Computing Science Group

On the Security of Internet Banking in South Korea

Hyoungshick Kim Jun Ho Huh Ross Anderson
Computer Laboratory Computing Laboratory Computer Laboratory
University of Cambridge University of Oxford University of Cambridge
hk331@cl.cam.ac.uk jun.ho.huh@comlab.ox.ac.uk ross.anderson@cl.cam.ac.uk
CS-RR-10-01

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD

On the Security of Internet Banking in South Korea

Hyoungshick Kim Jun Ho Huh Ross Anderson

Abstract

South Korean Internet banking systems have a unique way of enforcing security controls.
Users are obliged to install proprietary security software — typically an ActiveX plugin that
implements a bundle of protection mechanisms in the user’s browser. The banks and their
software suppliers claim that this provides trustworthy user platforms. One side-effect is
that almost everyone in Korea uses IE rather than other browsers.

We conducted a survey of bank customers who use both Korean and other banking
services, and found that the Korean banks’ proprietary mechanisms impose significant us-
ability penalties. Usability here is strongly correlated with compatability: Korean users
have become stuck in an isolated backwater, and have not benefited from all the advances
in mainstream browser and security technology. The proprietary mechanisms fail to provide
a trustworthy platform; what’s more, alternative strategies based on trustworthy computing
techniques are quite likely to suffer from the same usability problems. We conclude that
transaction authentication may be the least bad of the available options.

1 Introduction

The Internet has changed the way people bank. Banks have actively promoted online services to
save costs and create new business opportunities; their customers benefit from being able to pay
bills and transfer funds without having to go to a bank branch. Koreans have been particularly
enthusiastic about online banking: the Bank of Korea reported that 57.29 (54.30 personal and
2.99 corporation) million online accounts had been registered as of September 2009 [3]. This
report also showed that the number of Internet banking transactions per day, on average, is
29.03 million and the amount of money being transferred is 30.17 trillion Korean Won.!

One curious fact, though, is that Internet banking systems in Korea only support Microsoft
Internet Explorer (and only the Windows version). Bank customers cannot use other web
browsers like Safari, Firefox, Opera and Chrome. In consequence, Internet Explorer has become
the dominant web browser in Korea. Recent market share trends for web browsers in different
parts of the world [2] illustrate the near-monopoly of Internet Explorer in Korea (see Figure 1).

The reason is simple enough. In order to use Korean Internet banking services, the users are
required to install external security plugins. As Internet Explorer is the dominant browser, the
developers implemented these plugins as ActiveX controls [27], effectively locking the users in
to Internet Explorer. To illustrate the ActiveX dependency of Korean web sites, we analyse the
relative traffic around the keyword “ActiveX” using Google trends? (see Figure 2). This figure
shows the relative traffic of top 10 countries around “ActiveX” from 2008 to 2009.

These plugins, however, are not included in the web standards developed by the World Wide
Web Consortium (W3C)?3, and have severe compatibility and usability issues.

'about USD 26 billion
*http://www.google.com/trends/
Shttp://www.w3.org/

http://www.google.com/trends/
http://www.w3.org/

wors
b W Firefox
7 m Safari
| B Other
T T T T T 1
0% 20% 40% 60% B0% 100%

Figure 1: Web Browser Market Share by Geographic Regions (October 2009)

China
Argentina
Israel
Japan
Chile
Singapore
Thailand
Taiwan

India

South Korea

=

[=]

0.2 04 0.6 0.8

=

1.2

Figure 2: The Relative Traffic of Top 10 Countries Around “ActiveX” From 2008 to 2009

The majority of the Internet banking systems were developed by three Korean software
companies: SOFTFORUM?, INITECH® and Ahnlab®. Until recently, these companies developed
systems that are only compatible with Windows”.

Much debate [21, 1] has raged around the requirement that users install external security
plugins, the lack of effort by the vendor companies to provide better compatibility with other
operating systems and browsers, and the usability implications for bank customers. In 2007, a
non-profit organization called “OpenWeb”® sued the Korea Financial Telecommunications and
Clearings Institute (KFTC)? (a Korean government agency) for 415 million Korean Won for its

‘http://www.softforum.com/

Shttp://www.initech.com/

Shttp://global.ahnlab.com/

"“Shinhan Bank” and “Korea Exchange Bank” now support Mac OS X through proprietary applications.
Shttp://openweb.or.kr/

“http://www.kftc.or.kr/html/english/index.html

http://www.softforum.com/
http://www.initech.com/
http://global.ahnlab.com/
http://openweb.or.kr/
http://www.kftc.or.kr/html/english/index.html

implicit and anti-competitive endorsement of Microsoft products. They lost the case in 2009; we
believe one of the main reasons for their loss was the lack of a security and usability evaluation
for current Internet banking systems.

This paper aims to contribute: (1) an analysis of the strengths and weaknesses of the pro-
prietary Korean security mechanisms compared with standard technologies, (2) a study of the
usability issues raised by employing these proprietary mechanisms, and (3) recommendations
for improving overall security as well as usability.

This paper is structured as follows. In Section 2 we describe how security is implemented
and distributed in current Korean Internet banking systems. We evaluate these security mech-
anisms in Section 3 and discuss the usability implications in Section 4. We then recommend
several enhancement strategies in Section 5. Finally, in Section 6 we discuss remaining work
and conclude.

2 Security Mechanisms Used in S. Korea

There are four generally accepted security properties [26] that one may require when establishing
a secure channel between the user and the bank:

e user/server authentication — before sending sensitive information over the Internet, the
user should be assured that they are communicating with the right bank; the bank should
also be able to verify the identity of the user before processing the requested transactions.

e confidentiality — only the authorized entities (i.e. the user and the bank) should have
access to the content of the messages being exchanged.

e data integrity — the user and the bank should be able to detect any manipulation (including
insertion, deletion and substitution) or replay of data by unauthorized parties.

e non-repudiation — neither the user nor the bank should be able to deny previous commit-
ments or actions; for instance, in case of disputes, the bank should be able to prove to a
third party that the user has performed certain transactions.

In Korea, there are additional requirements for the provision of trusted platforms. A trusted
platform should detect and remove all malware, and prevent malware from reading the users’
private banking information. We further define this term in Section 5.3. Although some banks
from other countries also feel strongly about this requirement, and encourage their customers to
install anti-virus software for instance, the customers are never forced to install anything [25].

Table 1 summarizes the security mechanisms being used in the Korean banking systems to
fulfil these requirements. We also list the mechanisms that are commonly used in some banks
in the UK and the US for comparison.

In most other countries, Secure Sockets Layer/Transport Layer Security (SSL/TLS) [14]
is the de facto Internet banking standard for ensuring confidentiality and data integrity. The
Korean banking systems, however, use proprietary protocols based on RSA, HMAC, and a block
cipher called SEED (see Section 2.1). Some combination of ID, password and one-time passwords
(OTPs) are commonly used worldwide for authentication [20]. Again, the Korean systems are
unique in that they also use RSA to provide extra assurance. In fact, RSA is also used for
non-repudiation, a property that is rarely found in other countries [11].

Looking at this table, it might seem at first glance that the Korean banking systems provide
much stronger security than those in the UK and the US. Certainly, the feature count looks
more impressive. But the extra mandatory mechanisms involve ActiveX plugins which the users
are obliged to install. The rest of the paper studies these mechanisms in detail, and explains
why — despite the hassle they impose on users — they do not add much security.

Table 1: Security Mechanisms for Online Banking

Requirements All Korean banks|UK bank A UK bank B US bank C
Server quthentication proprietary SSL/TLS SSL/TLS SSL/TLS

- - - personal indicator [44]

ID /password ID /password ID/password |ID/password
User authentication |OTP OTP - OTP

private key (SW) |- secret key (HW)|-
Data integrity proprietary SSL/TLS SSL/TLS SSL/TLS
Non-repudiation digital signature |- digital signature |-
Confidentiality proprietary SSL/TLS SSL/TLS SSL/TLS
Malware detection anti-virus anti-virus [O] anti-virus [O] |anti-virus [O]
Network access control|firewall firewall [O] firewall [O] firewall [O]
Anti-keylogger keystroke enc. |keystroke enc. [O]|- -

([O] indicates that the feature is optional.)

2.1 Secure and Authenticated Communication Channel

In 1999, the Korean government launched an Internet banking system based on a Public Key
Infrastructure (PKI). This was adopted rapidly by the banks; by the end of 2000, 20 of them
were offering Internet banking services based on this PKI [10].

A user obtains a digital certificate through a licensed Certificate Authority (e.g. the Korea
Information Security Agency (KISA)!?) if they pass an online authentication test. The process is
managed through proprietary software downloaded from a bank’s website. The issued certificate
is stored either on the user’s hard disk (e.g. C:\Program Files\NPKI) or in an external device
such as a USB stick. Every transaction is authorized by validating the user’s certificate with
the CA’s public key.

A secure authenticated channel (SAC) is established between the user and the bank server
by exchanging digital certificates. The protocols used to generate session keys are not published.
We speculate that they include a digital signature mechanism that may be inspired by Secure
Electronic Transaction (SET) [37], and an SSL variant using SEED [24] (see Appendix A for
details). SEED is a 128-bit symmetric key block cipher developed by the KISA in 1998, with a 16-
round Feistel structure. It was approved as a standard block cipher by the Internet Engineering
Task Force (IETF) [24] and an ISO/IEC international standard. Since SEED and protocols
that use it are not supported by mainstream web browsers — including Internet Explorer, Safari,
Firefox, Opera and Chrome — an external plugin is required (see Figure 3).

It may seem strange to use plugins when SSL/TLS is already available and supported by
mainstream web browsers. In fact, this is a by-product of the “Crypto wars” in the 1990s during
which the US government tried to restrict strong cryptography.

When Internet banking systems were first being deployed in Korea, the encryption algorithms
supported by the web browsers distributed outside the US appeared had key sizes limited by
the US government to 40, or later 56, bits for symmetric encryption algorithms (RC4/DES).!!
Thus the Korean government funded the development of a new block cipher, SEED, as the
country’s proprietary standard for secure e-commerce. Ever since, SEED has been deployed
as the standard for the Internet banking systems, responsible for encrypting sensitive financial
transactions.

YOhttp://www.kisa.or.kr/maine. jsp/
"Blaze and others had already argued convincingly in 1996 that products using 40- or 56-bit ciphers did not
give sufficient security for business applications [7].

http://www.kisa.or.kr/maine.jsp/

7 \
1 (") (-) i
i -[User Interface J [Banking Application } i
!l External External ||
i Plugins HTTP(S) Modules i
i HTTP Client J [HTTP Server]- E
\\ __ o/

[SSL/TLS J [SSL/TLS J

\ D < 4

Web Browser Banking Server

Figure 3: The SAC Enabled Through External Plugins

2.2 User Authentication

We now look at how the users are authenticated by bank servers. A wide range of technologies
are currently used for authentication, including passwords, Personal Identification Numbers
(PINs), digital certificates (PKI), physical tokens such as smart cards, One-Time Password
(OTP) generators, transaction profile scripts, and biometric identification [20].

Korean systems use some combination of two or three of these techniques, based on the
belief that this approach offers stronger security than relying on just one method. A commonly
deployed authentication process runs as follows:

1. A customer firstly logs into the website using their user ID and password.

2. To carry out a banking transaction, some digits from an indexed Transaction Authentica-
tion Number (iTAN) [33] printed on the user’s private security card or an OTP (generated
by an OTP generator) are entered.

3. Online transaction records are digitally signed with the user’s secret key stored in the
user’s PC or external memory.

Step 2 may involve the use of an “out-of-band” channel, such as postal delivery of a physical
token, callback (voice) verification, e-mail approval or notification, and a mobile-phone-based
challenge/response process.

A combined authentication mechanism, if carefully designed and implemented, should pro-
vide reasonable security. However the designer has to worry about man-in-the-middle attacks,
social engineering and malware. The use of digital certificates, for instance, seems reliable in
theory, but without strong protection for the user’s private keys, it may buy less than you think.
To mitigate key-stealing attacks, password-based encryption for the private keys has been leg-
islated: an encryption key, derived from the customer’s password alone, is used to protect the
private keys. The KISA proposed a specification in 2004 — derived from the Public Key Cryp-
tography Standard (PKCS) #5 [34] — where “SEED” is the standard encryption algorithm used.
Triple DES was added as another standard encryption algorithm in 2007.

2.3 Trustworthy User Platforms

The user is the ultimate “client” of the system, not the web browser. The user connects to
the bank server through the interfaces available on the web browser. The browser collects
the user input, makes requests to the bank server to perform transactions, receives the server

%

o_ 9

Eiibaan Device oS Event Web
ey ~ Driver Kernel Handler Browser

Figure 4: The Communication Channel Between the User and the Browser

response/data, and displays the output to the user. A trusted user platform, therefore, must
secure this communication channel (see Figure 4) between the user and the browser.

This communication channel is frequently attacked by malware that tries to steal sensitive
information, such as credit card details and other banking credentials. Some attacks are tech-
nical, involving zero-day exploits or other engineering tricks that install malware regardless of
anything the user can do; others use social engineering tricks. For example, often websites often
ask users to download a special codec, which actually turns out to be malware [32].

To mitigate such attacks, the Korean banks oblige users to install further security plugins
when they users first access the banking service.

e An anti-virus program is installed to provide real-time protection against known malware.
It detects malware by going through the files on the customer’s disk and removing all the
files that match the signatures in a blacklist. Therefore, it relies on timely updates and
on the integrity of the blacklist. The Korean banks require the blacklist to be updated in
real time.

e A personal firewall is designed to prevent the malware communicating with an external
adversary. It monitors all incoming and outgoing traffic and permits only authorized
connections while the user is doing banking. Its goal is to prevent man-in-the-middle or
man-in-the-browser attacks being executed by malware.

e A keystroke encryption routine protects sensitive information from the moment it is typed
into the keyboard until it reaches the browser (see Figure 4). This is intended to prevent
the information from being read or tampered with en route to the browser.

3 Why are These Security Mechanisms Not So Effective?

At first glance, the Korean Internet banking systems seem more secure than the systems used
in Britain or the USA (see Table 1). Certainly the feature count is higher: more security
mechanisms have been sold to the banks and are distributed by them. In this section, we
identify the fundamental problems with these mechanisms and show why they only offer a
modest improvement.

3.1 No Protection Against Phishing Attacks

Phishing attacks involve masquerading as a bank and deceiving the users into disclosing their
account details [17]. The users may be asked to update or re-enter their confidential information
through fake web pages. These attacks have become sophisticated and it’s now difficult for users
to distinguish fake websites from real ones.

To avoid phishing attacks, users need to check whether the email sender or website owner
is a trusted entity. Server authentication at the protocol level is not sufficient, as phishermen

can also buy SSL certificates. The client software, installed on the user’s machine, cannot easily
decide whether the website represents the trusted entity the user intends to communicate with.

One possible approach is to deliver the server verification results to the users visually. Mod-
ern web browsers already provide security indicators or warning messages based on blacklists
and extended-validation SSL certificates, identifying fake sites and presenting risk information
visually. However, this feature cannot be used by Korean customers since SSL/TLS is not part
of the Korean system. For the time being, the best one might do is to try to educate users about
these attacks and the associated risks — but that has been found in Europe and the USA to not
work very well; in general “blame and train” is not a good way to fix usability problems. It is
preferable to make the system more usable.

3.2 Problems with Digital Certificates

In theory, digital certificates may provide a neat solution for user authentication. In practice,
however, PKI has proved to be difficult to deploy due to the difficulty of protecting the private
keys and the high maintenance costs [16]. In Korea, there seems to be a common misbelief that
PKI is well established for e-commerce and provides high assurance for user authentication.

The protection of the private keys is critical part of PKI. An adversary, by stealing a private
key, can impersonate a genuine customer and perform transactions online. Therefore, the private
keys should always be protected using secure disk storage and memory mechanisms [20].

Korean banking systems store password-encrypted files of private key material on the user’s
hard disk. There are two problems with this approach: (1) a successful privilege-escalation
attack would allow an adversary to read the decrypted key from memory; and (2) the security
is only as good as the password, which malware can steal through brute-force attacks or key
logging.

As discussed in Section 2.2, Korean banking systems require a combination of passwords,
OTPs, and digital certificates for authentication. We argue that digital certificates are redundant
here because the private keys are only protected with the passwords; by compromising the
passwords, adversaries also get the private keys. In fact, this is the main reason why the OTPs
were introduced in the first place — to limit the exposure to keyloggers. A good OTP system, like
the German iTAN, forces the attacker to use session stealing or a man-in-the-browser attack.

If private keys could be strongly protected, however, PKI alone should be sufficient for
authentication. In Section 5.3, we discuss whether this could usefully be achieved through the
use of trustworthy computing capabilities [18].

3.3 Limitations of the External Plugins

In Section 2.3, we discussed how the customers are obliged to install four external plugins —
in addition to the protocol crypto plugin, there’s an AV product, a firewall, and keystroke
encryption software — to use Internet banking. We identify the inadequacies of these plugins
and argue that trusted user platforms cannot be achieved through this approach.

An anti-virus product typically uses either signature-based detection or heuristics-based de-
tection. The former method cannot detect new malware or variants efficiently, and as malware
writers get more organised, the proportion of malware that’s detected is falling steadily. The
latter is based on heuristics such as monitoring registry changes and the insertion of hooks into
certain libraries or system interfaces; but as these are not based on any fundamental character-
istics of malware, they often incur many false positives and false negatives [43].12

The firewall software shipped by Korean banks runs only while the user is using the Internet
banking service. So malware that wants to bypass it can just wait until the user logs off to send

'2Cohen [12] demonstrated that there is no algorithm that can detect all possible viruses.

7

sensitive information back home. The product may provide some protection against session
stealing and man-in-the-browser attacks [15] but seems rather limited. But perhaps this is the
most that can be done; if banking software interfered with the user’s online activities when she
was not engaged in banking, it could be unacceptable.

The keystroke encryption software has limitations too. First, it cannot prevent key scan codes
from being intercepted by interrupt hooking methods; the encryption only happens afterwards.
Second, successful privilege-escalation attacks or buffer overflow attacks would allow malware
to modify or simply delete this software. Third, if not designed carefully, this software could
prevent normal key inputs from being read by installed, benign programs. Fourth, it cannot
prevent hardware keyloggers in situations where the user accesses the banking services through a
public machine. Finally, the encryption keys themselves could be compromised. Without strong
protection for the encryption keys (e.g. through a hardware mechanism such as the TPM [18])
and verification of the code responsible for managing these keys, keystroke encryption methods
only offer slight improvement.

These external plugins may be effective against simple, naive malware. As soon as a mal-
ware becomes sophisticated enough to perform privilege-escalation, in-memory, and brute-force
attacks, these plugins become less effective. This raises a question of how much they add. En-
gineers should consider the balance between widely-deployed protection mechanisms (such as
those in the operating system), the benefits of user education (limited as they are), and what
should be provided using proprietary mechanisms. (In Section 5.1, we further discuss the social
engineering aspects.)

3.4 Lack of Security Proof

Korean Internet banking systems use proprietary authentication protocols. Some may argue
that closed protocols will help prevent a number of known attacks; others argue that open pro-
tocols can become more secure than the closed ones through ongoing verification and patching
efforts. Making the specifications available to the public could help both developers and attack-
ers. Closed information on the other hand can slow down the attackers initially, but attackers
eventually find and exploit vulnerabilities. Where does the balance lie?

We believe that prevention is better than cure. Protocols are not like operating systems,
which will inevitably have many bugs; protocols are compact things, which are hard to design
properly, and which commonly contain one or two bugs initially that get found once many people
(including academics) study them. Protocol security should therefore be thoroughly analyzed
by experts for a period before any protocol is seriously deployed. We are therefore concerned
about the proprietary protocols used in the Korean systems. We have no idea what verification
might have been done on them. Are there any formal proofs of correctness? If there were, then
surely KISA can have no objection to publishing both the protocols and the proofs. SSL/TLS
on the other hand has been studied for a long time, and formally verified [31] — its end-to-end
security is equivalent to the cryptographic strength of the underlying algorithms if implemented
properly [6]. The security offered by SSL/TLS has been the subject of comprehensive analy-
sis [41, 29, 31, 38, 13, 19]. If and when flaws are found, they are generally fixed rapidly by
the community. Security proofs are no panacea, but they do indicate that someone has studied
and modelled a protocol carefully. Because SSL/TLS has a security proof and none has been
supplied for the Korean protocols, former should be assumed to be more robust.

Arguments against the use of SSL/TLS due to published implementation vulnerabilities
are unreasonable [9, 40, 8, 22, 5]. At least the basic protocol is sound; and attacks using
timing channels, poor random number generators etc are at least as likely to affect proprietary
protocols — if not more so, as the common implementations of SSL/TLS are open-source and
widely studied.

4 What the Users Think About the S. Korean Services

To investigate the usability implications of employing the security mechanisms discussed here,
we conducted an anonymous online survey (see Table 2) to study (1) how users feel about using
Korean services compared to those from other countries; and (2) why users prefer, or do not
prefer, using Korean services over services from other countries. We made the assumption that
services from other countries do not require their users to install extra security software (which
is generally the case).

We invited our friends and colleagues as well as several online communities in Korea to
participate, and got a total of 401 participants. 80 of these participants had experiences of using
banking services from Korea as well as from other countries (see Q2), out of a total of 379 people
who had experience of Korean services (see Q1). The participants’ IP addresses were checked
to prevent multiple responses.

The results for Q3 show that 70% of those who have had experiences in using both services
prefer to use the services from other countries. Q5 reveals that the two most common reasons for
this is due to their simplicity and better compatibility with web standards. The results for Q8
and Q9 indicate that 68.9% of those who have used Korean services felt uncomfortable, mainly
due to their complexity and lack of compatibility with web standards.

For Q4, Q5, and Q9, some participants offered other interesting reasons. In particular, for
Q9, 25 participants commented about the system crashes that result from installing the ActiveX
plugins. 4 participants commented about the inconvenience of having to carry around digital
certificates to use Internet banking.

It must be said, though, that none of the users were impressed with the security of other
countries’ banks (Q5) while 58.3% said that the most important reason they prefer Korean
services was “It feels more secure” (Q4). We argue in this paper that Korean services are not
actually more secure, but perhaps unsophisticated users assume that services which are complex
and difficult to use must also be complex and difficult to defraud. Perhaps this is another
example of “security theatre”, which tackles the feeling but not the reality.

In addition, we compared the network traffic of two Korean banking services (banks A and
B) against a UK banking service (bank C) to analyse the relative performance (see Table 3).
The network packets were collected and analysed during user login and authentication.

The results show that the number of packets sent/received using the Korean services A and
B is roughly 6-7 times higher than that of the UK service C. Similarly, the total byte count is
5-10 times higher in the Korean services, illustrating a relatively high communication cost and
low performance. It is also interesting to see that using Korean services involves communicating
with multiple web servers: these extra web servers usually serve to distribute the mandatory
external plugins. This may indicate a possibility of service-denial attacks or other additional
failure modes.

5 Our Recommendations

Having identified the major usability and other problems of the proprietary security mechanisms,
we now consider what can be done to improve the overall security and usability of Internet
banking systems in Korea.

5.1 Providing Options to the Users

Users are obliged to install a number of security (ActiveX) plugins while using Korean banking
services. As a result, they mostly have no option but to use Internet Explorer and Windows for
online banking. Our survey shows that most customers find Korean services uncomfortable to

Table 2: Usability Survey Results

Q1. Do you have experience in using a Korean Internet banking service?

Yes
No

94.5% (379)
5.5% (22)

Q2. Do you have experience using an Internet banking service from another country?

Yes
No

21.1% (80)
78.9% (299)

Q3. If you had to select one service for Internet banking, which country’s service would you prefer

to use? (For those who have answered “Yes” to Q2)

Internet banking service from Korea

Internet banking service from another country

30.0% (24)
70.0% (56)

Q4. What is the most important reason you prefer the Korean service?

It’s simpler

It’s faster

It’s more compatible with the Web standards
It feels more secure

Other

25.0% (6)
8.3% (2)
0.0% (0)
58.3% (14)
8.3% (2)

Q5. What is the most important reason you prefer the service from another country?

It’s simpler

It’s faster

It’s more compatible with the web standards
It feels more secure

Other

50.0% (28)
1.8% (1)
39.3% (22)
0.0% (0)
8.9% (5)

Q6. If all of the services provide the same level of security, which country’s service would you prefer

to use? (For those who have answered “Yes” to Q2)

Internet banking service from Korea

Internet banking service from another country

I don’t mind using either

15.0% (12)
63.8% (51)
21.3% (17)

Q7. Do you know why ActiveX controls are installed on your machine when you use the Korean

T
banking service? (For those who have answered “Yes” to Q1)

I know exactly
I know briefly

I have no idea

32.2% (122)
49.1% (186)
18.7% (71)

Q8. How often have you felt uncomfortable using the Korean banking service?

All the time
Most of the time
Sometimes

Never

A1.7% (158)
26.9% (102)
27.2% (103)
4.2% (16)

Q9. Why did you feel uncomfortable using the Korean banking service?

It was complicated

It was slow

It had compatibility issues with the web standards

It felt insecure
Other

20.9% (76)
11.6% (42)
45.5% (165)
7.7% (28)

14.3% (52)

Table 3: Traffic Comparison

Metrics Korean bank A Korean bank B UK bank C
Packet types TCP, HTTP, SSL/TLS| TCP, HTTP |TCP, HTTP, SSL/TLS
Number of packets sent/received 8,669 8,961 1,301

Total bytes used 3,653,648 7,787,551 801,297
Number of communicating servers 9 5 1

use due to various compatibility and usability issues (see Section 4). Yet most of these plugins
only offer a modest improvement, as they are designed to run on top of insecure operating
systems and kernels (see Section 3.3). A successful privilege-escalation attack, for example,
could turn them off or steal private keys.

Even if they somehow guarantee a significant improvement, it still seems unreasonable to
oblige the users to install them without providing comprehensible information about the assumed
threats and claimed benefits. Our survey indicates that many users have installed these plugins
without knowing what the benefits might be.

A more user-friendly system should only recommend security plugins and allow the users to
decide whether or not to install them. In fact, some banks in other countries already allow their
users a choice. For example, the Royal Bank of Scotland’s “staying safe online” webpage [39]
informs their users about a security product that can be downloaded and gives an overview of
the threats, benefits, and system requirements. Likewise, the benefits and risks should be clearly
explained in terms that normal users can easily understand. This would allow the users who
wish to use different web browsers or operating systems to make informed choices.

5.2 Adapting More Compatible Mechanisms

Another way to improve the overall usability is to replace the proprietary mechanisms with better
engineered, compatible mechanisms. Since the proprietary plugins have serious weaknesses in
the way they are designed or used (see Section 3.3), we believe the overall security should not
be harmed (and could well be improved) by replacing them with the following mechanisms.

In Section 3.4 we discussed why SSL/TLS is likely to be safer than proprietary protocols.
Using it would not only reduce the number of external components required but let users choose
essentially any modern browser. It would also allow the use of industry-standard mechanisms
for mitigating phishing attacks such as extended-validation certificates and collaboratively-
generated blacklists.

If banks want to rely on digital-certificate-based user authentication, we recommend us-
ing SSL/TLS client certificate with standard cryptographic token interfaces. Netscape-based
browsers already support PKCS #11 [35], and Internet Explorer supports Microsoft’s Crypto-
graphic Application Programming Interface (CAPI) [28]. These APIs would allow both banks
and users flexibility in choosing the cryptographic component suitable for their operating en-
vironment: this component is called a Cryptographic Service Provider (CSP) in CAPI and
cryptoki in PKCS #11.

The firewall plugin does not add much to security since it only runs during a banking session.
The banks should think about whether session-stealing and man-in-the-browser attacks are real
issues in Korea; if not, this component could be dispensed with.

5.3 More Trustworthy Computing Approaches

Adding extra security components on top of an insecure operating system or kernel will not
result in a trusted user platform. If the threats discussed in Section 2.3 become critical in

11

Trusted Service Trusted Generic OS The User Platform

Domain (dom0) Application
Client Trusted Banking VM e
ien WP | o ;

Plﬁxy || Trusted || | Untristad |

M

‘Trusted Path - Balicy _ | , Bank
Enforcement| |Application
Proxy Server

\ 4

Trusted Virtualisation Layer

Can only access the
bank server

Figure 5: OpenTC’s Secure Banking Prototype

the future, and the provision of trusted platforms becomes necessary, a more complete security
solution should be deployed instead. What are the options?

By a complete solution, we refer to an online banking system that (1) runs on top of a
trustworthy, integrity-protected kernel and security components, (2) is strongly isolated from
the rest of the system, (3) has its private keys protected by both software and hardware, (4)
allows a remote server to verify the integrity of these security properties, and (5) communicates
with the bank server through a trusted path. Can we get a trustable, verifiable user platform
from any technologies that already exist, or may be adapted in the near future?

The isolation requirement might at first sight be amenable to protections based upon operating-
system level techniques like sandboxing. However, given the size and complexity of mainstream
operating systems and their known vulnerabilities [36], it would appear that strong isolation is
hard to achieve in this way. Virtualization [42] may be able to provide much stronger isolation
thanks to the much smaller virtual machine monitor.

The Open Trusted Computing (OpenTC) consortium has implemented a “Secure Banking”
prototype [23] based on Xen virtual machine monitor [42] (see Figure 5). Their prototype serves
to demonstrate how virtualization and trusted computing could be used to prepare a trusted
(TPM-measured) banking virtual machine, verify its state, and use it to access the bank server. If
remote attestation [18] can be made to work, it might ensure that only a fully isolated, integrity-
protected banking virtual machine can access the bank server to perform online transactions.
The banking virtual machine could also verify the authenticity and integrity of the bank server.
Using this virtual machine, the user can only ever reach the bank server — this would be sufficient
to prevent phishing attacks. Any private key used is sealed to the trusted virtual machine,
preventing other untrusted virtual machines from accessing the key.

This type of approach could provide a highly secure, verifiable online banking environment.
However, it has several drawbacks. First, the early promise of trusted computing seems to have

12

petered out; people have not been able to make remote attestation work (modern operating
systems are too complex and change too much). Second, the TC approach shares many of
the problems already displayed by the Korean online banking system — it requires essentially
proprietary software, it would lock people into a particular platform, it would deprive them of
the option of doing online banking via their choice of browser and operating system, and might
well display similar usability issues. (The software developers would not be benefiting from all
the worldwide effort invested in browsers and the user experience generally.)

A second possible solution might be something like a bootable USB stick developed by Aus-
tralia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO). This “Trusted
Extension Device” [30] allows a trustworthy environment to be initiated from any untrustworthy
one. The trustworthy environment is defined and enforced by the issuer. Trust is established
with a remote bank server through trusted computing attestation where both ends authenticate
each other based on their integrity reports. If attestation is successful, the banking software built
into the Trust Extension Device and the remote server perform further transactions through a
secure communication channel.

This approach too has drawbacks. Each bank would create their own portable devices and
distribute them to customers. A customer may have many accounts with different banks, and
could end up keeping track of several devices. More costs arise when such devices need to
be updated and patched: the banks would have to redistribute the devices and maintain a
revocation list of compromised (or out-of-date) ones. And again, there would be the bundle of
usability and compatibility issues to be expected with proprietary software.

A third possible solution might be to combine the USB idea with the idea underlying the
CAP readers used in Britain and elsewhere [15]. The CAP reader accepts a smartcard (bank
customers worldwide are being issued with these under the EMV programme) which can be used
not just to generate OTP codes for logon but also to authenticate transactions using a MAC
generated by a secret key in the smartcard. The main limitation of the CAP devices deployed in
Europe is the lack of a connection to the PC: they are free-standing handheld devices into which
the customer must retype transaction data. This retyping is clunky; many banks don’t use it,
while others only insist on it for high-risk transactions. The way to fix this is to make a ‘CAP v
2’ with a USB connection to the PC. Then, transaction data could be exported from the PC to
the smartcard via the CAP and properly authenticated (with traffic protected by a MAC, for
example). In this way each user could have a single USB CAP device into which he would plug
the bank card issued on whatever account he wished to use online. A USB smartcard reader
with a display and keypad might cost $10-20 if manufactured in quantity.

Something like the third option is, in our view, the most sensible medium-term solution
to the problem of getting a complete, secure online banking solution into the hands of users
at an acceptable cost — both in terms of the capital expenditure required by banks and the
burden of usability and compatibility that they impose on their customers. Hence, if online
bank fraud should get significantly worse, we would recommend that such options should be
evaluated carefully. The biggest problem we anticipate is that if every banking session is split
between a PC screen, which is not trustworthy, and a CAP screen which is, then attackers
could try a number of social engineering attacks to persuade customers to authenticate wrong
data using their CAP. How do you get customers to disregard a prominent screen warning such
as “Customer notice — your CAP needs a security upgrade. Please authenticate the message
number “349A3D” in order to install the new software” and focus instead on what the CAP
is saying? Splitting transactions between a good device and a bad one is hard, and deserves
serious research.

13

Figure 6: Why Did You Feel Uncomfortable Using the Korean Banking Service?

6 Conclusion

Korean banking offers an interesting natural experiment. While most banks worldwide offer
online services to their retail mass market via web browsers, banks in Korea have for ten years
insisted that customers use proprietary encryption software that is based on ActiveX controls,
together with antivirus, firewall and keylogging countermeasures.

The effects have been rather mixed. On the one hand, Microsoft’s Internet Explorer has
an almost complete monopoly in Korea, as customers can’t do banking using Firefox or Opera.
And the Korean strategy is unpopular: we surveyed people who have used both Korean and
other banking services, and found that over two-thirds of them felt uncomfortable using Korean
services, mainly due to their complexity and lack of compatibility with the web standards.
Curiously, most customers thought Korean systems more secure, even though they aren’t really
— presumably because they associate security with annoying complexity!

At the technical level, we have argued that proprietary security software offers at best a
modest improvement, and certainly cannot provide the Holy Grail of a trustworthy user platform.
We have recommended that banks should minimize the use of external plugins by replacing their
proprietary solutions with SSL/TLS. The installation of additional security software should be
optional, and the associated risks should be communicated in a comprehensible manner so that
users can make their own security decisions.

The lessons learned in Korea may have much wider application. When security researchers
discuss what options there might be if online bank fraud gets much worse, one of the possibilities
is the use of proprietary systems are software — from variants on the ‘trusted computing’ theme to
virtualization and proprietary bank client software. The Korean experience suggests that these
should be treated with caution: the usability and compatibility costs they impose on users are
likely to be nontrivial, and they may indeed be unacceptable (and undeployable in competitive
markets). A more sensible medium-term solution may be to provide a separate trusted platform
in the form of a CAP-like smartcard reader, with a trustworthy keyboard and display, into
which the customer can insert her bank card to authenticate transactions. To provide usable

14

transaction authentication, such a device should import transaction data automatically from the
PC (for example, using a USB cable) rather than requiring it to be retyped. Even so, there is a
remaining hard problem. Given a two-platform system, where one platform is not trustworthy
(the PC) and the other platform is much more trustworthy (the CAP device, or for that matter
a mobile phone), how do you mitigate the risks of social engineering attacks launched through
the first platform?

In future work, we intend to conduct a threat and risk analysis on Korean Internet banking
systems by studying the attack trends and evaluating their severity and likelihood. Very few
countries publish full bank fraud figures (in Europe, only Britain, France and the Netherlands
do); Korea is not there yet. We recommend that the government publish robust electronic crime
statistics, as was for example recommended in a 2008 report to ENISA for the case of European
banks [4]. In the meantime, perhaps a crime victim survey can compare customers’ experiences
across countries. We believe that inter-country comparisons are important to define the security
requirements and determine whether in fact it is necessary to invest in a next generation of
online banking security technology.

7 Acknowledgments

The authors would like to thank Joseph Bonneau, Andrew Martin, Eric Kerfoot, John Lyle,
Cornelius Namiluko, Joe Loughry, Ronald Kainda, Mingqgiu Song, and Wattana Viriyasitavat
for their careful attention and insightful comments. The authors would like to extend their
gratitude and thanks to everyone who has participated in the usability survey.

References

[1] Korean Home-brew on the Web, 2007.
[2] SatCounter GlobalStats, 2009.
[3] The Bank of Korea, 2009.

[4] R. Anderson, R. Béehme, R. Clayton, and T. Moore. Security Economics and the Internal
Market. Technical report, The European Network and Information Security Agency, 2008.

[5] G. V. Bard. A Challenging but Feasible Blockwise-Adaptive Chosen-Plaintext Attack on
SSL. In Proceedings of the International Conference on Security and Cryptography, pages
99-109, 2006.

[6] L. D. Bisel. The Role of SSL in Cybersecutiry. IT Professional, 9(2):22-25, 2007.

[7] M. Blaze, W. Diffie, R. L. Rivest, B. Schneier, T. Shimomura, E. Thompson, and M. Wiener.
Minimal Key Lengths for Symmetric Ciphers to Provide Adequate Commercial Security.
Technical report, January 1996.

[8] D.Brumley and D. Boneh. Remote Timing Attacks Are Practical. In SSYM’03: Proceedings
of the 12th Conference on USENIX Security Symposium, pages 1-14, Berkeley, CA, USA,
2003. USENIX Association.

[9] P. Burkholder. SSL Man-In-The-Middle Attacks. Technical report, 2002.

[10] Y. T. Chang. Dynamics Of Banking Technology Adoption : An Application To Internet
Banking. Technical report, 2003.

15

[11]

[12]

[13]

[26]

[27]

[28]

J. Claessens, V. Dem, D. D. Cock, B. Preneel, and J. Vandewalle. On the Security of
Today’s Online Electronic Banking Systems. Computers and Security, 21(3):253 — 265,
2002.

F. Cohen. Computer Viruses: Theory and Experiments. Computers and Security, 6(1):22—
35, 1987.

D. Dean and A. Stubblefield. Using Client Puzzles to Protect TLS. In SSYM’01: Proceedings
of the 10th Conference on USENIX Security Symposium, pages 1-1, Berkeley, CA, USA,
2001. USENIX Association.

T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Informational), 1999.

S. Drimer, S. J. Murdoch, and R. Anderson. Optimised to fail: Card readers for online
banking. In Financial Cryptography and Data Security, February 2009.

C. Ellison and B. Schneier. Ten Risks of PKI: What You're not Being Told about Public
Key Infrastructure. Computer Security Journal, 16(1):1-7, 2000.

D. Forte. Anatomy of a Phishing Attack: A High-level Overview. Network Security,
2009(4):17 — 19, 2009.

D. Grawrock. The Intel Safer Computing Initiative, chapter 1-2, pages 3-31. Intel Press,
2006.

A. Hess, J. Jacobson, H. Mills, R. Wamsley, K. E. Seamons, and B. Smith. Advanced
Client /Server Authentication in TLS. In Proceedings of Network and Distributed Systems
Security Symposium, 2002.

A. Hiltgen, T. Kramp, and T. Weigold. Secure Internet Banking Authentication. [EFE
Security and Privacy, 4(2):21-29, 2006.

G. Kanai. the cost of monoculture, 2007.

V. Klima, O. Pokorny, and T. Rosa. Attacking RSA-based Sessions in SSL/TLS. In
Cryptographic Hardware and Embedded Systems (CHES), 2003, pages 426—440. Springer,
2003.

D. Kuhlmann, S. L. Presti, G. Ramunno, D. Vernizzi, E. Bayer, and B. Gngren. Private
Electronic Transaction (PET) Proof-of-concept Prototype Documentation, March 2008.

H. Lee, S. Lee, J. Yoon, D. Cheon, and J. Lee. The SEED Encryption Algorithm. RFC
4269 (Informational), December 2005.

M. Mannan and P. C. van Oorschot. Security and Usability: the Gap in Real-world Online
Banking. In NSPW ’07: Proceedings of the 2007 Workshop on New Security Paradigms,
pages 1-14, New York, NY, USA, 2008. ACM.

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 2001.

Microsoft. Description of ActiveX Technologies, 2007.

Microsoft. Cryptography API, 2009.

16

[29]

[44]

J. C. Mitchell. Finite-State Analysis of Security Protocols. In CAV ’98: Proceedings of the
10th International Conference on Computer Aided Verification, pages 71-76, London, UK,
1998. Springer-Verlag.

S. Nepal, J. Zic, H. Hwang, and D. Moreland. Trust Extension Device: Providing Mobility
and Portability of Trust in Cooperative Information Systems. In On the Move to Meaningful
Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, volume 4803/2010, pages
253-271. Lecture Notes in Computer Science, 2007.

L. C. Paulson. Inductive analysis of the internet protocol tls. ACM Transactions on
Information and System Security (TISSEC), 2(3):332-351, 1999.

N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu. The Ghost in the
Browser Analysis of Web-based Malware. In HotBots’07: Proceedings of the first conference
on First Workshop on Hot Topics in Understanding Botnets, pages 4—4, Berkeley, CA, USA,
2007. USENIX Association.

RedTeam. iTAN Online-banking Security System. CAN-2005-2779, 2005.
RSA Laboratories. PKCS #b5: Password-Based Encryption Standard, 1993.
RSA Laboratories. PKCS #11 v2.30: Cryptographic Token Interface Standard, 2009.

A.-R. Sadeghi and C. Stiible. Taming “Trusted Platforms” by Operating System Design.
In Information Security Applications, volume 2908, pages 1787—-1801. Lecture Notes in
Computer Science, 2004.

Secure Electronic Transaction LLC. SET Secure Electronic Transaction Specification —
Version 1.0, May 1997.

M. Steiner, U. D. Saarlandes, P. Buhler, T. Eirich, and M. Waidner. Secure Password-
Based Cipher Suite for TLS. In Proceedings of Network and Distributed Systems Security
Symposium, pages 134157, 2001.

The Royal Bank of Scotland. Staying safe online, 2010.

S. Vaudenay. Security Flaws Induced by CBC Padding - Applications to SSL, IPSEC,
WTLS ... In EUROCRYPT ’02: Proceedings of the International Conference on the Theory
and Applications of Cryptographic Techniques, pages 534-546, London, UK, 2002. Springer-
Verlag.

D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In WOEC’96: Proceed-
ings of the 2nd conference on Proceedings of the Second USENIX Workshop on Electronic
Commerce, pages 29-40, Berkeley, CA, USA, 1996. USENIX Association.

Xen Source. Xen: Enterprise Grade Open Source Virtualization a XenSource White Paper.
Technical report, 2005.

H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: Capturing System-wide
Information Flow for Malware Detection and Analysis. In CCS ’07: Proceedings of the 14th
ACM Conference on Computer and Communications Security, pages 116-127, New York,
NY, USA, 2007. ACM.

J. Youll. Fraud Vulnerabilities in SiteKey Security at Bank of America. Technical report,
Challenge/Response, LLC, 2006.

17

A Examples of traffic

We analysed two key establishment protocols offered by different vendor companies, protocol 1
and protocol 2 (see Figure 7).

I KFCC.peap - Wireshark . —— P ——

File Edit View Go Capture Analyze Statistics Telephony Tools Help
W FPEREE AT L Qaan gB®mg B

Filter: http ~ Expression.. Clear Apply

Protocol

HTTP

< "

= Frame 67 (2707 bytes on wire, 2707 bytes captured)
w Ethernet II, Src: IntelCor_4b:2b:fd (00:1c:c0:4b:2b:fd), Dst: Al1-HSRP-routers_01 (00:00:0c:07:ac

= Transmission control Protocol, Src Port: 4748 (4748), Dst Port: http (80), seq: 9226, Ack: 1301,
w [Reassembled TCP Segments (10802 bytes): #61(921), #62(2896), #65(4344), #67(2641)]

= Hypertext Transfer Protocol

= Line-based text data: application/x-www-form-urlencoded

[truncated] INIpluginData=vf%3D1%26vd%3DiXeKeCtvNDGehTIRT8Vv2c4%252bcEMOSLNM2XY83TnMBX1hRBHBH1VST

(a) Protocol 1

[l WooriBank2.peap - Wireshark S —— * L 4

File Edit View Go Capture Analyze Statistics Telephony Tools Help
ey CEAXEE Ao Tl QaQen | @B %% 8
Filter: | ssl = Expression.. Clear Apply

Protocol Info

SSLv3 Server Hello
SSLv3 Change Cipher Spec, Encrypted Handshake Message

SSLv3 Server Hello
SsLv3 Change Cipher spec, Encrypted Handshake Message

« I

= Frame 308 (147 bytes on wire, 147 bytes captured)
= Ethernet II, Src: Cisco_0a:f8:00 (00:22:91:0a:f8:00), Dst: IntelcCor_4b:2b:fd (00:1c:c0:4b:2b:fd)
= Internet Protocol, sSrc: 210.182.9.43 (210.182.9.43), Dst: 128.232.14.136 (128.232.14.136)
= Transmission Control Protocol, Src Port: https (443), Dst Port: pwgwims (4951), Seq: 1, Ack: 148,
= Secure Socket Layer
= SSLv3 Record Layer: Handshake Protocol: Server Hello

Content Type: Handshake (22)

Versjon: SSL 3.0 (0x0300)

Length: 88

= Handshake Protocol: server Hello
Handshake Type: Server Hello (2)

Length: 84
version: sSSL 3.0 (0x0300)
= Random

session ID Length: 46

Session ID: 433041383538324431383945303045453938313243383045. ..
Cipher suite: unknown (0x0103)

compression Method: null (0)

(b) Protocol 2

Figure 7: Examples of traffic

In protocol 1, the user’s certificate and the session key encrypted with the server’s public
key are delivered to the banking server using the HTTP “POST” method. We briefly describe
this with the following notation. The symbols C' and B represent the client software and
bank server, respectively. For data input y, Sx(y) and Px(y) denote the data values resulting,
respectively, from the signature operation on y using X'’s private signing key, and the encryption
operation on y party X'’s public encryption key. tx is a timestamp generated by X. certx is a
certificate binding X to a public key suitable for both encryption and signature verification. F

18

is a symmetric encryption algorithm (e.g., SEED). kx, x, is a secret symmetric session key to
be shared by X; and Xs.

B—(C: certg,tp
C — B: certc,Pp(ts, kBC),Sc(certc,PB(tB,ch)),
By (certe, Pp(ts, kpe), Sc(certo, Pe(tp, kpc)))

Protocol 2 is almost the same as the RSA-based SSL/TLS [41, 14] except SEED is used for
encryption.

19

	cover_page
	korean_banking_security_v3
	Introduction
	Security Mechanisms Used in S. Korea
	Secure and Authenticated Communication Channel
	User Authentication
	Trustworthy User Platforms

	Why are These Security Mechanisms Not So Effective?
	No Protection Against Phishing Attacks
	Problems with Digital Certificates
	Limitations of the External Plugins
	Lack of Security Proof

	What the Users Think About the S. Korean Services
	Our Recommendations
	Providing Options to the Users
	Adapting More Compatible Mechanisms
	More Trustworthy Computing Approaches

	Conclusion
	Acknowledgments
	Examples of traffic

