects are measured by p ≥ 2
variables. These data take usually matrix form n× p

X =

⎛⎜⎜⎜⎝
x11 x12 . . . x1p
x21 x22 . . . x2p

...
xn1 xn2 . . . xnp

⎞⎟⎟⎟⎠ ,

where lines are particular cases and columns are particular variables. Multivariate methods
are usually exploratory and their mission is generating new hypotheses. Mainly, they help us
to comprehend associations among variables and among individuals.

2.1 Main objectives of multivariate methods

∙ REDUCTION OF MULTI-DIMENSIONS
When two or more variables are correlated, we can replace them by a common variable
(factor). That leads to a reduction in dimension of the original p-dimensions and thus better
interpretation of the data. When we can reduce the number of variables even to the dimension
of 2 or 3, we can visualize the data in 2D or 3D, which is better for orientation in the data.
There are number of possibilities of the multidimensional data visualization that we will be
talking about further.

∙ DATA STRUCTURE REVELATION
Are there groups of similar objects in the data? On the basis of which variables they are
possible to differentiate? Is is possible to take an object into a group?

∙ DEVIATE OBJECTS DETECTION
Should we are having 2-3 variables, we can use our intuition for the deviations detection.
When p > 3 that is tricky. Multivariate statistical methods help us to find out deviations and
to ascertain which variables causes the deviations.
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2.2 Data visualization
It is better for us to “scan” pictures than tables or numbers because of evolution reasons. By
“graphics” we can better comprehend even complex associations or problems concerned. So
that, it is suitable to visualize the data not only for findings enrichment but also as an essential
for analysis. If we are having two or three variables, we can depict the data geometrically. If
there are more variables, there are number of possibilities:

∙ DEPICTION OF VARIABLES IN PAIRS
We usually use:

- matrix of plots,
that is a table of the plots between variables.

- correlation matrix of variables,
that is a table of correlation coefficients between variables. Since the correlation coef-
ficient is dimensionless, the table is not dependent on a scale. It is very useful in the
beginning of some explorations of some multivariate methods.

- matrix of covariances of variables,
that is a table of covariances between variables. Since the covariance is dependent
on quantity, the values in this tables are dependent on the scale and the linear depen-
dence is not apparent at the first sight. Also, it is suitable in the beginnings of some
multivariate methods’ explorations.

All the upper-mentioned matrices demonstrates only a piece of information from the the
multidimensional data since they are always dealing with associations between two variables
and not with the complexity.

∙MULTIDIMENSIONAL VISUALIZATION
E.g. Chernoff faces, starred graphs, case profiles etc..

Example 2.1. In the Criminality.sta data, there are values of 7 variables for particular states
in the USA: ratio of violence over 100 000 inhabitants, ratio of murders,..., percentage of
families under the poverty line, percentage of incomplete families. Demonstrate the data
using graphs.

Solution
To be figured out during seminar. □

2.3 multidimensional normality
Some multivariate methods assume multidimensional normality. Unlike the one-dimensional
normality case, where there are a lot of tests, there is no perfect test for testing multidi-
mensional normality. It is not sufficient when all the parts of the multidimensional normal
distribution is normal but also all the linear combinations of them must be normal. Since we
are using multivariete statitical methods for explorative tasks, we can take this as met and the
findings with “reserve”.
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Chapter 3

Principal Component Analysis

Very often we are dealing with situation in which number of p variables is too high and too
confusing for data processing and model construction. The main aim the Principal Com-
ponent Analysis is to find a new system of k uncorrelated variables (even substitutes), that
are possible to replace the original variables and demonstrate associations between origi-
nal variables. These new variables are called components and sometimes they have also
an interpretation. By new variables (components) it is more simple to identify deviance in
multi-dimension. The method can also precede other methods for analysis needs (it can re-
veal deviant observations for ANOVA or regression, in terms of regression it can also reduce
multi-collinearity) From the mathematical point of view it is a space transformation of the
original variables to new variables with added requirements: 1) new system’s axes are or-
thogonal; 2) axes are put into the direction of the “maximum possible variability”. (Axes in
directions of negligibly low variability can be deleted, so that the dimension can be reduced.
) See figure 3.1

2ao 4oo 6o0clBoo í0o0 lÉloa Moa

{

Figure 3.1: The observed points can be demonstrated by the original coordinates X1, X2 or by new
coordinates Y1, Y2. The highest variability is in the Y1 direction. The orthogonal axis Y2 in the direction
of the highest variability.
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3.1 Principal Components

Let assume a random vector of original variables X =

⎡⎢⎣
X1

X2

...
Xp

⎤⎥⎦ with the vector of estimated

valuesE(X) = � =

⎡⎢⎣
�1
�2
...
�p

⎤⎥⎦ and variability matrix var(X) = Σ =

⎡⎢⎢⎢⎣
�2
1 �12 . . . �1p
�21 �2

2 . . . �2p
...
�p1 �p2 . . . �2

p

⎤⎥⎥⎥⎦
with a rank of r(Σ) = p.
The eigenvalues are signed as Σ sign �1 > �2 > . . . > �p (and are ordered from highest to
lowest and different from each other). The correspondent normalized eigenvectors are signed
as v1,v2, . . . ,vp and are mutually uncorrelated. (”Normalized” means of length of 1, ”un-
correlated” means that the vectors are orthogonal.

Eigenvectors p-dimensional, so that vr =

⎡⎢⎣
vr1
vr2

...
vrp

⎤⎥⎦ for r = 1, . . . , p.

The variability matrix trace tr(Σ) = �2
1 + . . .+ �2

p = D(X1) + . . .+ D(Xp) is called total
variability of X.

New variables Y1, Y2, . . . , Yp are called principal components:
∘ The first principal component Y1 = v1

′
X = v11X1 + v12X2 + . . .+ v1pXp

- The new random variable Y1 has arised by a linear combination of the all original vari-
ables; coefficients of the linear combination are the coefficients of the first eigenvector.

- The variability of the first component is equal to the first (the highest) eigenvalue;
D(Y1) = �1

- From the geometric point of view Y1 is the vector of direction demonstrated by the
original system of coordinates X1, . . . , Xp; it is the direction of the “highest possible”
variability X

- The vector length v1 is equal to 1.

∘ the second principal component Y2 = v2
′
X = v21X1 + v22X2 + . . .+ v2pXp

- The new random variable Y2 arised from a linear combination of the all original vari-
ables; the coefficients of the linear combination are the parts of the second eigenvector.

- The variance of the second component is equal to the second eigenvalue. So that
D(Y2) = �2

- Y1 a Y2 are uncorrelated since the eigenvectors were uncorrelated.
- Geometrically: Y1 and Y2 are mutually orthogonal,Y2 is the direction vector into the

direction of the highest possible remaining variability X (part of the variability X has
been depleted by the first component).

- The vector length v2 is one.

...

∘ p-th principal component Yp = vp
′
X = vp1X1 + vp2X2 + . . .+ vppXp
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- analogically

□
Have a look on the total variability. The total variability of the original variables X1, . . . , Xp

is the same as the total variability of the new variables Y1, . . . , Yp.
(D(X1) + . . .+D(Xp) = Tr(Σ) = �1 + . . .+ �p = D(Y1) + . . .+D(Yp))
Furthermore, in case of new variables D(Y1) > . . . > D(Yp).
All the p principal components explains total variability of the original variables without
information loss. However, from the geometric point of view, we only rotate the original p-
dimensional coordinate system to the new p-dimensional coordinate system. (The beginning
of the new coordinate system is shifted to [�1, �2, . . . , �p].) If we want to reduce the original
dimension, we take only first k components. If we label all the components Yj according to

its significance as �j
tr(Σ) , j = 1, 2, . . . , p, the first k components explain

k∑
j=1

�j/tr(Σ) ⋅ 100

per cent of the original variablity. As far as visualization is concerned, it is reccomended to
take first two or three components, which can be graphically demonstrated. We can also be
interested in the ratio of the one variable Xj that is explained by the first k ≤ p components
on the original variability. We call this ratio j-th communality. From the mathematical point
of view it is

∑k
r=1[R(Xj , Yr)]

2.

3.2 Component Score
Whether we want to use the method for data set analysis where the vector X1, . . . , Xp is
observed on n objects, we need to convert every object onto values in the new coordinate
system of the k ≤ p components.
In terms of i-th object we have observed the values

xi = xi1, xi2, . . . xip; i = 1, 2, . . . , n
j-th coordinate in the new coordinate system for the i-th object is:

yji = vj
′
xi = vj1xi1 + vj2xi2 + . . .+ vjpxip , j = 1, . . . , k; k ≤ p

These values of particular objects in the new coordinate system are called component score.

3.3 Standardized Principal Components
Variability of particular components differs. It can be problem for an interpretation of the
components since they are not “co-measurable”. Since that we usually standardize the com-
ponents in a way that all have the variability of the size one. We tag the r-th standardized
component as YrS . Then for r = 1, 2, . . . , p:

YrS = 1√
�r

vr
′
X = 1√

�r
(vr1X1 + vr2X2 + . . .+ vrpXp) = 1√

�r
Yr

3.4 Correlation between components and variables
The principal components “represents” mainly the variables that are correlated with the com-
ponents mostly. That is why we are interested in the correlations. For the correlation of the
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original Xj variable with the r-th component Yr that goes:

R(Xj , Yr) =
√
�rvrj
�j

= R(Xj , YrS)

3.5 “Unmeasurable” original variables

If the original variables X1, X2, . . . , Xp are measured in different units or the are of different
variability, then there is no good of measuring the principal components from the variability
matrix var(X) = Σ. In that case we will be applying complete procedure on the standardized
variable Z1, Z2, . . . , Zp, where Zi = Xi−�i

�i
, i = 1, 2, . . . , p. The variability matrix of the

standardized variables is the same as the correlation matrix of the original variables, so that
var(Z) = cor(X).

3.6 Application of principal components

We have been dealing with random variables X1, X2, . . . , Xp with known � and Σ so far.
Were we are finding principal components and facing only random sample where we are
discovering X1, X2, . . . , Xp values on n objects, then the unknown vector � is supposed to
be replaced by the vector of sample means and the unknown matrix Σ is supposed to be
replaced by the sample variance matrix. The eigenvalues and the correspondent eigenvectors
are the consistent estimates of eigenvalues �1, . . . , �p. PCA is useful only when original
variables are correlated. That is why the sample covariance (correlation) matrix should not
have zeros beyond main diagonal.

3.7 Number of principal components

We are facing a problem of optimization number of components. These are common methods
solving:

- scree plot
Graphical method, personal assessment of the scree plot appearance. The plot depicts
the ranks of the descending eigenvalues of the sample covariance matrix. We tag k the
order number of the last “acceptable” eigenvalue. The question to answer is ”When do
the stones stop rolling?”

- stated required variability
We state the border of an acceptable variability in advance. We usually state approx.
We usually require approx. 70-80%.

- eigenvalues > 1
This can be used only during analysis of standardized data when the principal compo-
nents are derived from the correlation matrix. k is then number of eigenvalues higher
than 1.

- Sufficient reproduction of the sample variance (correlation) matrix
It will be explained during the session about factor analysis.
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Example 3.1. In the Countries.sta data set, there are data concerning employment percentage
in particular sectors from 1979. Analyze the associations between employment in particular
sectors using PCA. Assess the particular country differences in the economy.

Solution
To be figured out during seminar. □
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Chapter 4

Factor analysis

Factor Analysis (FA) is another multivariate method aiming at reducing the original p vari-
ables. Unlike PCA that is doing its best at interpretation of the variance of the original
variables, FA focuses on correlations. The idea behind FA is that dependence among original
variables come from interactions of hidden factors that are considered as the ones that are
considered as causes of mutually correlated original variables. Finding of these latent factors
is the main aim of the factor analysis. However, the FA has a problem - it does not have a
unique solution. The system of explaining factors can be of infinite number of suggestions
and there is no algorithm for finding the good merge of the original variables and is very sub-
jective. We define each original variable as a linear combination of the common factors plus
one factor specific for the particular variable. The first problem is that we do not know how
many the latent factors we are dealing with. So that, we state this number subjectively. Then
we are going to find a matrix with the linear combinations. However, there are an infinity
number of these matrices. The choice of the one is dependent on experience and subjective
values. There is not exact algorithm.

4.1 Orthogonal model of the factor analysis
It is recommended to proceed the complete analysis on standardized data z1, . . . , zp since
not very often the random variables x1, . . . , xp are in the same measurements and due to
interpretation suitability. (From the last section we know that var(z) = cor(x) and we will
be sign this matrix as Σ furthermore.) “Ortogonal” means that we are going to find system
of factors that are mutually uncorrelated.
∙ ORTHOGONAL MODEL SPECIFICATION:⎡⎢⎣

z1
z2
...
zp

⎤⎥⎦ =

⎡⎢⎣
a11 a12 . . . a1k
a21 a22 . . . a2k
...
ap1 ap2 . . . apk

⎤⎥⎦ ⋅
⎡⎢⎣

f1
f2
...
fk

⎤⎥⎦+

⎡⎢⎣
"1
"2
...
"p

⎤⎥⎦
or

z = A ⋅ f + "
p× 1 p× k k × 1 p× 1

z is a vector of the original standardized variables
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f is a vector of new variables that we will call common factors
" is a vector of the specific factors unique for particular variables
A is called factor matrix
∙MODEL ASSUMPTIONS:
∗ Common factors fr, r = 1, 2, . . . , k are mutually independent in the orthogonal

model, each of them has the null expected value and unit variance. So that:
E(fr) = 0
D(fr) = 1; C(fr, fs) = 0, r ∕= s

var(f) = I =

[
1 0

. . .
0 1

]
∗ Specific factors "j , j = 1, 2, . . . , p are mutually independent, each of them has null

expected value and a variance u2j that is called unicity. So that:
E("j) = 0
D("j) = u2j ; C("j , "i) = 0, j ∕= i

var(") =

[
u21 0

. . .

0 u2p

]
∗ Specific and common factors are mutually independent:
C(fr, "j) = 0, r = 1, 2, . . . , k; j = 1, 2, . . . , p

∙ CONSEQUENCES AND COMMENTARY
(i) Variance matrix of the original variables vector z1, . . . , zp can be written as:

Σ = var(z) = AA′ + var(")
AA′ matrix is called reduced correlation matrix and is different from the matrix Σ in
the diagonal.

(ii) The unit variance of the each original variable zj stems from two “phenomenons”:
the part of the variability can be explained by the common factors and is called j-th
communality and we sign it ℎ2j . The remaining variability stems from unicity, the vari-
ability of the specific facotr "j .

Thus D(zj) = 1 = ℎ2j + u2j and ℎ2j =
k∑
r=1

a2jr.

a2jr demonstrates how the r-th factor contributes to the variability of the original vari-
able zj .

ℎ2j =
k∑
r=1

a2jr demonstrates how the part of the variable zj variability is explained by

the k factors.

(iii) If we write down the original standardized variables by the linear combination of the
factors, we get:

C(zi, zj) =
k∑
r=1

airajr = R(xi, xj)

(iv) The last task is to derive how much the original variables correlates with the factors:
C(zj , fr) = ajr = R(xj , fr)

So that, we can interpret the ajr as a correlation between the j-th original variability
and the r-th factor. The higher the ajr value, the better is the explanation of the j-th
original variable by the r-th factor.
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Now we have the factor analysis model specified. The matrix Σ is known. We have to find
the model parameters (parameter estimates) - all the cells of the A matrix and var(") matrix.
Now we will be dealing with the “good” choice of the factor system:
∗ methods of model parameters finding (finding of A and var(") matrices’ cells)
∗ choosing k
∗ factor rotation
∗ factor score set

4.2 Methods of model parameters finding
These methods are also called as extraction factors methods and their aim is to estimate the
factor loadings (weights) aij , i = 1, . . . p, j = 1, . . . k and the specific factors "i, i = 1, . . . p
on a basis of a random sample of the n objects. Matrix Z shaped n×p is going to have values
measured on the n objects in p columns for z1, . . . , zp variables. This matrix is observable.
Then the F matrix is going to be of the n×k shape and in every row there are k unobservable
values for the factors f1 . . . , fk. Matrix E shaped n × p is going to have p columns for the
specific factors "1, . . . "p and the unobservable values on the n objects.
we are finding A and E in order to suit the equation: Z = F ⋅A′ + E.

4.3 Common factors number choice
Rarely can we know the number of factors from the problem nature. But more often we need
to decide about the number of the factors.

- It is good to begin the factor analysis with the PCA and use the criteria from the PCA
chapter (scree plot, eigenvalues, sample correlation matrices R that are higher than 1,
factors that explains at least 70-80 per cent total variability cumulative).

- We can acquire the residual matrix when we subtract the estimate of the reduced matrix
that has been calculated for the k factors from the sample correlation matrix R. If there
are more beyond-diagonal values in the residual matrix high (higher than 0.2), then it
is good to increase the number of k. If the values are low, the common factors explains
the associations in the R matrix very well and we can consider decresing the number
of k.

- The number of factors should be < p/2 and ≥ number of eigenvalues higher than 1.

4.4 Factors rotation
We are able to rotate the geometric system in an infinity number of ways. Geometrically: we
are rotating the system of k factors (coordinates) in the p-dimensional space and we remain
the orthogonality intact. The goal is to rotate the system in the way that every rotated factor is
now correlated with a small group of the original variables only. So that, some factor loadings
are meximalized and the others are minimalized by the rotation. These rotated factors is now
possible to better interpret. See picture 4.1. Most of the rotate algorithms are aiming to get
the most loadings into +/-1 or 0. We usually use the normalized varimax rotate method.
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Coordinates in the system [F1,F2]

Coordinates in the system [F1’,F2’]

In the new system F1’,F2’ factor F1’ correlates strongly with variables X1 and X3
 and it hardly at all correlates with variables X4 and X2. Factor F2’ correlates strongly posively with variable X4 

and strongly negavely with variable X2 and it hardly at all correlates with variables X! and X#

Figure 4.1: The original 4-dimensional vector of the original variables x1, . . . , x4 is now depicted in
the 2-dimensional space and is represented by either f1, f2, or the pair of f ′1, f

′
2. f ′1 “stands in for”

mainly variables x1, x3 and f ′2 stands in for variables x2, x4.

4.5 Factor score determination
The main objective of the FA is to determine new variables - factors which interpret relations
among original variables. Should we want to use the findings of the FA as a beginning of the
further analysis, we need to estimate the values of the n objects in the new variables - common
factors. These estimates are called a factor score. This is tricky since we are estimating values
of the unobservable variables. What is more, there are more unobservable variables than the
observable. Mostly, we use a weighted method of least squares and a regression method for
solving.
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Chapter 5

Canonical Correlation Analysis

Example 5.1. Imagine we are trying to find out if the happiness in the personal life and in
work are associated through 3 questions regarding happiness in work (X1: Are you satisfied
with your boss? X2: Are you satisfied with your colleagues?) and 7 questions regarding
happiness in a personal life. The data are in the Spokojenost.sta file. □

So we are having two sets of variables and try to figure out whether they are associ-
ated. We are trying to find out something like a correlation coefficient but not between two
variables, but between two sets. Whether we calculate only classical correlation coefficients
between each pairs R(Xi, Yj), we would be given values concerning the pairs only and not
between the sets. So that, we will be searching for a new pair of U and V that are going to
“suitably” represent the two sets and then we find out the correlation between the U and V .
But the question is what is the “appropriate” representation? The first thing you maybe come
up with is that in each set, there can be a simple sum of X and Y variables. This would lead
to an information loss and misrepresentation. Respondent that is having a good relationship
with his wife but is not happy with money would not be different from the one who is not
happy with his wife but is happy with money. So that, it is suitable to give some variables
different weights. These weights will be found out in a way that the items from the both
groups are correlated as much as possible.

5.1 Canonical Correlation Model
Let sign X1, X2, . . . , Xp the left side of the variables and Y1, Y2, . . . , Yq the right side of the
variables. Let assume that p < q.
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∙MODEL SPECIFICATION:
I. a11X1 + a12X2 + . . .+ a1pXp = U1 V1 = b11Y1 + b12Y2 + . . .+ b1qYq
II. a21X1 + a22X2 + . . .+ a2pXp = U2 V2 = b21Y1 + b22Y2 + . . .+ b2qYq
...

...
...

p. ap1X1 + ap2X2 + . . .+ appXp = Up Vp = bp1Y1 + bp2Y2 + . . .+ bpqYq

terminology:
Ur ★ r-th Canonical variable for the left side, r = 1, . . . , p

is a linear combination of the original variables from the left set.
Vr analogically for the right side, r = 1, . . . , p

ar1, ar2, . . . , arp ★ Canonical weights (r-th canonical variable for the left side),
r = 1, . . . , p
Canonical weights are easy to interpret if the variablesX1, . . . , Xp are stan-
dardized; then the weights are contributions of the original variables from
the left set to the rth canonical variable.

br1, br2, . . . , brq analogically for the right side

R(C)r = R(Ur, Vr) ★ r-tý canonical correlation coefficient, r = 1, . . . , p

Demonstrate the rate of correlation between the rth pair of the canonical
variables.

R2
(C)r demonstrates the co-variability.

∙MODEL ASSUMPTIONS AND COMMENTS:

1. Requirements for the first pair of the canonical variables
We are trying to find the a11, a12, . . . , a1p and b11, b12, . . . , b1q in a way that the
correlation of U1, V1 variables is maximal.

This requirement help us to find weights only for the first pair of the canonical variables.
Let have a look at the problem 5.1 again. We have both a question dealing with finance and
relationship in both sets. Let assume that the “salary hapiness” has the biggest weight in the
left set and “financial situation hapiness” in the right set (and data are standardized). It is
apparent that the first pair of the canonical variables has been “very” influenced mainly by
finance and the correlation coeficient does not represent the association within the sets. The
thing is that the correlation coeficient has not captured all from the total common variability.
So that, we are going to process next pair of the canonical variables whose correlation might
capture even this. We can go further until we capture total variability of the smaller set. So
that whether p < q, the number of the canonical variable pairs is p. In our case, that is 3 but
there is a question if we need all 3 □
There are 3 questions for the model evaluation:

1. What is the value of the canonical correlation coefficient (correlation coefficients)? Are
they statistically significant?

2. To what extent do the new pairs reproduce the variability of the original sets?
3. How much of the variability of one set can we explain by the variability of the second

set (so-called redundancy)?

∙ CONSEQUENCES, TERMINOLOGY AND COMMENTS:
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R(Xi, Ur) ∗ structural correlation coefficient of the i-th variable with the r-th
canonical variable. (Analogically for the right side)
Canonical variable represents mainly the original variables that are cor-
related with it.

R2(Xi, Ur) the quadratic form of the structural correlation coefficient; shows the
part of the Xi variable’s variability that is explained by the r-th canoni-
cal variable Ur.
(Analogically for the right side.)

p∑
i=1

R2(Xi, Ur) the part of the variability of X1, . . . , Xp that is explained by the canon-
ical variable Ur. (Analogically for the right side.)
Let remind that the left set “X” is of a smaller scale than the right

“Y ” set, so that p < q. Thus
p∑
r=1

p∑
i=1

R2(Xi, Ur) = 100%, but
p∑
r=1

q∑
i=1

R2(Yi, Vr) < 100%.
p∑
i=1

R2(Xi,Ur)
p If the sets are standardized, we are talking about the ratio of variability

of X1, . . . , Xp variables that is explained by the canonical variable Ur.
(Analogically for right set, there is q in the denominator.) p (or q) in the
denominator represents the total variability of the standardized vector
of the left (or right) set.
These are means of the structural correlation coefficients squares.

p∑
i=1

R2(Xi,Ur)
p ⋅R2

(C)r ∗ redundancy - the ratio of the variability of variables X1, . . . , Xp that
is explained by the canonical variable Vr.
So that we are explaining the variability in the left set by the canonical
variable of the right set.

p∑
r=1

p∑
i=1

R2(Xi,Ur)
p ⋅R2

(C)r ∗ total redundancy
That is the ratio of the variability of the left side that is explained by the
variability of the right side - by its part that we succeeded in “hiding” in
to the canonical variables V1, . . . , Vp. (Analogically for the right set)

By the canonical weights we can also determine a canonical score that are values of particular
observations by the new variables. That can be useful in data visualization.

5.2 significance test of the canonical correlation coefficient

We have found out p canonical correlation coefficients for the p < qs but not all must be
statistical significant. We will be testing
H0 :R(C)1 = 0; H0 :R(C)2 = 0; ... ; H0 :R(C)p = 0.
Algorithm of the Bartlett’s �2 test of significance of the canonical correlation coefficients is,
however, different. Let’s remind that R(C)1 > R(C)2 > . . . > R(C)p.

Firstly, we are going to test a hypothesis that vector of all p canonical correlation coef-
ficients is a zero vector. If we do not turn down the hypothesis, we can claim that the sets
are associated. If we turn it down, we come to conclusion that at least the first coefficient
R(C)1, . . . , R(C)p is not zero (so that significant) and we are going to research more how
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about the other p− 1 coefficients.
Now the zero hypothesis is formulated in a way that the vector R(C)2, . . . , R(C)p is a

zero vector. If we do not turn it down, the conclusion is that only the first coefficient R(C)1

is significant and the others are insignificant. If we do turn it down, we know that both
coeficients R(C)1, R(C)2 are significant and we keep going.

The sense of the testing is to ascertain from which point we can consider the canonical
correlations as zero.

The test assumes that the random sample X1, . . . , Xp, Y1, . . . , Yq comes from a p + q-
dimensional normal distribution.

5.3 algorithm for the canonical weights search
The principle is shown on sample characteristics.

var(x) is estimated by the sample variance matrix Sx of the x = (x1, . . . , xp)
′ vecor type p× p

var(y) is estimated by the sample variance matrix Sy of the y = (y1, . . . , yq)
′ vector type q × q

cov(x,y) is estimated by the sample covariance matrix Sxy of the x = (x1, . . . , xp)
′, y = (y1, . . . , yq)

′ vector type p× q

We assume rank of matrix cov(x,y) = p and p < q. we are searching for matrices A and B
in a way that the model assumptions from 5.1 are met, and

A =

⎡⎣ a11 . . . a1p
...
ap1 . . . app

⎤⎦ B =

⎡⎣ b11 . . . b1q
...
bp1 . . . bpq

⎤⎦.

The maximal values from the 5.1 assumptions we are getting through Lagrange multipliers
(subjecting to D(U), D(V ) are unit), that leads to a system of homogenous equations. Their
roots are the eigenvalues and eigenvectors of matrices:

1. matrix: S−1x ⋅ Sxy ⋅ S−1y ⋅ Syx

2. matrix: S−1y ⋅ Syx ⋅ S−1x ⋅ Sxy

Both matrices have the same eigenvalues. If we order them in a decreasing way, they corre-
sponds with the quadratic forms of the canonical correlation coefficients: �r = R2

(C)r, r =
1, . . . , p. The eigenvectors (are mutually orthogonal) in the first matrix corresponds with the
searched raws of the matrix A and correspondent eigenvectors corresponds with searched
raws of the matrix B.

5.4 final remarks
Remark. CCA is for quantitative data analysis and has the biggest sense when all the pairs of
the original variables are in a linear relation. If the vector of the all p+ q variables is from the
p + q-dimensional normal distribution, then the relation between all the pairs is linear. (We
can assess that from the matrix of the plots)

Remark. Let summarize the reasons for using CCA: 1) for testing independence or depen-
dence between two groups of variables 2) searching for groups correlating mutually at most
3) Generalize a regression analysis in terms of following: If there are more than one variable
being correlated, regression separate functions would not keep this complexity. Thus we can
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see the groups of the “Y -ových” variables as a group of variables dependent on the group
of the “X-ových” varaiables. In fact, the canonical correlation coeficients are symmetric
which we need to look for when writing findings. 4) Ascertain whether measurements by
two methods of different groups lead to the same resul.

Remark. Concerning the problem: ∗ Deviant values misrepresent correlation coeficients and
needs repairing before analysis. ∗There can be some variables useless in the model and these
can be detected by the CCA. ∗It is important to assure suficient number of observations since
when a lot of variables, there can be some incompletenesses in the dataset. This cases need
leaving.

Remark. What are the CCA’s findings? 1) values of the canonical coeficients whose sig-
nificance can be tested. Number of significant canonical coeficients represent number of
canonical variables’ pairs that sufficiently represent dependency between groups. These vari-
ables are sensible to analyze 2) A and B matrices of the canonical weights that represent
how particular variables of a particular group contribute to particular canonical variable. 3)
values of correlations (canonical weights) R(xi, Ur) between the particular original variable
and the canonical variable. 4) total redundancy value (in both directions) which is a ratio of
variables’ of one set variability that is explained by the canonical variables from the second
set. 5) values of new canonical variables for particular observations.
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Chapter 6

Cluster Analysis

The aim of the cluster analysis is to classify observed objects into some groups (clusters)
according to their similar appearance. The clustering classification can be successful only if
the objects tend to associate in clusters. If we are doing in the 2D, we can the structure see
from the data and visualize. For higher dimensions we need to use an appropriate algorithm.
But there are lots of possible methods and it is hard to choose a good one, which depends on
a problem concerned.

As in the preceding chapters we are beginning with a data matrix where we are measuring

values of p variables X1, . . . , Xp on n objects, so X =

⎡⎢⎣ x11 . . . x1p
...
xn1 . . . xnp

⎤⎥⎦.

∙METHODS OF THE CLUSTERS FINDING:

Hierarchy methods: The hierarchy algorithm is either agglomerative or divisive. In
the first case, all the objects are considered as no cluster in the begging. Then we join
the two clusters that are nearest. The process ends when all the objects are in one
cluster.
In the divisive case, vice versa.

The graphical result of the hierarchy methods is a dendrogram. It is a binary tree de-
picted horizontally or vertically. In a dendrogram, each bundle represents a cluster. For
example, in a horizontal dendrogram, the horizontal direction represents a connection
level that is a distance between clusters in time when they have been connected into one
cluster. Vertical cuts in a dendrogram represent classification ob objects into clusters.
See picture 6.1

In the hierarchy methods, the number of clusters does not need to be determined in
advance. (Algorithm of the clustering can be “stopped” when the levels of connection
are sufficiently “big”.)

Unhierarchic methods: There is a need to determine the number of clusters in the
beginning.
Then the objects are classified into disjunctive groups “optimally” according a crite-
rion. In the most cases, we are using the method of K means.
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Figure 6.1

6.1 Objects distance
Since we are trying to determine the similar objects, we need to define “similarity”. We
do this by the distance among the objects - the nearest the distance, the more similar ob-
jects. We sign the values of the p variables measured on the ith and the jth object as
(xi1, . . . , xip) and (xj1, . . . , xjp). The distance of the ith and the jth object will be signed
as dij . Finally, the distances of the each pair will be written in the distance matrix D =⎡⎢⎢⎢⎣

0 d12 . . . d1n
d21 0 . . . d2n
...
dn1 dn1 . . . 0

⎤⎥⎥⎥⎦.

Below-mentioned measures of objects distances can be used only for quantitative variables1.
∙ EUCLIDEAN METRIC:

- “common-known” distance of two points in a space.

- dij =

√
p∑
s=1

(xis − xjs)2

- Euclidean metrics is hardly influenced by the variables of big values. Then the cluster-
ing is made mainly with regard to these variables

- So that, it is important to transform the data by dividing e.g. by the standard deviation
- Euclidean distance is also not suitable when the variables are correlated. Then these

variables are having bigger weight than they should have.2

∙MANHATTAN DISTANCE (CITY-BLOCK):
- The street on the Manhattan are orthogonal. If I want to go from a point i to a point j

(see picture 6.2), I have to come round a corner house.

- dij =
p∑
s=1
∣xis − xjs∣

1Measures for qualitative variable also exist.
2This problem is coped with theMahalanobis distance that we are not dealing here
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∙ CHEBYCHEV DISTANCE:
- We are trying to find the variable where the difference between the i-th and the j-th

object is biggest. This difference is called the Chebychev distance of the ith and the
jth object, so that:

- dij = maxs ∣xis − xjs∣ through all s = 1, ..., p

- It strengthen the variables with big differences between objects.

See picture 6.2.

Chebychev distanceEuclidean metric Manhaan distance

Figure 6.2: We have only two variables X and Y (p = 2) and their values measured on the ith and the
jth object. The distance dij of these objects is demonstrated by a length of the red line.

6.2 cluster distances
If we have objects in clusters, we need to define the cluster distance. For the next methods,
it is possible to use an idea that we assign each cluster a “representative” and then will be
measure the distance between the representatives (according to selected method). After that,
we will be merging the clusters that are nearest.
∙ SINGLE METHOD (METHOD OF A NEAREST NEIGHBOR):

- The distance between two clusters is the minimum of the all distances between objects.
- With clustering by this method, there is a tendency to create new objects as a snowball

upon an existing cluster.

∙ COMPLETE METHOD (METHOD OF THE FURTHEST NEIGHBOR):
- The maximum of all distances between the clusters’ objects is the distance between

two clusters.
- With clustering by this method, there is a tendency to create clusters with similar num-

ber of objects.

∙ AVERAGE METHOD:
- The mean of the distances between all object pairs from the first and the second cluster

is the distance.
- This method has also its weighted variant.
- The results are similar to results obtained from the method of the furthest neighbor.

∙ CENTROID METHOD:
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- This method is suitable only if Euclidean metrics.
- The distance of the centroids is the distance between two clusters.
- The centroid is a fictive object of the cluster whose coordinates are means for particular

variables that are computed for all cluster’s objects.
- This method has also its weighted variant.

∙WARD METHOD:
- Very effective, tending to create small clusters.
- Suitable only if Euclidean metrics.
- Principle based on ANOVA3

Schematic depiction of distances can be seen on the picture 6.3.

Figure 6.3: a) method of the nearest neighbor, b) method of the furthest neighbor, c) method of a mean
linkage, d) centroid method. The distance in the Ward method can be introduced as a centroid method
case multiplied by a coefficient depending on a cluster sizes.

6.3 Cofenetic coefficient of correlation
Different clustering procedures can be giving different findings. What is the right one? We
can use an “empiric visual method”, so we create dendrograms using some clustering proce-
dures and if the findings are similar, the clustering should be considered as good.

More objective is the assessment by the “cofenetic coefficient correlation”. It evaluates
the rate of equivalency of the matrix of object distances D and the cofenetic matrix that is a
result of a particular clustering method. (i, j)th cell of this matrix is defined as a cluster dis-
tance where the cluster containing ith object is joined with the cluster containing jth object.
The more similar the cofenetic matrix to the original matrix of object distances, the better job
has the method done in retaining the object distances. (We can see an example of a cofenetic
matrix on the picture 6.4.)

Cofenetic coefficient of correlation is a “common” correlation coefficient computed from
the ”twodimensional data set” where one variable is represented by cells upper the diagonal
in the distance matrix D and the second variable is represented by cells upper diagonal in

3 Ward method is going to connect the ith cluster and the jth cluster into a new cluster ℎ in a way that the sum
of the squares in the new cluster is lower by the sum of squares in the fading clusters and that number minimize. Let
sign SSi (resp. SSj , resp. SSℎ) the sum of the all objects’ deviations from the particular centroids squares in the
ith (jth, ℎth) cluster. Then we are going to minimize SSℎ − SSi − SSj .
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the cofenetic matrix (see picture 6.5.). We choose the method with the highest cofenetic
correlation coefficient.

Figure 6.4: There is a cofenetic matrix particular to a determined clustering on the picture. The values
on the y axis of the dendrogram are misleading. The bigger the similarity, the lower the distance. 1
points to a perfect accordance - zero distance.
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Figure 6.5: If there is a perfect accordance of a matrix of distances with a cofenetic matrix, the points
would be in a line.

6.4 Agglomerative hierarchic clustering algorithm
In the subsection 6.2 we have introduced methods of clusters’ distances measuring that are
correct to use during the hierarchic clustering. Now we are going to introduce a cyclic algo-
rithm of the clustering:

1. We calculate the distance matrix D according to the chosen “distance” from the 6.1
2. We consider each object as a cluster.
3. We search for the two nearest clusters, the ith and jth (according to chosen method

from the 6.2) in the matrix D.
4. We connect the ith and the jth cluster into a new the ℎth cluster. We delete the ith and
jth raw and column from the matrix D and replace them by a raw and column for the
new ℎth cluster.

5. We make a note in which cycle the connection of the i-th and j-th cluster has become
and level of their connection. (This is depicted by the dendrogram.)
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6. If all the objects are not joined into one cluster, we go back to step no. 3.

The result of the clustering depicted by a dendrogram allows us to evaluate in which cycle
the optimal distribution of objects happened.

6.5 unhierarchic clustering methods
We introduce only a principle of the method of the k means. Firstly, this method distribute the
cases into the k clusters randomly. Then it is replacing objects among clusters in a way that
the variability within the groups is minimized and the variability among groups is maximized.
In other words, it classifies objects into groups in a way that we get the highest possible sig-
nificance ANOVA test. Con of this method is that it highly influenced by the initial choice
of the clusters. The initial choice of the clusters is determined regarding some criteria or it is
determined on the problem basis. We can also take the clusters as a result of a having been
proceeded clustering that we want to verify or enhance.

The algorithm:

1. We determine the initial analysis of the set of n objects into the k clusters.
2. We determine the centroids of the clusters in particular.
3. We calculate the distances from all sample centroids for all objects and the object

classify in the cluster to which the distance to its sample centroid is the nearest. If we
keep doing but there are no changes, we consider the result as definite; otherwise we
go back to the step no. 2.

6.6 Final remarks
Remark. All the upper-mentioned methods are suitable only for quantitative variables.

Remark. The distance depends on a variable scaling. If the scaling is not the same, standard-
ization is recommended.

Remark. If there is not a clear structure in the data, the different methods lead to different
findings. On the other hand, when the different approaches are giving the same results, we
can consider the structure in the data as “clarified”.

Remark. Findings of the clustering can be highly influenced by outlying observations.
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Chapter 7

Discriminant Analysis

Discriminant analysis is a method for differentiating objects and classifying them into groups
according to p observed variables X1, . . . , Xp . Imagine there is a bank that aims to group
clients according to their salary, age etc. for the risk of providing credit. The groups are to
be: safe clients, clients with acceptable risk, unacceptable clients. Based on observations of
the vector x1, . . . , xp the bank aiming to classify the clients (objects) into groups I, II, III.
Discriminant analysis is searching for a rule that is able to run this classification facing a
problem that an object may be classified into more groups (with regard to x1, . . . , xp values).
The rule must be designed in such a way that minimalize probability of mistaken classifica-
tion. This rule is being specified onto the training data which have known to which groups
the are belong to. On a basis of these data we can observe which values of x1, . . . , xp are
typical for particular groups. After tuning the rule upon the training data, we will use them
for the objects which have unknown their belong to a particular group and classify them in
accordance with the having designed rule. So that, DA is being realized in two steps.

The main objectvie of the DA is to classify the objects into groups. Another goal is to
ascertain which variables from the X1, . . . , Xp vector are having information useful for dis-
crimination. For example, for a physician it is useful to know which variables describing state
of a pacient are important for determination if to initiate a special care or not.
∙ SIGNING AND COMMENTS:
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p number of variables in the vector X1, . . . , Xp

x =

⎡⎢⎣ x1

x2

...
xp

⎤⎥⎦ particular observations of vector X1, . . . , Xp

n number of objects of the training set

k number of groups
In each group, the objects stem from the same pdimensional distribution with a
density of fj(x), j = 1, . . . , k.
Densities are different among groups (otherwise the classification would be
useless).

�j ∗ apriori citizenship into the jth group.
We are talking about known probability that a random object stems from the jth
goups in advance, j = 1, . . . , k.
This probability reflects not-the-same-frequent representation of the particular
groups in the sample.
(In the group of credit clients, there probably should be more wealthy people than
the poors.)

fj(x)⋅�j
k∑
j=1

fj(x).�j

∗aposteri probablity of the citizenship into the jth group

We are talking about a bayesian probability of a citizenship into the j
group after a random vector X realized by a vector of values x, thus
P (object belongs to the jth group∣X = x)

fj(x) ⋅ �j ∗jth diskriminant score
It is a numerator in the aposteri probability. Since aposteri probabilities are having
the same denominator for all the groups, the numerator is the only thing sufficient
to discriminant.

f(x) =
k∑
j=1

fj(x).�j ∗ The mix density where we do not distinguish from which group an observation
is stemming from.
We will measure values of x with the “probability” that is defined by a density
f(x) on a chosen object.

nj number of objects in the jth group j = 1, . . . , k

�j pdimensional column vector of expected values in the jth group j = 1, . . . , k

Σj p× p variance matrix of the X in the jth group j = 1, . . . , k

7.1 Summary of criteria for the rules
The rule classifies an object with observation x into group j where

1. CRITERIUM OF THE MINIMAL MAHALANOBISAL DISTANCE:

∙j = arg min
i=1,...,k

(x− �i)′Σ−1i (x− �i)
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∙Thus j is the group whose centroid is the nearest to the observed object.

2. CRITERIUM OF THE MAXIMUM LIKEHOOD

∙j = arg max
i=1,...,k

fi(x)

∙We have an observation X = x. For what density is this observation most probable? -
It is the “highest” density which we can gain this observation for. Insex of this density
id the index of the group to which we classify the object with the observation x. An
illustration of the principle can be seen in the picture 7.1.

3. BAYES CRITERIUM

∙j = arg max
i=1,...,k

�i ⋅ fi(x)

∙Objekt will be classified into the group for which the score �i ⋅ fi(x) is highest.
∙It generalizes the maximum likehood criterium in the sense that regards to apriori
probabilities of the object frequencies in the groups.
∙Maximum likehood is a special case of the Bayes criterium if we plug �1 = ... =
�k = 1

k . in to the aposteri probabilities
∙Bayes criterium minimalize total expected loss arised from misconduct classification.
∙If the vector X1, . . . , Xp is having the pdimensional normal distribution Np(�j ,Σj)
in each group j = 1, . . . , k, then the classification of the objects with the Bayes cri-
terium is called a quadratic discriminant analysis. Moreover, if the matrices Σj are the
same in each group, we are talking about a linear discriminant analysis.

4. FISHER CRITERIUM

∙j = arg min
i=1,...,k

∣v′x− v′�i∣,

where for the matrix of the variablity between groups B and matrix of within group
variability W is

the pdimensional vector v = arg max
w∈ℝp

w
′
Bw

w′Ww
.

∙Fisher criterium is searching for the transformation of the original vector of variables
X1, . . . , Xp onto the new vector of variables Y1, . . . , Yl when the differences between
groups are highlighted) Klasifikace objektů probı́há tak, že se nejdřı́ve přepočı́tajı́
souřadnice jednotlivých objektů pro nové proměnné (ty již budou kolmé), přepočı́tajı́
se i střednı́ hodnoty jednotlivých proměnných a pozorovánı́ zařadı́me do té skupiny v
nı́ž se přepočı́taný vektor střednı́ch hodnot lišı́ nejméně od přepočı́taného vektoru po-
zorovánı́.
∙Toto kritérium při klasifikaci objektů do skupin předpokládá stejné apriornı́ pravděpodobnosti
ve všech skupinách.

37



Figure 7.1: There are densities of the twodimenional normal distributions p = 2 with the same unit
variance matrix and with different vectors of the expected values. The red, green and the blue density
f1, f2, f3 correspond with three groups of objects. f1 ∼ N2(

(
0
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)
,
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01

)
); f2 ∼ N2(
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2
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,
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); f3 ∼
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,
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01

)
) When having look from the upper side, we can see color-distinguished particular parts

of the plane ℝ2 which we have separated using maximum likehood criterium.

7.2 Fisher criterium - canonical discriminant analysis

Fisher criterium has been “designed” that it is able to distinguish the groups better. The orig-
inal pdimensional vector of X1, . . . , Xp variables would be transformed onto new l variables
Y1, . . . , Yl that the differences between groups would be maximized using this transforma-
tion (information about differences between groups can be found in the B ”between” matrix)
and the differences within the groups would be minimalized (information about differences
within groups can be found in the W ”within” matrix). We are having l = min{(k − 1), p}
new variables, and we call them discriminants (or canonical variables) and we define them as
a linear combination of the original variables, so that
Yr = v1rx1 + v2rx2 + . . . + vprxp = vr

′ ⋅ x, pro r = 1, . . . , l. Coeficients of the linear
combination creates the parts of vr vector in the direction of the best differentiation of the
transformed densities of the all k groups. Consequently, the observed objects are classified
better. Fisher discriminant criterium then classifies an object with the values of x into the
group in which the reflect of the expected value of the variables in the transformation vr is
nearest to the x. We can see how one discriminant help us to distinguish objects from the two
groups in the picture 7.2.

It is possible to prove that the vectors v1, . . .vl are eigenvectors of the W−1 ⋅ B matrix
and correspond with the eigenvalues of this matrix �1 > �2 > . . . > �l.

There is a question if we need all l new variables (discriminatns) for discrimination. For
this the tests based on Wilks Λ are useful tool.
Λ = det W

det T = det W
det (W+B) ∈ (0, 1) represent a ratio of the within-group variability and
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the total variability. If the varibalility within the groups is little, a big deal from the toatl
variability is concerned with the variability between the groups and that points to a good
discriminant ability of the analysis. The value Λ = 0 reflects ”perfect discrimination” of the
objects and the value Λ = 1 tells us that the result of the DA is useless as the objects are not
possible to be distinguished on a basis of the observed variables.

Figure 7.2: We observe two variables X1, X2, (p = 2) upon objects stemming from two groups k = 2.
Theretical picture in the left vlevo shows marginal densities that overlap each other both at the x1 and
x2 axis concerning both groups. So that some realizations of (x1, x2) would be difficult to classify into
the groups. In the direction vector of the new variable (discriminant) the densities of the both groups
differ more between (not overlapping) and the variability for the particular groups is reduced. There
are measured data in the pictures in the right. The middle-one picture shows a projection onto a line
with a random chosen direction. Picture in the right shows projection onto a line with the direction
corresponding with the vector v1. Projection in the right within all possible projections enable us
distinguish the group origin of the measured object better.

Canonical DA (DA using Fisher criterium) is suitable for evaluating which variable from
X1, . . . , Xp are needed for the discrimination and which are useless. For this reason, it is
suitable to have a look at the coordinates of the eigenvectors and correaltion betwen the orig-
inal variables and the discriminants. In order to interpret the coordiantes of the eigenvectors
well, it is useful to standardize the eigenvectors v onto the v∗. Then the value of the ith co-
ordinate of the rth standardized eigenvector v∗ir informs us about the rate that theXi variable
contributed to the rth discriminant. Similarly, the correaltion between the ith varible and the
rth discriminant is also interesting. Then, we can ascertain what would be the change in the
Wilk Λ whether we an original variable leave behind etc.

The classifiacation of the objects into the groups is another aim of the analysis. The
assessment of the clasification success we will cover in the 7.5.

Example 7.1. In the dataset dovolena.sta, there are information about 50 families that can be
considered a random sample from a population. The variable ID represent if a family traveled
to some resort in the last 2 years (value 0 is an answer no, value 1 is answer yes), variable
X1 states an annual family income in thousands USD; variable X2 states an attitude towards
traveling (9value scale, 1 = absolutely rejecting, 9 = absolutely accepting); variable X3 states
the significance of the family trip (9value scale, 1 = lowest, 9 = highest); proměnná X4 states
number of family members; proměnná X5 states an age of the agest member of the family
and the V variable states whether a family want to spend a little (1), averaged (2), or a lot of
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money (3) for the family trip.

a) The task aim is to ascertain which properties (variables X1, . . . , X5) are typical for a cer-
tain population of families going tripping to a resort (variable ID classifies families into two
groups). At the beginning ascertain how many discriminants are significant, then establish
and interpret discriminant coeficients, diskriminant correlation with the original variables
(Which variables could be left behind?), diskriminant score and classify observed families
into groups. Ascertain how many families would have been identified right with regard to the
group.

b) The same tasks as in a); the variable distinguishing families into groups will be V. Besides
that, draw a chart of classified observations in the plane of the two discriminants.

Solution
To be figured out during seminar □

∙ MATHEMATICAL DESCRIPTION OF THE CDA PRINCIPLE:

We know (from the multivariate analysis) the total variability of the vector X =(X1, . . . , Xp )’,
varX =: T can be analyzed onto the sum of the matrix of the variability between groups
B and the matrix of the variability within the groups W. Tedy T = B + W. So for the
variability of the onedimensional random variable Y = v

′ ⋅X is valid following:
QT := var (v

′
X) = v

′
T v = v

′
W v + v

′
B v =: QW +QB

Fisher linear diskriminant function is the function that maximilize the Fisher ratio. In other
words it meets

v = arg max
w∈ℝp

QB
QW

= arg max
w∈ℝp

w
′
B w

w′W w
.

Needed matrices are being estimated from the data matrix as follows:
T =

∑k
i=1

∑ni
j=1(Xij −M)(Xij −M)

′
,

B =
∑k
i=1 ni(Mi −M)(Mi −M)

′
,

W =
∑k
i=1

∑ni
j=1(Xij −Mi)(Xij −Mi)

′
, kde

∙Xij is an object from the ith group i = 1, ..., k; we index the objects through j = 1, ..., ni
within this group. (We measure values of the variablesX1, . . . , Xp , thus Xij is a pdimensional
vector.)
∙M = 1

n

∑k
i=1

∑ni
j=1 Xij is a pdimensional vector of the means of all observations

∙Mi = 1
ni

∑ni
j=1 Xij is a pdimensional vector of means in the ith group, i = 1, ..., k

If there is v1 an eigenvector corresponding with the highest eigenvalue of the matrix W−1B,
then we can show that the v1 maximalize the Fisher ratio. If the rank of the matrix rank(W−1B) =
l the number of inequal-to-zero eigenvalues (and corresponding eigenvectors) is l and we can
order them in a descending way �1 > . . . > �l. We can standardize the eigenvectors accord-
ing the following: v∗r = 1√

n−k F vr, where F is a diagonal matrix with roots of the diagonal

objects of the matrix W. (We standardize in a way that a variable Y = v∗
′

r ⋅ x is having a
unit variability.)

Fisher diskriminant criterium classifies objects with the value of x into the group whose
reflect of the expected value of properties in the transformation v is nearest to the reflect of
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x or into group

j = arg min
i=1,...,k

∣v′x− v
′
Mi∣.

7.3 “Economic” assessment of the rule
Imagine again a client trying to be given a credit, and a bank deciding whether classify them
into the group of potential “solvents” or potential “insolvents”. If the bank classified them
right, there is no big deal of losing money. But if it is not right, there is a deal with losing
money.

When we do not need to be interested in the losses (they are the same in all directions
“směrech”), we do not prefer none of the criteria mentioned in 7.1 (with regard to possible
loss). When we need to be interested in the different losses, then we can prove that the Bayes
criterium minimalize the fault of the mistaken classification. This property of the Bayes
criterium can be generalized onto more than two groups.

7.4 linear and quadratic DA (LDA, QDA)
Bayes criterium classifies the observed object into the group in which the value of the jth
diskriminant score Sj(x) = fj(x) ⋅ �j is maximal, j = 1, . . . , k. For practical reasons the
knowledge of densities fj(x) is needed. (The densities are pdimensional, index j is related
to the jth group.)

So that we are going to introduce a formula for the calculation of the jth score with an
assumption that the vector X1, . . . , Xp is having a pdimensional normal distribution in each
group, X ∼ fj(x) ∼ Np(�j ,Σj), j = 1, . . . , k
1) for cases when the variance matrices Σj can be different for all groups j = 1, . . . , k
2) for cases when the variance matrices Σ are the same concerning all the groups:

1. quadratic DA
Sj(x) = ln �j − 1

2 ln(det Σj)− 1
2 (x− �j)

′
Σ−1j (x− �j)

-Sj(x) is called quadratic discriminant score.
-By this criterium we separate the pdimensional space onto areas bordered with quadrics.
(For p = 1 we are dealing with conic section)

2. linear DA
Sj(x) = ln �j − �

′

jΣ
−1x− 1

2�
′

jΣ
−1�j

-Sj(x) are called linear diskriminant scores.
-By this criterium we seperate the pdimensional space onto areas bordered with sup-
planes. (For p = 1 we are dealing with a point, for p = 2 we are dealing with a line,
for p = 3 we are dealing with a plane.)

7.5 Probability estimates of the right classification
Two methods of evaluating the quality of the decision-making rule follows.
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Figure 7.3: There is a result of the QDA (a LDA) classification for the data stemming from the twodi-
mensional distributions (p = 2) in two groups (k = 2). Values of the variables from the first group are
being in red; from the second group in blue.
.

∙ RESUBSTITUTE METHOD
This method consists in using the designed decision-making rule onto the traning data.
We are walking throuh all n objects of the training set and we save number of objects
stemming from the ith group and classified into the jth group into the nij statistics.
Thus we will get a matrix of relative frequencies

1
n

⎡⎣ n11 . . . n1k

...
nk1 . . . nkk

⎤⎦
Cells of this matrix are giving estimates of the particular probabilities of the right or
bad classifications. There are ordered probability estimates of the right classification
for teh particular groups at the main diagonal. So that, the matrix trace demonstrates
the estimate of the total probability of the right classification of the random chosen
object. This estimate is actually upper-estimated good as the dicision-making rule is
being tested in the same data from which we have developed it. Since each cell of the
training set contributes to the rule design, the chances of right classifications are being
increasing. For k = 2 see table 7.1. If its cells are being devided by the scale of n
training set, we would be given an upper-mentioned matrix.

classification
group I group II

re
al

ity

group I n11 n12 n1.
skupina II n21 n22 n2.

n.1 n.2 n

Table 7.1: table of right and bad classification frequencies
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∙ CROSS VALIDATION
This method consists in random distribution of the training set onto two subsets. We
apply the discriminant part of the DA by wchich we will be given a dicision-meking
rule onto the first subset. In the second subset, we are reviewing the quality of the
gained rule by the resubstitute method. This setup do not favour objects unlike the
upper-mentioned procedure, but requires higher training set data for the similar value.

This procedure is widely used for probability estimates of the right classification only.

7.6 sample characteristics and assumption verification
As in the former chapters, there are usually unknown parameters of the distribution in the DA,
thus are replaced with sample characteristics. For theX1, . . . , Xp , we estimate pdimensional
vector of expected values � with vector of means, variance matrix Σ with sample variance
matrix.
Apriori probabilities of the groups �1, ..., �k are usually also unknown so they are replaced
with the frequencies �̂i = ni

n for i = 1, ..., k.
Before introducing DA assumptions, let consider that this is an explorative technique so

slight assumption break is not a problem. (e.g. When using CDA we need normality only for
using �2 tests, but for the classification the normality is not required.)

∙ MULTIDIMENSIONAL NORMALITY
Whatever testing in DA or discriminant scores calculations are, we need to verify the mul-
tidimensional normality assumption in each group. It is not practically possible to test mul-
tidmensional normality so we at least consider the onedimensional normalities of the all p
variables separately in each k groups. (SW test, KS test, or visually N-P plot,...) If the
onedimensional normalities would not be turned down, we would “believe” in the multidi-
mensional normality. Otherwise, we can keep conducting our analysis but must take the
findings with reserve.

∙ VARIABILITY HOMOGENITY
LDA assumes the variance matrices conformity in all k groups, so H0 : Σ1 = . . . = Σk.
This hypothesis can be tested by e.g. Box test of variance matrices conformity. Nonetheless,
this test is very sensitive to even a slight normality break so its decline of the variance con-
formity we should take seriously at all.

∙ TEST OF VECTORS OF THE EXPECTED VALUES
We test a hypothesis H0 : �1 = . . . = �k. If we have a reason of assumption that the
observed objects stem from k groups, we want to turn down this hypothesis. (The procedure
assumes variance matrices conformity.)

∙ UNDESIRABLE LINEAR COMBINATIONS OF VARIABLES X1, . . . , Xp

We have met the term of redundance before. Simply, if two or more variables are asking the
same (at least one of the variables is a linear combination of the others), the inverse matrix to
the matrix Σ which is needed to discriminant scores calculations cannot be found. Tolerancy
is between null and one; the nearer null, the more is the certain variable useless in the model.
If the value falls under the threshold, it is required to leave the variable from the model.
∙ UNCORRELATION OF � AND Σ
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Chapter 8

Correspondence analysis

Correspondence analysis is a descriptional and explorational technique suitable for analysis
of multidimensional categorical data (should we want to use it for analysis of quantitative
variables, they can be categorized) and is similar to factor analysis in methodology. The
main aim of this method is to make clear the structure of the hidden associations withing
the contingency tables and show it graphically, in the best case scenario. The clear strucutre
enables:

1. Detection of similarity of catogories for particular variables and thus enables their op-
timal clustering. It discovers associations of categories within particular variables.

2. Reveal multual similarity among categories of different variables, thus associations
among variables.

The main principles are going to be shown for two categorical variables which are described
by a contingency table. In that case we are talking about the simple CA. If we are analyzing
associations among three categorical variables at least, we are talking about multivariete CA.

8.1 Elementary analysis of contingency tables and �2 test of in-
dependence

We introduce a table of observed frequency, relative observed frequency and table of esti-
mated relative frequency if both variables were independent. We assign the simultaneous
parts of the tables the matrix assignment.
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y[k] y[1] . . . y[s] nj⋅
x[j] njk

x[1] n11 . . . n1s n1⋅
...

...
...

...
x[r] nr1 . . . nrs nr⋅

n⋅k n⋅1 . . . n⋅s n

y[k] y[1] . . . y[s] pj⋅
x[j] pjk

x[1] p11 . . . p1s p1⋅
...

...
...

...
x[r] pr1 . . . prs pr⋅

p⋅k p⋅1 . . . p⋅s 1

y[k] y[1] . . . y[s] pj⋅
x[j] qjk

x[1] q11 . . . q1s p1⋅
...

...
...

...
x[r] qr1 . . . qrs pr⋅

p⋅k p⋅1 . . . p⋅s 1

observed frequencies table observed frequencies table, where

pij =
nij
n pi⋅ =

ni⋅
n p⋅j =

n⋅j
n

i = 1, . . . , r, j = 1, . . . , s

We put the simultaneous frequencies into a

matrix P of type r × s.

estimated relative frequencies table ifX

and Y were independent where qij =

pi⋅ ⋅ p⋅j
i = 1, . . . , r, j = 1, . . . , s

We put the simultaneous frequencies into

the matrixQ of the typer r × s.

In accordance with the CA terminology it is common to call the vector of marginal fre-
quencies (p1⋅, . . . , pr⋅)

′ vector of row weights and vector (p⋅1, . . . , p⋅s)
′ as vector of column

weights. The X variable is called row variable, variable Y is called column variable. Matrix
P is called Correspondence matrix.

�2 test of independce compares the P matrix of the relative frequencies table with the Q
matrix of the estiamted frequencies table. If independent, the P and Q tables should be “sim-
ilar”. When these two matrices are “significantly” different, the test will be stating that X
ans Y are dependent. However, the test cannot point on a independency structure (which
categories of particular variables cause significant difference between P and Q. With that we
will be dealing further.

∙ �2 TEST OF INDEPENDENCE:
Let’s get back to the �2 test. The null hypothesis states that X and Y are independent. Hy-
pothesis is turned down if the matrix of P and Q are significantly different.

Test statistics V =
r∑
i=1

s∑
j=1

(nij−
ni⋅n⋅j
n )

2

ni⋅n⋅j
n

≈ �2((r − 1)(s− 1)).

The V statistics can be also written as V = n ⋅
r∑
i=1

s∑
j=1

(pij−qij)2
qij

that depicts which “relative

frequencies table cell” broke the independency.
Big differences between tables lead to big values of V so the critical region on the right is of:
W = ⟨�2

1−�((r − 1)(s− 1)),∞).

∙ CONDITIONAL RELATIVE FREQUENCIES TABLES:
n11

n⋅1
n21

n⋅1
...
nr1
n⋅1

n12

n⋅2
n22

n⋅2
...
nr2
n⋅2

. . .

. . .

. . .

. . .

n1s

n⋅s
n2s

n⋅s
...
nrs
n⋅s

c1 c2 . . . cs

n11

n1⋅

n12

n1⋅
. . . n1s

n1⋅
r1

n21

n2⋅

n22

n2⋅
. . . n2s

n2⋅
r2

...
...

...
...

nr1
nr⋅

nr2
nr⋅

. . . nrs
nr⋅

rr

Vector of raw conditioned frequencies ri = (ni1ni⋅ ,
ni2
ni⋅
, . . . , nisni⋅ ) is called raw profile, i =

1, . . . , s.
Vector of column conditioned frequencies cj = (

n1j

n⋅j
,
n2j

n⋅j
, . . . ,

nrj
n⋅j

) is called column profile,
j = 1, . . . , r. The relation between profiles and weights can be seen in CA 1 priloha.
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We can further enrich the table analysis with 3D column graphs and conditioned pie charts
or with residual analysis (see CA 2 priloha). □

8.2 Simple CA

Example 8.1. In a marketing research, we are exploring impact of some criteria during pur-
chasing behavior regarding juice brands. We have conducted a sample of respondents which
were questionned which juice they are purchasing most and which of the criteria affect their
purchasing choice mostly. The results follows in table 8.1. Interpret associations between
variables “juice brand” and “choice criterium”.

Table 8.1: The table on the left is a table of absolute frequencies, table on the right is a table with raw
profiles. If we are facing perfect independency of both variables, all the raw profiles would be the
same.

We will show the CA principle at the raw profiles and analogically can be used for column
profiles. Notice that particular raw profiles correspond with particular categories of the raw
variable of X . One raw profile is a vector with s objects and can be regarded as a point in a
s-dimensional space whose coordinates correspond with profile values. In figure 8.1 we have
been given 5 raw points (there are 5 juice brands) and every point is of 5-dimension (5 choice
criteria). In general, we would be having r points in a s-dimensional space. The aim of the
CA is to reduce the s-dimensional space with good repoduction of “distances” among points
in the original s-dimensional space.
∙ INERTION AND DIMENSION REDUCTION

The world is still stemming from the matrix of raw profiles. We make an effort to reduce the s
dimension onto lower dimension with full retain of information about distances between raw
points. Maximal dimension of the “new” space is min{r − 1, s − 1}. In the juices example
we got reduce onto the fourth dimension space without losing information. But in terms of
the graphical interpretation of associations, there is no advancement. So there is a question
if it is possible to erase some axis of the new coordination system and with what price. We
introduce a term inertion I .

Total intertion: I =
V

n
=

r∑
i=1

s∑
j=1

(pij − qij)2

qij

demonstrates how the the matrix P differs from the matrix Q.
If we fix index i in the inertia sum, the insider sum demostrates how the i-th row con-

tributed to the total inertia; and this value is called total inertia of the i-th row. For example,
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the row with the highest value of the inner sum in the formula for I has destructed the inde-
pendence at most. That is why corresponding variables of the X variable are in association
with the Y variable at most. (there is an analogy for the variability - particular objects con-
stribute to total variability) Relative inertion of the i-th row is the ratio of the i-th row’s
contribution to the total inertia.

In the preceding paragraph we were dealing with contribution to the total inertia of the
particular raw profiles. Now we will see how particular variables (axes of the new system)
contributes to the total inertia. Each axis of the new coordinate system explains part of the
total intertia and the axes are ordered that the explined parts of the inertia are decresing. 1

Whther we part of the information about “resources of the dependence” obey and depict the
raw points into the new system of coordinates only by using the firt two new coordinates
(and depict graphically), we have to ascertain how big part of the information we are going
to lose. In other words, we have a look how many per cent of the total inertia are explained
by the first two coordinates of the new system. If it is more than 90%, the depiction in the
2D is reproducing the orignail distances of the raw points very well and the associations
interpretation based on distances in the 2D graph is having excellent ability of demonstrating
associations among categories of the X variable.

Figure 8.1: In the table in the left we can see that the first axis of the new system of coordinates is
explaining over 77% of the inertia. The second axis is explaining 16% of the inertia. So that, using the
first two axes of the new system of coordinates the ratio of the explained inertia is over 93 %. Then even
interpretation of the chart in the right is relevant. Should we are to merge the categories of the “brand”
variable, the merge of the Relax and Cappy would not change the �2 value of the V statistics so much.
These two brands seem not to be much different in the “choice criterium” variable association.

Let sign k the maximal possible dimension in the new system and m the chosen dimen-
sion, m ≤ k. Depiction quality of the ith category demosntrates how many per cent of the
inertia of the ith row have remained explained by the depiction intom coordinated of the new
system. See picture 8.2 for the next association.

Instead of the raw profiles we can stem from the columns profiles as well and analogically
we will be gained the depiction of the points of the r-dimensional space in the spacce of the

1I = �1 + �2 + . . .+ �k; �1 ≥ �2 ≥ . . . ≥ �k where k is number of variables (axes) and the lambas are
eigenvalues of the ZZ′ matrix. The explained intertion for particular axes in the new system is equal to the ordered
eigenvalues.
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Figure 8.2: Table is form = 2, the row profiles (points in the 5dimensional space) are depicted into the
new 2dimensinal space. Coordinates in the new system are in the first two columns of the table “Masa”
demonstrates relative frequencies of the particular categories. In the “Cos2Dim1” column, there is a
ratio of the inertia of the ith row that is explained by the first new axis; in the “Cos2Dim2” column,
there is a ratio explained by the second new axis. These values can be interpreted as a correlation of
the ith raw profile with the first (or second) new axis. The sum of these two values in the ith row can
be found in the “Quality” column, which is a quality of depiction of the ith category when using two
axes of the new system (analogy to the communalities in the FA). “Relative inertia” shows a relative
contribution of the i-th row to the total inertia. “Inertia of the Dim.1” (or 2) shows the contribution
of the particular category to the inertia of the first (or the second) new axis. We can interpret it as a
relative rate of the impact of the category on the first (second) axis of the new system orientation.

lower dimension.

∙ CORRESPONDENCE MAP
The main aim of the CA was a depiction of the raw or the column profiles into the lower
dimension space and subsequent graphical depiction in 2D. If the coordinates are depicted in
the graph using first two axes of the new system, we will get a correspondence map.

Now we have to emphasize that the coordiantes in the new system can be standardized
differently. If we are interested in associations among categories of the raw variable X , we
are choosing a method for raw profiles analysis for the calculation of the coordinates. 2. If we
are interested in the relations among categories of the column variable Y , we are choosing a
method for analysis of the column profiles for the calculation of the coordinates.

Most often we want to evaluate the distance of categories through both variables. For
this reason we are construing symmetric correspondence maps. Let introduce a method of
simultaneous analysis of the raw and column profiles. In that case, there are categories of
both variables in one graph, however, the coordinates for the categories of X are calculated
by a method for raw profiles analysis and coordinates for the categories of Y are calculated
by a method for analysis of the column profiles. Thus we are mapping two different spaces
into the 2D. That is why the categories distances throughout variablescannot be interpreted
as a rate of similarity among categories of the X and Y variables. The only sensible way is
an orientation of points (both variable categories) regarding both axis of the new system of

2Coordinates of the column points in the new system are standardized that a sum of the squared distances from
the centroid is equal to one.
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coordinates. See picture 8.3.

Figure 8.3: The distance among Hello and Package or Price is not defined but, thanks to the fact that
all these categories are depicted in the left domain of the horizontal axis, we can assume that majority
of Hello juices is purchased due to package and price. Just in case, in the table of row profiles (tab.
8.1 in the right) there are Package and Price the highest values in the row of juice Hello. Similarly we
can see that Rauch and Toma are purchased due to Trtadition and Quality at most. And the minor axis
shows an association between Taste and Relax or Cappy.

8.3 Multivariete CA
Multivariete CA generalizes the simple CA onto more variebles. Let’s get back to problem
8.1 and add a new variable “gained education” to the “brand” and “choice criteria” variables
of three categories: primary school, high school, college. The possibilities how analyze
associations among multi-variables are following.

1. We conduct simple CA for pairs from the “primary” variable and other variables. In
our case, we will analyze two tables: brand - choice criterium and brand - gained
education.

2. We will conduct simple CA upon a merged table. The merged table arises that raw
variable incorporates the categories of the “primary” variable and the column variable
incorporates categories of all remaining variables. In our case, the raw variable in-
corporates the categories of the “brand” variable and the column variable incorporates
categories of remaing variables “choice criterium” and “gained education”.

3. We conduct simple CA upon Burt table. Burt table arises when raw and column vari-
able incorporate categories of all variables. In our case, we will have a table of 5+5+3
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raws and columns, see 8.4. Burt table is symmetric. There are marginal frequencies of
original correspondence tables on the main diagonal. However, they increase the total
inertia that make Burt tables less suitable ones.

Figure 8.4: Burt table for enriched figure 8.1
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Chapter 9

Higher order ANOVA

Higher order ANOVA is following the One-way ANOVA lecture where we were researching
if one factor A influences a dependent quantitative variable Y . In other words if the values
of Y are different for particular levels of A significantly. In this case we have one explaining
variable (factor A) and one explained variable (Y , sometimes known as response variable),
and particular factor levels of A are not random, i.e. fixed.

Nevertheless, there is a possibility that more variables influence the dependent variable,
and, what is more, they can influence each other. In that case we are talking about the high
order ANOVA (with or without interactions). The dependent variables can be more than one
too. Whether we are researching impact of one or more factors on more variables simultaneu-
ously, we are talking about MANOVA; Multidimensional Analysis of Variance. Furthermore,
the effects of the factors can be fixed or random.

In this chapter we will be dealing with two-factor ANOVA with interactions. First of all,
we will introduce a summary of mostly used design experiments.

Example 9.1. Imagine there are 18 similar squares for growing wheat. We are interested if
the volume of fertilizer (factor A) have an impact on wheat crop (response Y ). Factor A is
of 3 levels: a lot of fertilizer, middle volume of fertilizer and little volume of fertilizer. Next
we will assume weighted classification, i.e. for each level of factor will be randomly chosen
6 squares (6× 3 = 18). 18 squares are not the same, so the randomization help us to reduce
influences of the unrevealed exogenous factors that can influence the crop too. □

Example 9.2. Let enrich the problem 9.1 with an assumption that the 18 squares are located
on a hillside where the crop is increasing from the west to the east. But the experimenter is not
having other squares disposable. While the levels of the fertilizer she can setup, the crop of
the squares regarding the location she cannot setup. In this example the randomized complete
block design is suitable where the 18 squares will be classified into e.g. six blocks regarding
to the hill location and in each block of 3 very similar squares we will use a different amount
of fertilizer factor.The choice of the square from the each threesome for levels of fertilizer is
random again.

In this case the crop is dependent on two factors: volume of fertilizer and the block. In
fact, we are interested only in factor of fertilizer and the block part is enforced in order to be
part of the variability explained. □
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The block classification is used when we expect an impact of variables whose values we
cannot influence. Within one block the values of Y are being given in relatively homogenous
conditions and the differences in values are mainly caused by different levels of the factor
A. The best case scenario is when we can use all the levels of A within one block as in our
problem 9.2.

Now we will be dealing with higher order design where we assume interactions among
factors during influencing the Y variable.

Example 9.3. Let’s get back to the 9.1. The dependent variable is still Y “wheat crop” but
now we will assume even two factors influencing the crop. We will add a new factor “volume
of irrigation” that can be of two levels: little water, a lot of water. Since the fertilizer effect
can be influenced by the rate of irrigation, we have 6 groups totally in which we conduct a
measurement of the variable “wheat crop ”: group “a lot of fertilizer, little water”, “middle
volume of fertilizer, little water”, ..., “little fertilizer, a lot of water”. If there is the same
number n ≥ 2 of measuring Y variable, we are dealing with factorial design or crossed
design. The number of response Y measurements total N = 6 ⋅ n. □

If the respective groups are represented by normal random samples that are mutually
independent, we can test hypothesis about significance of particular factors and interactions.

9.1 Factor design
We introduce a labeling for two factors:
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∙“raw” factor A contains R levels and symbol r signs particular levels of the A factor; r =
1, . . . , R.
∙“column” factor B contains S levels and symbol s signs particular levels of B variable;
s = 1, . . . , S.
∙symbol nrs signs number of observations of the Y variable for the rth level of A factor and
the sth level of B factor. Since we require the weighted classification in the factor design, we
sign n = nrs for all combinations of levels of both factors.
∙symbol N signs number of observations of the Y variable; and regarding the weighted
classification N = RSn.
∙symbol yirs signs value of the ith observation of the Y variable in the rsth cell; i = 1, . . . , n
for the weighted classification (generally i = 1, . . . , nrs).

Example 9.4. We enrich the assignment of the problem 9.3 by stating n = 10. Factor A is
the “irrigation volume” and this factor contains R = 2 levels. Factor B is “fertilizer volume”
and this factor contains S = 3 levels. Totally we are having R ⋅ S = 6 groups in which there
are always 10 measurements of wheat crop. The groups are mutually different regarding the
two factors’ levels and thus their effects on Y . Total number of measurements is N = 60.
The results can be seen in the table 9.1. □

Yield

lit
tle

w
at

er
a

lo
to

fw
at

er

little fertilizer middle vol. fertilizer a lot of fertilizer
52 28 15
48 35 14
43 34 23
50 32 21
43 34 14
44 27 20
46 31 21
46 27 16
43 29 20
49 25 14
38 43 23
42 34 25
42 33 18
35 42 26
33 41 18
38 37 26
39 37 20
34 40 19
33 36 22
34 35 17

Table 9.1: measured crop

9.2 Sample effects in the factor design
First of all let us remind the concept of sample effects in ANOVA.

Let sign the mean of the measured values of Y for the rth level of A factor by a symbol mr⋅
and the total mean of the all measured values by a symbol m⋅⋅. Then the difference
ar = mr⋅−m⋅⋅ demonstrates an effect of the rth factor level ofA on the values of Y variable.
Furhermore, if we are considering a weighted classification (so that for nr observations of Y

variable in the rth group is valid nr = n), and the condition
R∑
r=1

nr(mr⋅ −m⋅⋅) = 0 can be

rewritten as
R∑
r=1

nar = 0, thus
R∑
r=1

ar = 0.
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Statistics SA (sum of the squares between groups) characterizing the variability between
groups can be rewritten as:

SA =
R∑
r=1

n ⋅ a2r
ar is an unbiased estimate of the theoretical (population) effect �r which describes the effect
of the A factor in the rth sample (population).

Now let’s get back to the factor design with the two or factors where we will distinguish
more types of effects: main effects, interaction effects and effects of the cells. These effects
are described by following means:

symbol m⋅⋅ signs mean of all N measured values of the Y variable
symbol mr⋅ signs mean of all values of the Y variable measured during the rth level of A
factor. (regardless a level of the B factor.)
symbol m⋅s sigs mean of the all measured values of the Y variable measured during the sth
level of the B factor.
symbol mrs signs mean of the all values of the Y variable measured during the rth level of
the A factor and the sth level of the B factor.
For the example 9.4 all the mentioned means are in the table 9.2

mrs B1 B2 B3 mr⋅

A1 46,4 30,2 17,8 31,4667
A2 36,8 37,8 21,4 32
m⋅s 41,6 34 19,6 31,7333

Table 9.2: For the data from the table 9.1 we introduce means of the values of Y measured during all
levels of the row factors, column factors and cells; total mean m⋅⋅ = 31, 7333. Symbol A1 signs the
first level of the factor A,...

∙ CELLS EFFECTS:
The sense of the cell effect is clear when we realize that particular cells represent R ⋅ S
independent groups of observation of the Y variable, where a different combination of the
factor levels affects the Y . Thus the effect on particular observations of Y is determined by
the citizenship towards particular group. The sample effect of the rsth cell is signed as [ab]rs.
Its value shows how the mean of the rs th cell mrs is different from the total mean m⋅⋅. Thus
[ab]rs = mrs −m⋅⋅
It is clear that the bigger the value of [ab]rs the more significant effect of the rsth combination
of the factor levels on the Y values is. What is more, the effects also meet a condition1

R∑
r=1

S∑
s=1

[ab]rs = 0.

The cells effects in the problem 9.4 are showed in the table 9.3.
The systematic part of the total variance of Y (the part that can be explained by the

factors), is described by the cell effects. In other words, if the cell effects differ, the main row
or column vector or the effects interaction or their combinations have an impact on the values

1this condition is valid also for unweighted classifications
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[ab]rs B1 B2 B3 ar

A1 14,6667 -1,5333 -13,9333 -0,2667
A2 5,0667 6,0667 -10,3333 0,2667
bs 9,8667 2,2667 -12,1333 0

Table 9.3: We feature the cell effects and the main effects for the data from the table 9.1: ar is the effect
of the rth level of the A factor; bs is the effect of the sth level of the factor B; [ab]rs is the effect of the
rsth cell.
E.g. 14, 6667 = m11 −m⋅⋅ = 46, 4− 31, 7333

of Y . Thus we introduce a statistics SAB that characterize the variability between all groups.

SAB =

R∑
r=1

S∑
s=1

n ⋅ [ab]2rs

∙ MAIN EFFECTS:
Let introduce an interpretation of effect of the row factor A. Analogically for the column
factor B.
If we are interested in the question how particular levels of the A factor influence the values
of the Y variable regardless the levels of B, we are talking about the main effect of the row
factor A. This effect shows how the values of Y variable are deviated for the rth level of the
A factor “deviated” from the common mean m⋅⋅ and can be described as ar = mr⋅ −m⋅⋅.

Again, there is a condition of
R∑
r=1

ar = 0.

Since we do not care about the factor B, the total number of observations for the rth level
of the A factor is Sn. Thus the statistics describing the part of the total variability of the Y
variable is explained by an impact of different levels of the A factor regardless levels of B is

SA =

R∑
r=1

Sn ⋅ (ar)2

(Analogically for levels of the column factor)
∙ INTERACTION EFFECTS:
The particular values of both factors can influence each other. This effect is not incorporated
either in the rth level of the row factor not in the sth level of the column factor. Thus we
can describe the effect of the cell as a result of the main effects added to interaction effect.

Formally in this way:
(ab)rs = [ab]rs − ar − bs =

= (mrs −m⋅⋅)− (mr⋅ −m⋅⋅)− (m⋅s −m⋅⋅) =
= mrs −mr⋅ −m⋅s +m⋅⋅

Again, we have to meet conditions
R∑
r=1

(ab)rs = 0;
S∑
s=1

(ab)rs = 0;
R∑
r=1

S∑
s=1

(ab)rs = 0. The

values of the sample effects of interactions for the problem 9.4 are in the table 9.4.

The explained part of the total variability of Y by the interactions of different factor levels
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(ab)rs B1 B2 B3

A1 5,0667 -3,5334 -1,53343 0
A2 -5,0667 3,5334 1,53343 0

0 0 0 0

Table 9.4: We introduce interaction effects from the table 9.1 that are derived from the table 9.3.

of A and B is signed

SA×B =

R∑
r=1

S∑
s=1

n ⋅ (ab)2rs

yirs = m⋅⋅ + ar + bs + (ab)rs + eirs ,

where eirs is a realization of the random error (residuum) of the ith object in the rsth cell,
eirs = yirs − mrs. This model can be written as

yirs = m⋅⋅ + [ab]rs + eirs,

and is equivalent with the model of the one way ANOVA for RS independent random samples.

9.3 Variability analysis in the factor design

Besides least squares, there are also squares for the total variability and for the variability of
particular groups

ST =
R∑
r=1

S∑
s=1

n∑
i=1

(yirs −m⋅⋅)2 total sum of the squares

describing the total variability of the Y variability.
(statistics ST has fT = N − 1 degrees of freedom)

SE =
R∑
r=1

S∑
s=1

n∑
i=1

e2irs sum of the residual squares

describing the variability within particular groups (cells)
(statistics SE has fE = RS(n − 1) = N − RS degrees
of freedom)

The sums of the squares:
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SAB =
R∑
r=1

S∑
s=1

n ⋅ [ab]2rs sum of the squares between groups

describing variability between all groups

SA =
R∑
r=1

Sn ⋅ (ar)2 sum of the squares describing the part of the total vari-
ability Y
that is caused by factor A impact only.
(statistics SA has fA = R− 1 degrees of freedom)

SB =
S∑
s=1

Rn ⋅ (bs)2 sum of the squares describing the part of the total vari-
ability Y ,
that is caused by factor B impact only.
(statistics SB has fB = S − 1 degrees of freedom)

SA×B =
R∑
r=1

S∑
s=1

n ⋅ (ab)2rs sum of squares describing the part of the total variability
Y that is
caused by impact of intercations between levels of A and
B.
(statistics SA×B has fA×B = (R− 1)(S − 1) degrees of
freedom)

As in ANOVA the total variability of Y can be analyzed onto variability “within” particular
groups and variability “between” groups, thus:

ST = SAB + SE

Furthermore, the variability between groups SAB can be further analyzed as:

SAB = SA + SB + SA×B

Thus the variability between groups can be explained by the factors’ A and B impacts and
by the impact of the interactions between factors A and B. Analysis of the total variance of
the Y variable can be described as:

ST = SA + SB + SA×B + SE

All is derived in the Rozklad Komentar.PDF file.

9.4 Theoretical effects and hypothesis tests
For a random variable Yirs we use a model:

Yirs = �+ �r + �s + (��)rs + "irs

Yirs random variable stemming from the population corresponding with the rth level of the A factor and the sth level of the B factor.
i = 1, . . . , n

� common part of the expected value of the random variable Y .
�r effect of the rth level of the A factor, r = 1, . . . , R.
�s effect of the sth level of the B factor, s = 1, . . . , S.
(��)rs effect of the interaction of the rth level of the A factor and the sth level of the B factor, r = 1, . . . , R, s = 1, . . . , S
"irs stochastically independent (within the rsth population and between populations) random variables with distribution of N(0, �2).
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Unbiased estimates of the parameters �, �r, �s, (��)rs are (in sequence)m⋅⋅, ar, bs, (ab)rs.
The following equation is valid for a weighted classification:
R∑
r=1

�r = 0;
S∑
s=1

�s = 0;
R∑
r=1

(��)rs = 0;
S∑
s=1

(��)rs = 0;
R∑
r=1

S∑
s=1

(��)rs = 0;

For sums of the squares is valid:

1. E( SE
RS(n−1) ) = �2

Regardless significance of the main effects or interactions, the sum of squares within
the group divided corresponding degree of freedom number
fE = RS(n − 1) = N − RS represents an unbiased estimate of the random error
variability ".

2. E( SA
R−1 ) ≥ �2

We test a hypothesis that a row factor A does not have an impact on Y facing an alter-
native hypothesis that for at least one level of factorA the row main effect is significant.
So that H0 : �1 = . . . = �R = 0 against H1 : �r ∕= 0 for at least one r = 1, . . . , R.
As ar is an unbiased estimate of �r, the SA statistics is relevant for evaluating of the
null hypothesis.
If the null hypothesis is true, then E( SA

R−1 ) = �2. Thus we are dealing with another
unbiased estimate of the parameter �2 which is independent on a sum of squares be-
tween the groups estimate above that. We are using a statistics for testing
FA = SA/fA

SE/fE
∼ F ((R− 1), (N −RS)). Big values of the FA statistics are in favor of

the alternative hypothesis.

3. E( SB
S−1 ) ≥ �2

We are testing a hypothesis that a column factorB does not have an effect on Y against
alternative that for at least one level of factor B the column factor is significant.
So that H0 : �1 = . . . = �S = 0 against H1 : �s ∕= 0 for at least one s = 1, . . . , S.
If the null hypothesis should be true, then E( SB

S−1 ) = �2, thus we would be dealing
with another unbiased estimate of parameter �2 which is independent on an estimate
by the sum of squares withing the groups besides. We are using a statistics for testing
FB = SB/fB

SE/fE
∼ F ((S − 1), (N − RS)). Big numbers of FA statistics are against the

null hypothesis.

4. E( SA×B
(R−1)(S−1) ) ≥ �

2

We are testing a hypothesis that interactions between factors A and B do not have an
effect on Y variable against alternative that for at least one pair of levels r, s the inter-
action effect is significant.
So that H0 : (��)rs = 0 for all pairs of r, s against H1 : (��)rs ∕= 0 for at least one
pair of r, s; s = 1, . . . , S, r = 1, . . . , R.
If the null hypothesis were to be true, then E( SA×B

(R−1)(S−1) ) = �2 so we would be deal-
ing with another unbiased estimate of parameter �2 that is independent on an estimate
by the sum of squares of the within groups furthermore. For testing we are using a
statistics
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FA×B = SA×B/fA×B
SE/fE

∼ F ((R−1)(S−1), (N−RS)). Big values of FA×B statistics
are against the null hypothesis. 2.

From the upper-mentioned can be seen that it is possible to conduct separated tests about in-
significance of the row factor A, column factor B and insignificancy of interactions between
A and B. The findings are usual to be written into a table:

Variability source sum of squares degrees of freedom mean sum of squares test statistics

factor A SA fA = R− 1 SA/fA FA = SA/fA
SE/fE

factor B SB fB = S − 1 SB/fB FB = SB/fB
SE/fE

factor of interactions SA×B fA×B = (R− 1)(S − 1) SA×B/fA×B FA×B =
SA×B/fA×B

SE/fE

residuals SE fE = N −RS SE/fE
total ST fT = N − 1

9.5 Contrast and methods of high ordered comparing
Let sign �r⋅ expected value of the population, corresponding with the rth level of the A fac-
tor; �⋅s expected value of the population corresponding with the sth level of the B factor and
�rs as an expected value of population corresponding with the rth factor level of A and the
sth level of B factor. If the hypothesis tests showed that the factor A is significant, there is a
question which pairs of A levels are significantly different in terms of their impact on Y . In
other words, we would be interested in results of separated tests of hypothesis
H0 : �r⋅ = �l⋅ for r ∕= l, r = 1, . . . R, l = 1, . . . R. If the factor A is significant,
probably at least one pair of expected values �r⋅, �l⋅ should differ. However, separated tests
do not have to show a significant difference related to all pairs. In this case the significance
of the factor A has been caused by another linear combination of expected values which is
called a contrast and signed  .

 = c1�1⋅ + . . .+ cR�R⋅

and for coefficients cr is valid
R∑
r=1

cr = 0 and
R∑
r=1

c2r > 0.

An unbiased estimate of the contrast is a linear combination  ̂ of sample means.

 ̂ = c1M1⋅ + . . .+ cRMR⋅

If we are intered in the separated tests H0 : �r⋅ = �l⋅, it is sufficient to state cr = 1, cl = −1
and other constants c remain zero.

Whether we want to test more contrasts at the same time and remain simultaneous level of
�, we are using methods of high order comparing. Tyhey are usually presented in a way that
testing
H0 :  = 0 is conducted by a confidence interval for a contrast  . If the null is outside the
confidence interval, the hypothesis H0 would be turned down and the contrast is significant.

2For quick assessment of interaction impacts, the chart of integrations is useful. If the “curves are crossing” or
their slopes are clearly different, the interaction effect is clear to be significant.
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In the statistical softwares, the most common are Bonferron method, Tukeyho method
and Scheffé method. Details about Scheffé method are in the Scheffe Komentar.PDF file.
This method is most universal as it can be used even for unweighted classifications and is
less sensitive to breaking normality and variability homogeneity.

9.6 Multifactor ANOVA
We briefly outline a factor design for three or more factors. Let assume three factors A,B,C
where factor A has R levels, factor B has S levels, factor C has T levels and for each
combination of r, s, t we have the same number of observations n ≥ 2 thus total number of
observations is N = nRST . We sign Yirst the ith observation of the dependent variable Y
in the rstth group. Then the model for Y looks like this:

Yirst = �+ �r + �s + t + (��)rs + (�)rt + (�)st + (��)rst + "irst

where (��), (�), (�) represent interactions of the first order and the (��) represents
interactions of the second order.

The higher number of factors leads to harder requirements about number of observations.
(For 10 factors with two levels there is a need of at least n ⋅ 210 observations wheren ≥ 2.)

9.7 Generalized linear model and ANOVA
See GLM ANOVA.PDF.
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Chapter 10

Survival Analysis

Survival Analysis1 is a set of statistical procedures that analyzes a behavior of a random vari-
able duration of survival. This variable respresents time since the beginning of an observation
of a object till an event. (Not be confused by terms like a ”failure”, ”recidivism”, ”stop pay-
ing debt”, ”reaction to an offer” or ”death” in the text meaning that event.) The beginning of
an observation: a disease outbreak; begin of a medical treatment; marriage; release day of a
prisoner; entrance of a patient into a study; begin of a tool functioning etc.

Why standard statistical methods are insufficient for behavior analysis of a ”duration of
a survival” variable? There is a problem with the ”censored” data. Censoring is when a
particular object does not hold full information about its survival duration.

For example, if an exploration of patients ended before a patient died, we do not exact
time of the patient’s survival. Moreover, she can stop attending the physician and we do not
know how long does she live after her operation.

The reasons for censoring follow:

∙ We have not noticed the particular event.

∙ We have lost a connection with the individual.

∙ An individual has been removed from the exploration from some reason.

A graphical illustration of the upper-mentioned reasons can be seen in the picture 10.1. We
assign two values to each object; the first is survival duration, the latter represent whether the
first is censored or the real one. There is a graphical notation of a cross or a dot in the picture.

All censored durations of survival in the picture 10.1 are shorter than the real one in
fact. This type of censoring is called the censoring from the right. Rarely do we deal with
censoring from the left. Let have a group of drug addicts and we are measuring time to HIV
outbreak. If the blood tests prove HIV, we do know that a patient is an HIV positive but do
not know when the disease outbroke so the real time of ”waiting for an outbreak” was shorter
than the time to the positive blood test. In that case we are dealing with censoring from the
left.

1 The term ”survival analysis” is widely used in biostatistics; in economics and sociology, there is often used the
term ”duration analysis”; and in engineering is often used term ”reliability analysis”; all this is the same
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Death
Censoring
Report

excluded from the study

lost from the study

End of study

Figure 10.1: Out of 6 observed persons, the persons A and F died, other values are censored.

Following we will only assume censoring from the right; and all statistical methods as-
sume so called uninformative censoring that means reasons for censoring do not have any
association with the event we are researching.

10.1 Terminology and comments

T ∗ survival duration
A continuous random variable representing time since the beginning of the obser-
vation to default (or censored point in time).
t signs a realization of a T random variable.
holds non-negativity.
Probability distribution of this random variable is represented by a density f(t)
and distribution function F (t).

� ∗ default indicator
An alternative random variable that encodes ”default” with value of 1 and ”cen-
soring” with value of 0.
� = 1 represent that there was a default in case of an individual;
� = 0 demostrates that the survival time is censored.
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S(t) ∗ survival function
P (T > t); a probability that an individual survive the t point in time.
S(t) = 1− F (t)
is cintinuous and not-increasing, and
S(0) = 1; in the beggining of the observation (study) in the t = 0 point in time
all individuals are alive, so that a probability of a survival in the 0 point in time is
equal to 1.
lim
t→∞

S(t) = 0; should the observation takes infinity time, all the individuals dead
before the study termination.

Ŝ(t) ∗ survival funtion estimate
how to obtain will be explained in the section 10.4
Since a duration of the study is not infinite, all the individuals canot be dead when
the study tx ends so that Ŝ(tx) ≥ 0. For illustration see picture 10.2.

ℎ(t) ∗risk function
ℎ(t) = lim

dt→0

P (t≤T<t+dt ∣ T≥t)
dt

Risk function is often interpreted as a ”probability” of a default in the t point in
time, which is wrong.
We’d rather talk about a ”conditional risk of default rate in the t point in time, and
a condition is that an individiual survived the t point in time.
Or simply: if an individual survived t, then ℎ(t) demonstrates a ”tend to
death/default right after t.
holds non-negativity and is not upper restricted.
Risk function values are dependent on time units. See problem 10.1.

Both functions describe a behavior of the same random variable T , which is survival duration.
But their interpretations are different. Unlike survival function S(t) deals with a probability
of surviving t - that is probability of not defaulting, the risk function deals with default.
Both functions are tied with following relations. That is why our use of one of the functions
does not matter, both functions can be derived from the latter.

For the risk function: ℎ(t) = − 1
S(t)

∂(S(t))
∂t . For survival function: S(t) = exp{−

t∫
0

ℎ(u)du}

Both formulas are derived in S(t) h(t).PDF.

End of study

Figure 10.2: Survival function S(t) is not increasing, continuous, for t = 0 valids S(t) = 1 and its
value limits zero with increasing t. Survival function estimate Ŝ(t) is not-increasing stairway function,
Ŝ(0)=1, but in the end of the study the function value can be not-zero).
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Example 10.1. Let P (t ≤ T < t + dt ∣ T ≥ t) = 1/3 and dt = 1/2 day, which is the
same as 1/14 week.
If we measure time in days, the ratio P (t≤T<t+dt ∣ T≥t)

dt = 1/3
1/2 = 0, 67

If we measure time in weeks. the ratio P (t≤T<t+dt ∣ T≥t)
dt = 1/3

1/14 = 4, 67

It is clear that the values of the risk function derived from the upper-mentioned ratio depends
on units. □

Now we introduce examples of different graphs of risk functions ℎ(t) - see picture 10.3
and survival functions S(t) - see picture 10.4. Knowledge of the risk function graph enables
us evaluate risk of death in whatever point in time t, and what is more, help us to identify
a suitable type of mathematical model for the particular survival time. An interpretation of
the survival function graph is straightforward. Its function values represent a probability of
surviving t of a particular object from the population.

1.) ℎ(t) for patients
with leukemia

2.) ℎ(t) for patients
after a chirurgy operation

3.) ℎ(t) for patients
with TBC

constant

4.) ℎ(t) for healthy individuals

Figure 10.3: 1.) an increasing Weibull model where the risk of death increase with increasing time.
This risk function describes duration of survival (default is a death) of leukemya patients that do not
react to the care. 2.) a decreasing Weibull model, where the risk of dead decreases with increasing
time. This risk function can be expected in cases after an operation. The risk of death is highest right
after the operation and then decreases. 3.) a lognormal model, where the risk of death is incresing in
the beggining and then start to decrease from a point in time. This can be expected in cases of TBC
patients where the risk of death increases after the disease outbreak but if a patient survives a point in
time after this, the risk of death starts to decrease. 4.) an exponential model where the risk of death is
constant. This is expected in cases when patients are healthy for the all experiment duration long.

From the pictures 10.3 and 10.4 is clear that knowledge of ℎ(t) and S(t) graphs enable us
interpret behavior of a random variable ”survival duration”. Next questions we can ask are:

∙ SURVIVAL ANALYSIS OBJECTIVES:
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Figure 10.4: The survival function in the left is dramatically decresing initially, then decreasing slightly.
On the other hand, the survival function is almost constant for tiny t but for big t is dramatically
decreasing.

i. Estimating and interpreting survival function and risk function.
ii. Comparing survival functions and risk functions concerning two or more groups. (see

picture 10.5.)
iii. Modeling of relation between survival time and explaining variables. (We will be deal-

ing with Cox model in the section 10.5.)

Figure 10.5: In the picture, we can compare survival function graphs of two patients with the same
desease. Concerning the one group a care was conducted and concerning control group a placebo was
given. Obviously, a care increases probability of surviving in the first 6 weeks, then these groups are
almost indifferent.

10.2 Dataset assignment standards
We can assign the dataset in two ways. The first is suitable for computer processing. But for
comprehension of the survival analysis priciples the latter way is better. We will show using
of both ways on the data in the problem 10.2.

Example 10.2. Concerning group of n = 42 leukemia patients we are observing time of
remision in weeks. A group of 21 patients was given a special care, the second group of 21
patients was given placebo. The sign + signs censoring.
The group I with a special care:
6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+ The
group II with a placebo:
1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

∙ ASSIGMENT USING INDICATOR �:
It is suitable to assing the data in the form set in the table 10.1 in the left for computer process-
ing. The ti variable demonstrates survival time related to the ith object. (Index i related to the
observed survival time ti is without brackets). Variable �i represents that survival time of the
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ith object was censored or there was death related to the ith object. It valids
∑n
i=1 �i = num-

ber of defaults in the group of all objects. VariablesX1, . . . , Xp are other following variables
(regressors) which can influence the survival time.

The remision duration related to the first and the tenth patient with care in the problem
10.2 was 6 weeks. However, related to the first patient, there was a default (back to the
disease) whereas the remision of the tenth patient is censored. Proto t1 = 6; �1 = 1 ;
t10 = 6; �10 = 0. □

objekt t � X1 X2 . . . Xp

1 t1 �1 X11 X12 . . . X1p

2 t2 �2 X21 X22 . . . X2p

...
n tn �n Xn1 Xn2 . . . Xnp

t(j) mj qj nj

t(0) = 0 m0 = 0 q0 n0

t(1) m1 q1 n1

t(2) m2 q2 n2

...
t(k) mk qk nk

Table 10.1: In the left: assignment using �. In the right: assignment using time of default.

∙ ASSIGMENT USING TIME OF DEFAULT:
Pro porozuměnı́ modelům v analýze přežitı́ je vhodné zadávat data ve formě, která je sym-
bolicky uvedena v tabulce 10.1 vpravo. We use only those points in time for comprehension
when there was a default/death. We order those points in time increasingly and assign them
t(1) < t(2) < . . . < t(k), k ≤ n. (Indices are in brackets.) If there were more defaults in the
same point in time, we will introduce this point in time of the increasing order only once. We
add t(0) to the beginning of the order. Then ∙variable t(j) represents point in time when there
was at least one default. ∙Variable mj represents how many defaults in time t(j) and obvi-
ously m0 = 0. Next

∑k
j=1mj = number of defaults in the group of all objects. ∙Variable

qj represents how many censors in interval ⟨t(j); t(j+1)). This is number of objects that are
known to be alive in time t(j) but are unknown in time t(j+1). So that q0 ≥ 0 some objects
can be deleted within interval ⟨t(0); t(1)). The last ∙variable nj represents number of objects
in ”risk” in time t(j). This is number of objects whose survival duration ≥ t(j). There are
also objects that died in t(j) included in this group. That is why nj = nj−1− (mj−1 +qj−1).
In the table 10.2, there is an example of both ways of dataset assigment for the group of
leukemia patients from group I. □

∙ CLASSIC APPROACH VS. SURVIVAL ANALYSIS
What is behind the censoring principle? If we have objects that has become bank during the
study in the dataset, we have three possibilities to handle.

i. Censored observations will be deleted from the dataset.

ii. Censored observations will consider as defaults.

iii. We take censored values into account.

The principle of censoring handles taking advantage of incomplete information about objects
that become blank, however, a piece of information bears about T . If we would delete these
objects, the partial would be lost or misrepresent the world we are researching.

67



t(j) mj qj nj - number of people in risk
t(0) = 0 m0 = 0 q0 = 0 For 21 people, the survival duration ≥ 0 weeks
t(1) = 6 m1 = 3 q1 = 1 For 21 people, the survival duration ≥ 6 weeks
t(2) = 7 m2 = 1 q2 = 1 For 17 people, the survival duration ≥ 7 weeks
t(3) = 10 m3 = 1 q3 = 2 For 15 people, the survival duration ≥ 10 weeks
t(4) = 13 m4 = 1 q4 = 0 For 12 people, the survival duration ≥ 13 weeks
t(5) = 16 m5 = 1 q5 = 3 For 11 people, the survival duration ≥ 16 weeks
t(6) = 22 m6 = 1 q6 = 0 For 7 people, the survival duration ≥ 22 weeks
t(7) = 23 m7 = 1 q7 = 5 For 6 people, the survival duration ≥ 23 weeks

Table 10.2: 10.2 There is a table with an assignment using an indicator � in the left and a table with a
sign using points in time of a default in a group of patients.
.

10.3 Descriptional statistics in the survival analysis

Since survival duration is a quantitative variable, the mean of survival time is a sensible
variable. It is calculated as a classic arithmentic mean from the all times of survival ti, i =
1, . . . , n, and we do not distinguish whether the u ith objects scored default or censoring. The
final number is underestimated in fact since the censored times of surviving can be actually
shorter than the real ones.
Another statistics can be a

mean risk ℎ̄ =
∑k
j=1mj∑n
i=1 ti

.

n is number of objects in the dataset; ti, i = 1, . . . , n is time for surviving for the ith object;
k is number of times when default (taken into consideration only once);

∑k
j=1mj is total

number of events observed suring the experiment. The higher the value of the mean risk. the
smaller the chance of survining of the objects in the population.

Up to now, we have been comparing both groups using only quantitative variables. Com-
paring them for any time t can be provided by estimates of survival function that will be delat
in section 10.4. If we have an estiamte of survival function, we can determine a median of the
survival duration. Median is defined as the point in time t with P (T > t) = 0, 5. For data
from 10.2, there are estimates of survival function and medians for each group in the picture
10.6.

10.4 Kaplan-Meier estimates of survival function and the log-rank
test

The survival function S(t) is usually unknown and is being estimated fro the dataset. When
we have censored data, estimating of a probability P (T > t(j)) with this ratio would be
possible:
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Figure 10.6: Estimate of survival function Ŝ(t) for a group with a care and for groups with placebo.
Function values for group with a care are higher than for group of placebo for any t. Median of survival
duration for group with a care is 23, for group of placebo is 8. So even on a basis of medians the fact that
care is more effective than placebo is apparent. Furthermore, regarding the survival function graphs
we can say that the differences become higher and higher with growt in time.

number of objects with T>t(j)

number of all objects in the dataset =
nj−mj
n , j = 1, . . . , k.

Should we have a look at the dta from the problem 10.1, we can notice that in the second
group with placebo was no object censored. So that we can calculate the estimate of survival
function, which we sign Ŝ(t), as follows - see table 10.3.

t(j) nj mj qj Ŝ(t(j))

0 21 0 0 21/21=1,00
1 21 2 0 19/21= 0,90
2 19 2 0 17/21= 0,81
3 17 1 0 16/21=0,76
4 16 2 0 14/21=0,67
5 14 2 0 12/21=0,57
8 12 4 0 8/21=0,38
11 8 2 0 6/21=0,29
12 6 2 0 4/21=0,19
15 4 1 0 3/21=0,14
17 3 1 0 2/21=0,10
22 2 1 0 1/21=0,05
23 1 1 0 0/21=0,00

Table 10.3: The estimate of the survival function Ŝ(t(j)) for group II with placebo: in this group, there
was no censoring. There are estimates of survivals for times with an event in the table only. Between
these times the function is constant and Ŝ(t) = Ŝ(t(j)) pro t ∈ ⟨t(j); t(j+1)).

∙ KAPLAN-MEIER ESTIMATE OF SURVIVAL FUNCTION
This procedure cannot be used when we are having censored data. For that other procedures
have been implemented. We will be dealing with a Kaplan-Meier estimate of a survival
function.

Let assume point in time when there was a default during a study:
t(0) < t(1) < t(2) < . . . < t(k). Then we can derive
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S(t(j)) = S(t(j−1)) ⋅ P (T > t(j)∣T ≥ t(j)) pro j = 1, . . . , k

where
S(t(j)) probability of the fact that a random object would live longer than time

t(j), thus P (T > t(j)).
S(t(j−1)) probability of the fact that a random object would live longer than time

t(j−1), thus P (T > t(j−1)).
P (T > t(j)∣T ≥ t(j)) conditional probability of the fact that a random object would live

longer than time t(j).

Derivation of this can be found in KM.PDF. Since the relation is recurent, it can be turned
into following formula for any j = 1, . . . , k:
S(t(j)) = S(t(0))⋅P (T > t(1)∣T ≥ t(1))⋅P (T > t(2)∣T ≥ t(2))⋅. . .⋅P (T > t(j)∣T ≥ t(j)) =

=1 ⋅
j∏
i=1

P (T > t(i)∣T ≥ t(i)).

Kaplan-Meier estimates a probability P (T > t(i)∣T ≥ t(i)) with a ratio ni−mi
ni

.
ni−mi
ni

represent a ratio of those who survived t(i) over those who did not.
Kaplan Meier for j = 1, . . . , k follows:

Ŝ(t(j)) =
j∏
i=1

ni−mi
ni

For t ∈ ⟨t(j); t(j+1)) is required Ŝ(t) = Ŝ(t(j)). Notice that in the last point in time when a
default scored, the function Ŝ(t) does not have to be zero. (For function S(t) can be written
lim
t→∞

S(t) = 0.)
Censored observations do not cause a jump in the Kaplan-Meier estimate, but increase

denominator ni, thus ”until possible” they increase the range of sample as far as a number of
objects in risk is concerned.

Then we can show that if the data are not censored, the estimate using Kaplan-Meier lead
to the same values as the classic approach introduced in the beginning of the chapter. For
uncensored data goes nj = nj−1 −mj−1. Then

Ŝ(t(j)) =
j∏
i=1

ni−mi
ni

= n1−m1

n1
⋅n2−m2

n1−m1
⋅. . .⋅ nj−mj

nj−1−mj−1
=

nj−mj
n1

=
nj−mj
n that corresponds

with the relation in the beginning of the chapter.
There is an estimate of the survival function for the group with the treatment from the 10.1

in the table 10.4. Estimates of survival function for both groups (with and without treatment)
are in the picture 10.6. We can see that the function values of the survival function are higher
for the group with the treatment for any t.

Remark. Estimate of Ŝ(t(j)) is a statistics, so we can be questionning about its variablity
V ar(Ŝ(t(j))). This variability can be estimated for fixed t using Greenwood formula which

is for t ∈ ⟨tj , tj+1): ˆV ar(Ŝ(t)) = Ŝ2(t)
j∑
i=1

mi
ni(ni−mi) .

Since for fixed t the statistics Ŝ(t) is having an approximately normal distribution Ŝ(t) ∼
N(S(t), V ar(S(t))), we can derive for fixed t 100(1− �)% asymptotic confidence interval
for the real value S(t):
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t(j) nj mj qj Ŝ(t(j))

0 21 0 0 1
6 21 3 1 1 ⋅ 18

21
= 0, 8571

7 17 1 1 0, 8571 ⋅ 16
17

= 0, 8067

10 15 1 2 0, 8067 ⋅ 14
15

= 0, 7529

13 12 1 0 0, 7529 ⋅ 11
12

= 0, 6902

16 11 1 3 0, 6902 ⋅ 10
11

= 0, 6275

22 7 1 0 0, 6275 ⋅ 6
7
= 0, 5378

23 6 1 5 0, 5378 ⋅ 5
6
= 0, 4482

Table 10.4: Ŝ(t(j)) is calculated using a recurent relation Ŝ(t(j)) = Ŝ(t(j−1)) ⋅
nj−mj

nj
. Ŝ(t(0)) = 1

allways.

S(t) ∈ (d;ℎ), where

d = Ŝ(t)− Ŝ(t) ⋅

√
j∑
i=1

mi
ni(ni−mi) ⋅ u1−�/2

ℎ = Ŝ(t) + Ŝ(t) ⋅

√
j∑
i=1

mi
ni(ni−mi) ⋅ u1−�/2

This interval is symmetric around Ŝ(t), so it can happen that it holds d < 0 for tiny value of
Ŝ(t) or it holds ℎ > 1 for great values of Ŝ(t). In this case, we replace d with null and ℎ with
one2. □

∙ LOG-RANK TEST
If we have a look at estimates of survival functions from the both groups (with treatment
and with placebo) in the picture 10.6, we can see that the function values are higher with the
group with the treatment for any t. Is this statistically significant or is this thanks to random
influences only? The most usual test concerning the significance between two groups is the
Log-Rank test. It is suitable when the survival functions does not cross each other.3 This test
is based on the �2 statistic and, as lots of �2 tests, compares the difference between observed
and expected frequencies. In this case we are dealing with frequencies of deaths in different
points in time tj that are (or are not) influenced by the membership of the group. Let sign:

e1j =
(

n1j

n1j+n2j

)
⋅ (m1j +m2j) =

n1j

nj
⋅mj , where

nij represent number of objects in risk in the ith group in time t(j), i = 1, 2;
mij represent number of objects that have died in the ith group in time t(j), i = 1, 2
Statistics e1j demonstrates which ratio of all died in time t(j) should be in favor objects from
the first group if the survival duration is not dependent on the group membership. (n1j

nj
rep-

resents relative object frequency of the first group related to the complete dataset that are in
risk in time t(j).) We will compare the statistics e1j with the observed frequencies of deaths
m1j in time t(j). If the values e1j and m1j are similar, a membership to a group apparently
does not matter in terms of survival time.
Analogically e2j =

n2j

nj
⋅mj .

2 or we can derive a confidence interval for − log{Ŝ(t)} or log
(
− log{Ŝ(t)}

)
. In both cases the functions

have an asymptotic normal distribution (for fixed t)
3 For differently intensive differences between the two groups the strenght of the log-rank test is different. So

that, it have been implemented weighted log-rank tests.
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We test a hypothesis H0 claiming there is no difference in survival time for the objects
from the first and second group against an alternative H1 stating the time is different con-
cerning both groups.

Let sign Oi − Ei =
k∑
j=1

(mij − eij), where i = 1, 2 represent the membership to the group.

For the statistics Oi − Ei variabililty can be said V ar(Oi − Ei) =
k∑
j=1

n1jn2jmj(nj−mj)
n2
j (nj−1)

,

i = 1, 2, so it is the same for both groups4.

Test statistics LR is of LR = (O2−E2)
2

V ar(O2−E2)
, LR ≈ �2(1) when valid null hypothesis. Too

large values of the LR statistics turn down the null hypothesis.

Example 10.3. Let’s get back to the problem 10.2. Test whether a treatment does have an
impact on survival duration.

(O2 − E2) = 10, 26, (O1 − E1) = −10, 26, V ar(O2 − E2) = V ar(O1 − E1) = 6, 2685.
LR = (O2−E2)

2

V ar(O2−E2)
= 16, 793; �2

0,95(1) = 3, 841

Null hypothesis about insignificance of the difference between survival curves of groups is
being declined. We have shown that a treatment does have an impact on the duration of live.
□

10.5 Cox model of a proportional risk
Coxův model belongs to regression models in the survival analysis where the dependent vari-
able ”survival duration” is dependent on some variables (regressors). If we cannot use a
parametric model (briefly introduced in the chapter 10.6), one possibility how to model de-
pendency of the survival duration is the Cox model.
∙MODEL SPECIFICATION
Mostly, the Cox model is in formula stemming from the risk function but can be rewritten as
a function of surival function)

ℎ(t,X) = ℎ0(t) ⋅ e
p∑
i=1

�iXi
= ℎ0(t) ⋅ exp{X ′�} pro t ≥ 0

X = (X1, . . . , Xp)
′ is a vector of predictors.

(The particular levels of predictors are setup by a user.)
� = (�1, . . . , �p)

′ is a vector of unknown parameters that needs estimating.
ℎ0(t) is called baseline hazard function.

It is an unknown function which plays a role of an ”intercept”.
Pro (X1, . . . , Xp) = (0, . . . , 0) is ℎ(t,X) = ℎ0(t).
This function is not being estimated in the Cox modelu.

e

p∑
i=1

�iXi
This is not dependent on time t.

Coxův model is semiparametric as the baseline hazard function ℎ0(t) is not specified. (There

4 Derivation of the variability for Oi − Ei stems from the fact the m1j statististics does have a hypergeometric
distribution with parameters nj , n1j ,mj
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is no assumption about its distribution.) Thus, the model contains a paramteric regression
part and imparamteric baseline hazard function.

Cox model is very popular thanks to:

1. As exp{X ′�} is always positive, the model ensures 0 ≤ ℎ(t,X) <∞.

2. Cox model approximates parametric models well.

3. Parameters (�1, . . . , �p) and risk ratios can be estimated even when unspecified base-
line hazard function ℎ0(t).

4. By Cox model it is possible to be given estimates of baseline hazard function ℎ0(t), risk
function ℎ(t,X) and survival function S(t,X) even with unspecified baseline hazard
function ℎ0(t).

∙ REGRESSION PARAMETERS INTERPRETATION
Before introducing how to estimates parameters (�1, . . . , �p), we can show their interpre-
tation. Imagine we research survival time that is influenced with following regressors: X1

demonstrates a membership to the group with a treatment (0), or with placebo (1); X2 repre-
sents sex (1 female, 0 male) and X3 represents age. Now suppose two patients differentiating
only in having a treatment or placebo. We want to research whether their risk of death differs.
Let sign a risk function of the patient with a treatment ℎ1(t,x) and a risk function of a patient
with placebo ℎ2(t,x).
ℎ1(t,x) = ℎ0(t) ⋅ exp{�1x1 + �2x2 + �3x3} is a risk function for an object with predictors:
treatment t.j. x1 = 0, x2 = 1, x3 = 50

ℎ2(t,x) = ℎ0(t) ⋅ exp{�1(x1 + 1) + �2x2 + �3x3} is a risk function for ana object with
predictors: placebo, x2 = 1, x3 = 50

Then the ratio of their risk is:
ℎ2(t,x)
ℎ1(t,x)

= ℎ0(t)⋅exp{�1(x1+1)+�2x2+�3x3}
ℎ0(t)⋅exp{�1x1+�2x2+�3x3} = e�1 .

or ℎ2(t,x) = e�1 ⋅ ℎ1(t,x)

Apparently, the regressors’ values X2 and X3 in the Cox modelu do not needed to be spec-
ified; being the same is sufficient. Thus the number e�1 represents how much higher/lower
the risk of death of the patient with placebo than the case of the patient with a treatment if
everything is the same. Let:
∙ℎ1(t,x) = ℎ0(t) ⋅ exp{�1x1 + . . . + �pxp} is a risk function for an object with predictors
x1, . . . , xp

∙ℎ2(t,x) = ℎ0(t) ⋅ exp{�1(x1 + 1) + . . .+ �pxp} is a risk function for an object with pre-
dictors x1 + 1, . . . , xp

Then the hazard ratio is: HR = ℎ2(t,x)
ℎ1(t,x)

= e�1 . Analogically, we can increase a unit of regres-
sor xj and fix the values of other regressors. Then, e�j represents how much the risk of death
increases/decreases when we increase a value of theu jth regressor of one unit, j = 1, . . . , p.

The number e�j is called a relative risk related to a predictor xj . This relative risk is adjusted.
Using partial likehood function we can get �̂j and e�̂j . Confidence interval for �̂j and e�̂j

can be derived using a Wald statistics.
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Sometimes, we can be interested in change of the relative risk if age increase of 10 years
and we will be dealing with a man instead of women.
In general, we will be dealing with an object with predictor values x∗ = (x∗1, . . . , x

∗
p) and an

object with predictor values x = (x1, . . . , xp). Then the ratio of risk functions:

HR = ℎ(t,x∗)
ℎ(t,x) =

ℎ0(t)⋅exp{
p∑
j=1

�jx
∗
j }

ℎ0(t)⋅exp{
p∑
j=1

�jxj}
= exp{

p∑
j=1

�j(x
∗
j − xj)}

If we replace the ”betas” with their estimates, we will be given an estimate of the risk func-
tions ratio and subsequently can state confidence intervals using the Wald statistics.

∙ PARAMETER ESTIMATES USING A PARTIAL LIKEHOOD FUNCTION
Usually, we know the simultaneous density f(x1, . . . , xp) for parameter estimates using max-
imum likehood and we estimate only the unknown parameters of this density. Nonetheless,
the density in the Cox model is not specified and we cannot use the maximum likehood
method without a trick.

The estimate of the partial likehood designed by Cox is based on observed order of deaths
for specified regressors. We are asking for what parameters (�1, . . . , �p) in the model is that
Jan (smoker, man, above 60 years) died in the first since the outbreak most probably. (in
the time of outbreak), the second was Pavel and the least was Eva. In other words, for what
model parameters is the observed death order list the most probable? Actually, we are not
interested if the first death man was Jan but whether it was an above 60 year man, a smoker.

Put L(j)(�) as a probability that the first dead-man would be Jan from the set of people
that were in risk in time t(j) whose death has been observed in time t(j). Then we cam derive

L(j)(�) =
ℎj(t(j)) dt(j)∑

r∈R(t(j))

ℎr(t(j)) dt(j)
=

exp{x′(j)�}∑
r∈R(t(j))

exp{x′
(r)
�} ,

where R(t(j)) is a group of people that were in risk in time t(j).
Let sign L(�) a probability that the patients would be dying in the order we have observed
for set parameters �. For what paramters � the observed order of deaths would be the most
probable? The function L(�) is called a partial likehood.

It valids: L(�) =
k∏
j=1

L(j)(�) =
k∏
j=1

exp{x′(j)�}∑
r∈R(t(j))

exp{x′
(r)
�}

When searching for maximum of the argument L(�), it is more convenient to find the maxi-
mum from the logarithms of the partial likehood. An estimate of the regression coeficients:
�̂ = (�̂1, . . . , �̂p) = argmaxL(�) = argmax log(L(�)).
∙ NON-PARAMETRIC ESTIMATES OF THE BASELINE HAZARD FUNCTION AND THE
ADJUSTED SURVIVAL FUNCTION
Using partial likehood is possible to estimate paramters �1, . . . , �p in the Cox model. If we
were able to estimate the baseline hazard function ℎ0(t) (that Cox originally did not get), we
could draw estimates of survival function for specifically set values of regressors.

∙ PROPORTIONAL RISK MODEL ASSUMPTIONS
Coxův model doe not claim any requirements for the baeline hzard function ℎ0(t) specifica-
tion, but assumes that the particluar predictors meet an assumption of risk proportionality. In
other words it assumes that the relative risk HR is stable related to particular regressors in
time t. So that:
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HR = ℎ(t,x∗)
ℎ(t,x) = constant

Let introduce situations when the assumption is not met and the Cox model is not suitable.
See picture 10.7.

There are risk functions for two patients with a cancer that differs in
a regressor value E. Patients with E = 0 underwent an operation,
patients with E = 1 underwent radiotherapy without operation. It
can be seen that for small values of t, the risk function do have
bigger values for patients with operation and for big values of t the
risk function have higher values for patients without operation. If
we put these two into a ratio, the ratio would change in time and the
risk functions are not proportional.

Figure 10.7: Proportional risk assumption break.

For brief check of the assumption we can use cummulative survival risk function graphs
against time and residual analysis.

1. Graph analysis:
We make a group of graphs with time (or log time) on the x axis and a logarith of
cummulative risk function for different levels of Xj regressors estimates on the y axis.
If the regressor is qualitative, we can categorize. Estimates of the cummulative risk
function for the particular levels of Xj can be given by Kaplan-Meier method and
must not be based on the Cox model.

If the Cox model assumption is met, the difference between the logarithms of the cum-
mulative risk functions for the different levels of regressor Xj is not changing in time.

2. Residual analysis:
There have been designed different types of residuals for the Cox model. For the
assumption assessment, the Schoenfeld residuals are suitable. Their expected value is
asymptotically zero if the assumption is met. Schoenfeld residuals are computed for
each regressor. For meeting an assumption, we determine residuals of all n objects and
a line corresponding with the x axis should be approximated through the data.

What if a qualatative regressor breaks an assumption of the proportionality? We have to
devide the dataset into strats according to levels of this regressor and we create a different
Cox model in each strat.

10.6 Final reccomendations
In majority of statistical analyses cases it is truth that the bigger the dataset, the more precise
findings. Concerning survival analysis, it is not essential how big is n but number of deaths.
If there are almost all censored data in the dataset, we will not be given any findings related
to the survival function.

A brief reccomendation: at least ten deaths for each regressor.
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Chapter 11

Linear models classification

The unique clasification does not exist. We will be dealing only with models with one depen-
dent variable.

11.1 Multiple linear regression model
Y is a dependent variable; x1, . . . , xp are random regressors or known functions of explain-
ing variables (predictors) z1, . . . , zr.
We transform these predictors for dependent variable modeling by a function of f1, . . . , fp:
Let z = (z1, . . . , zr)

′; x1 = f1(z), x2 = f2(z), . . . , xp = fp(z).
The multiple linear regression model then takes the form:

Y = �0 + �1x1 + . . .+ �pxp + "

Example 11.1. Let’s assume r = 2 predictors z1, z2 and p = 5 regressors x1, . . . x5 that
x1 = z1, x2 = z2, x3 = z21 , x4 = z22 , x5 = z1z2.
We derived the regressors from the predictors by following functions:
f1(z1, z2) = z1, f2(z1, z2) = z2, . . . , f5(z1, z2) = z1z2. □

If x1 = z1, x2 = z2, . . . , xp = zp, we are tallking about a complete linear model.

11.2 General Linear Model
If we are not taking into only x continuous variables in the Y = �0 + �1x1 + . . .+ �pxp + "
model but also categorical variables (or their interactions), we are talking about a general
linear model.

If there are all the regressors continuous, we are talking about simple linear or multinomi-
nal linear regression. If all the regressors corresponds with the classes of the categorical vari-
ables, we are talking about ANOVA. If we substitute into xs both types, then we are talking
about ANCOVA. The continuous regressors are called covariates and classes of categorical
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factors are called factors. In R , we can get all these models by the lm(formula,data,...).
For example:

lm(y∼x) simple regression
lm(y∼x1 + x2 + x3) multidimensional regression
lm(y∼f) if f is a factor, this is one-way ANOVA
lm(y∼f1 + f2) if f1 and f2 are factors, this is two-way

ANOVA
lm(y∼f + x) if f is a factor, this is ANCOVA
lm(y∼f1+f2+f3 + f1:f2 + f1:f3 + f2:f3 + f1:f2:f3) 3 main effects, 3 double interactions, 1 tripple

interaction
lm(y∼f1*f2*f3) −∣∣− 3 main effects, 3 double interactions, 1

tripple interaction

11.3 Generalized Linear Model
We can formulate the general linear model
∙as Y = �0 + �1x1 + . . .+ �pxp + ", " ∼ N(0, �2)
∙or � = E(Y ) = �0 + �1x1 + . . .+ �pxp, Y ∼ N(�, �2)

The generalized linear model uses a trick that there is a function instead the estimated
value � = E(Y ). The full spefication of the generalized linear model contains”:
1) deterministic part (linear combination of predictors),
2) known distribution of Y random variable
3) linking function.

The model goes:

g(�) = �0 + �1x1 + . . .+ �pxp

It is possible to model the estimated value by the invesion of the linking function altenatively,
so � = g−1(�0 + �1x1 + . . .+ �pxp). The right side is not linear in general.

The aim of the linking function is to transform the estimated value � in a suitable way
so that the estimated value could be modeled by a linear function. We can use more linking
functions for particular distributions of Y but there are typical linking functions that are called
canonical linking functions.

If the Y is alternatitive for example, the canonical linking function is a function called
logit, g(�) = log( �

1−� ). If the Y is a random variable with a Gama distribution, the canonical
linking function is the invesion g(�) = 1

� . For Y with a normal distribution, the linking
function is an identity. For Y with a Poisson distribution, the linking function is a logarithm,
g(�) = log(�). The generalized linear models estimate parameters by a maximum likehood
(the distribution of Y must be known and the particular realizations y1, . . . , yn of the random
variable Y must be independent).
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Chapter 12

Logistic, multinomical and ordinal
regression

Logistic regression models the binar variable Y with only either 0 or 1 values. Multinomical
regression models categorical variable with more than two values. If there is a need to order
these values, then we are talking about an ordinal regression.

12.1 Logistic regression
glm(formula, binomial)

Logistic regression is a specific case of the generalized linear models where the Y is of
alternative (Bernoulli) distribution and the linking function is logit. We will sign:
Random variable Y ∼ A(�) is having an estimated value E(Y ) = � and variance D(Y ) =
�(1 − �). The interpretation of the estimated value is a probability of the success; and the
variance is a function of the estimated value. Since we interpret the � as a prabibality of the
success P (Y = 1), it is common to write p intead of � in the logistic regression.
Motivation to linking function choosing:
Whether we model the alternative random variable Y by a classical regression Y = �0 +
�1x1 + . . .+ �pxp + ", we will be facing a problem that there is a binary variable on the left
side and the right side can be of values from the minus infinity to infinity.

So that we aim to make the left side more continous by modeling not the binar variable Y
but the chance of success (success/unsuccess), p

1−p = P (Y=1)
P (Y=0) . This ratio is now continuous

on the interval (0,∞). Now we can only have to spread that interval on the complete function
domain by a logarithm: log( p

1−p ) ∈ (−∞,∞). So that, the linear regression function is not
modeled by a binar variable Y , but by the logarithm of a chance that is called logit and we
sign logit(p) := log( p

1−p ) .

log

(
p(x)

1− p(x)

)
= �0 + �1x1 + . . .+ �pxp = x′.�

wherex = (1, x1, . . . , xp)
′ ; � = (�0, �1, . . . , �p)

′ and p(x) = P (Y = 1∣x1, . . . , xp).
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We can also model an estiamted value by an invesion of the logit function, p(x):
p(x)

1−p(x) = ex
′�

= ex
′� − p(x).ex

′�

p(x).(1 + ex
′�) = ex

′�

p(x) = ex
′�

1+ex′�
= 1

1+e−x′�

So that logit−1(p(x)) = p(x) = 1
1+e−x′�

and is called a logistic function.

12.2 Simple logistic regression with one continuous predictor

Now we are about to model a probability of the success by one continuous predictor x, so the
logistic function of the model is going to be p(x) = P (Y = 1∣x) = e�0+�1x

1+e�0+�1x
.

The parameters’ effects �0 a �1 on the logistic function with one predictor x can be seen on
the picture 12.1.

Probability of success

Figure 12.1: Logistic curves: success probability modeling by one predictor x for different paratemer
values �0 a �1.
Picture on the left: an orange constant function with value of 0.5 models the success probability with
the dependence on x for �0 = 0 a �1 = 0. However, for �1 positive the more increasing value of x
predictor, the higher probablity of the success.
Picture on the right: for �1 negative, the more increasing value of x predictor, the lower probablity of
the success.
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12.2.1 Interpretation of the constant

Further, we are going to sign the odds of the success over the odds of the unsuccess as ”odds”,
so

odds(x) =
p(x)

1− p(x)

And we will sign the odds ratio as ”or”, so

or(x+ �, x) =
odds(x+ �)

odds(x)

How can be interpreted the constant �0 in the logistic regression model? The better for
interpretation is e�0 instead of �0.

For the null value of the predictor, x = 0, it goes:

logit(p(0)) = log(odds(0)) = log

(
p(0)

1− p(0)

)
= �0 + �1.0 = �0

∙�0 can be interpreted as a ”logaritmic” odds on the success if there is a zero value of the
predictor x.

p(0)

1− p(0)
= e�0+�1.0 = e�0

∙e�0 can be interpreted as an odds on the success if there is zero value of the predictor x
which is easier to interpret then �0.

p(0) =
e�0+�1.0

1 + e�0+�1.0
=

e�0

1 + e�0

∙ e�0

1+e�0
can be interpreted as a probability of the success in case of zero value of the predictor

x.
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12.2.2 Slope interpretation
It is more suitable to interpret e�1 than the parameter �1 again.

log(or(x+ 1, x)) = log
(

odds(x+1)
odds(x)

)
= log(odds(x+ 1))− log(odds(x))

∙�1 can be interpreted as a ”logaritmical” odds ratio if we are going to increase the predictor
value x by a unit.

or(x+ 1, x) =
odds(x+ 1)

odds(x)
= e�1

∙e�1 can be interpreted as the odds ratio if we are going to increase the value of predictor x
by a unit. In other words - what is the odds on success higher/lower when we increase the
value of predictor x by a unit?

If we will increase the value of x predictor by �, than
log(or(x+ �, x)) = log

(
odds(x+�)
odds(x)

)
= log(odds(x+ �))− log(odds(x))

= �0 + �1(x+ �)− (�0 + �1x) = �1�

∙�1� can be interpreted as a ”logaritmic” odds ratio if we have increased the value of the x
predictor by �.

or(x+ �, x) =
odds(x+ �)

odds(x)
= e�1� = (e�1)�

∙e�1� states what is the odds on success higher/lower when we increase the value of predictor
x by �.

We can summarize (see picture 12.1 ):
e�1 = 1⇔ �1 = 0 ∙x does not influence odds ratio

∙x does not influence also probability of the success
e�1 > 1⇔ �1 > 0 ∙with increasing value of x the odds ratio is also increasing

∙with increasing value of x the probability of success is also increasing
e�1 < 1⇔ �1 < 0 ∙with increasing value of x the odds ratio is decreasing

∙with increasing value of x the probability of success is decreasing
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12.2.3 When the logistic regression is suitable?
Example 12.1. TODO dataset GermanCredit
Binary variable Class contains only values of 0 or 1, where 1 is a bad (undued) credit and
0 is good (dued) one; we are going to model the bads. The continuous variable Amount100

demonstrates the amount of credit in 100 DEM. When can we use the logistic regression
model with regard to parameter interpretaion? □

Since e�1� = or(x + �, x), we can see that the odds ratio is not influenced by the absolute
values of x+ � and x, but only by the difference between �.

Since that, the odds ratio in case of credits of 100 and 200 DEM must be the same as in
case of 10 000 and 10 100 DEM.

Model assumes that the logaritmic chance of success is dependent on the predictor (or predic-
tors) linearly and the derived odds ratio is not dependent on the absolute value of a predictor
but only is dependent on the differences in the values of that predictor. We can test this
assumption by the Pearson’s chi-squared test (or by the Hosmer-Lemeshow test for multi-
nomical logistic regression).

12.2.4 Maximum likehood
Usual method in linear models is the least squares method. If there is an assumtion of the
normal distribution of the dependent variable, then the estimates derived by the LS have good
properties, known distribution and we can then proceed the statistical inference.

However, in cases of generalized linear models, we often use maximum likehood for
parameter estimation.

Subsequently, it is possible to proceed only asymptotic inference, thus we have to take
findings with reserve for small datasets.

We will sign:
∗ vector of predictors with one: x = (1, x1, . . . , xp)

′;
∗ vector of parameters � = (�0, �1, . . . , �p)

′;
∗ binary dependent variable Y ∈ {0, 1}
∗ n independent observations Y : (y1, y2, . . . , yn)
∗ probability of success conditioned by the values of predictors p(x) = P (Y = 1∣x1, . . . , xp) =
ex
′�

1+ex′�

Furthermore, for

⎧⎨⎩ y = 1 we go P (Y = y∣x1, . . . , xp) = p(x) = ex
′�

1+ex′�
=
(

ex
′�

1+ex′�

)y
y = 0 we go P (Y = y∣x1, . . . , xp) = 1− p(x) = 1

1+ex′�
=
(

1
1+ex′�

)1−y
Likehood function L demonstrates probability of the observed data. In this probability func-
tion we can find also the unknown values of paramters �. Then we ask: for what vector of
paramters � the observed data (y1, y2, . . . , yn) are most probable? For this only numerical
methods are possible, thus the findings can be different using different software.

∙L(�) = P (Y1 = y1 ∧ . . . ∧ Yn = yn) =
n∏
i=1

P (Yi = yi) =
n∏
i=1

(
ex
′
i�

1+ex
′
i
�

)yi
.
(

1

1+ex
′
i
�

)1−yi
=

= . . . =
n∏
i=1

1

1+ex
′
i
�
⋅
n∏
i=1

(ex
′
i�)yi
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∙ML odhad �̂ = argmax L(�).

From the practical point of viewm the estimates are not being computed from L(�), but from
l(�) = logL(�), thus

∙l(�) = log

(
n∏
i=1

1

1+ex
′
i
�
⋅
n∏
i=1

(ex
′
i�)yi

)
=

n∑
i=1

log 1

1+ex
′
i
�

+
n∑
i=1

log(ex
′
i�)yi =

= −
n∑
i=1

log(1 + ex
′
i�) +

n∑
i=1

yix
′
i�
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