IEEE EDITORIAL STYLE MANUAL FOR AUTHORS

IEEE Publishing Operations 445 Hoes Lane
Piscataway, NJ 08854 USA

(C) 2021 IEEE

Table of Contents

Table of Contents 2
I. INTRODUCTION 3
A. Purpose of Manual 3
B. Definition of a Transactions and Explanation of the Review Process 3
C. IEEE Transactions Editing Philosophy 3
II. WRITING PRINCIPLES 3
A. Writing Parts of an Article 4
Title 4
Byline and Membership Citation 4
IEEE Membership Grades 4
IEEE Open Access Publishing 5
First Footnotes 5
B. The Body of the Article 9
Abstrac 9
Index Terms 9
Note to Practitioners 9
Nomenclature 9
Text Section Headings. 10
Introduction 11
Text Equations 11
Appendix 11
Acknowledgment 11
References. 11
Text Citation of Figures and Tables 12
Biographies 13
Squibs. 14
C. Other Text 15
Footnotes 15
Lists in Text 15
Dedication Line(s) 16
Note Added in Proof 16
D. Other Types of Papers 16
Editorials 16
Brief Papers 17
Short Papers, Correspondence, and Communications 17
Comments and Replies 17
Corrections/Errata 17
Book Reviews 18
Obituaries/In Memoriam 18
E. Writing Style for Transactions 18
Acronyms 18
Spelling 18
Trademarks. 19
Plurals 19
Hyphenation Rules 19
The En, Em, or Two-Em Dash 19
Grammar 20
Contractions 20
Capitalization 20
Math 20
Equation Numbers 21
F. General Layout Rules 22
III. GRAMMAR AND USAGE IN TRANSACTIONS 22
A. Rules of Grammar 22
Words Often Confused 23
IV. APPENDIX 24
A. Some Common Acronyms and Abbreviations. 24
B. Common Hyphenations and Misspellings 28
C. Table of Units and Quantity Symbols 31
D. Miscellaneous Alphabetical Abbreviations, Acronyms, and Symbols 40
E. Organizations and Abbreviations of Organizations 56
F. Conference Abbreviations. 63

I. INTRODUCTION

A. Purpose of Manual

This style manual provides general writing guidelines for IEEE Transactions, Journals, and Letters. For guidance in grammar and usage not included in this manual, please consult The Chicago Manual of Style, published by the University of Chicago Press.

B. Definition of a Transactions and Explanation of the Review Process

All IEEE Transactions are refereed archival journals. This means that each Transactions has a volunteer Editor or Editor-in-Chief (EIC) who is responsible for soliciting manuscripts and overseeing the peer review and revision process for the journal. The referees (at least two, according to IEEE policy), together with the Editor and sometimes with volunteer Associate Editors, determine the technical merit of each submitted article and make a recommendation to accept, accept with revision, or reject it.

Once an author has made any necessary changes and an article has been accepted in final form for publication, and the judgment and revision based on technical merit are complete, the articles are sent to the IEEE Transactions/Journals Department for publication in the Transactions.

C. IEEE Transactions Editing Philosophy

The IEEE's responsibility in editing articles for the Transactions is not to do any editing of the technical content, but instead to render the work as readable, grammatically correct, and as consistent with the IEEE style as possible.

Since the IEEE is concerned with style mainly in the sense of our house style, the IEEE does not try to change an author's style of writing. We do a mechanical edit to correct or question grammatical errors, obvious inconsistencies or omissions, spelling, and punctuation. Since we work with highly technical text, we also do extensive formatting of mathematical material.

Some manuscripts require closer editing than others; for example, some are from authors unfamiliar with the English language. Authors with questions or requiring assistance with the English language may visit the Author Center. Often, an IEEE Staff Editor must determine how to correct a grammatical error or decide what can be safely changed or corrected without altering the author's original meaning. Because of the highly technical nature of the material we deal with, and because of our often limited understanding of that material, it is especially important that Staff Editors do not risk making any unnecessary changes or any that may affect the author's meaning.

II. WRITING PRINCIPLES

The sections of an article should generally be written in the following order:

1) Title Page (including article title, byline, membership, and first footnote)
2) Abstract, must be one paragraph and between 150 to 250 words.
3) Index Terms
4) Nomenclature (optional)
5) Introduction
6) Body of Article
7) Conclusion
8) Appendix(es)
9) Acknowledgment
10) References

A. Writing Parts of an Article

Title
In the title, all nouns, pronouns, adjectives, verbs, adverbs, and subordinating conjunctions (If, Because, That, Which) should be capitalized. Capitalize abbreviations that are otherwise lowercase (i.e., use DC, not dc or Dc) except for unit abbreviations and acronyms. Articles (a, an, the), coordinating conjunctions (and, but, for, or, nor), and most short prepositions are lowercase unless they are the first or last word. Prepositions of more than three letters (Before, From, Through, With, Versus, Among, Under, Between, Without) are capitalized. Detailed equations are discouraged in titles. If they must be included, capitalization and formatting should follow IEEE style.

Examples:

- Nonlinear Gain Coefficients in Semiconductor Lasers: Effects of Carrier Heating
- Self-Pulsation in an InGaN Laser-Part I: Theory and Experiment

Byline and Membership Citation

. Use the most complete author name and match that which is provided in the biography. Nicknames are not allowed in the byline, but may be included in the biography, set in parentheses, e.g., "John (Jack) Smith received the B.A. degree..."

Examples:

> C.-Y. Chen, Member, IEEE, K. S. Snyder, Jr., Fellow, IEEE,
> and J. Fortunato, III, Senior Member, IEEE

Mohammed Z. Ali, Member, IEEE, and Murat Torlak, Fellow, IEEE
If membership information is given in the byline, also enter it into the biography.

IEEE Membership Grades

IEEE Membership Grades included in the byline and biography are Student Member, Graduate Student Member, Associate Member, Member, Senior Member, Fellow, Life Associate Member, Life Member, Life Senior Member, and Life Fellow.
Note: Affiliate Members are not considered members for the purposes of the byline and biography.

Authors of non-OA articles must sign and return the IEEE Copyright Form before their article is published (either online or in print). An article is considered published on the date it appears on IEEEXplore (this includes preprints and rapid posts). The section of the form signed determines the type of copyright line used.

There are several different types of copyright lines used in Transactions articles.
> The IEEE copyright line is by far the most commonly used line. The IEEE copyright line Copyright Clearance Center Code (or CCC code) is used at all times whenever the "A" section of the IEEE copyright form has been signed by the author. The author's signature on the "A" section of the IEEE copyright form and use of the IEEE copyright line indicate IEEE ownership of the article's copyright.

Example: From the IEEE Journal of Quantum Electronics:
0018-9197 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

The first two sets of four numbers (separated by a hyphen) in the line are the ISSN code for the Transactions (also found on the front cover of the printed book). Last on the line is a circled copyright symbol followed by the full year of publication and the identifier "IEEE."
$>$ The U.S. Government copyright line is used when the " B " section of the copyright form is signed and all authors of a paper are U.S. government employees and prepared the paper as part of their job. The U.S. Government line reads:

U.S. Government work not protected by U.S. copyright.

NOTE: This copyright line ends with a period.
$>$ The EU copyright line is used when all authors are employed by one or more European Union organizations.

Example: From the IEEE Transactions on Applied Superconductivity:
1051-8223 © 2018 EU
> The Crown copyright line is used when the "C" section of the copyright form is signed and all the authors of a paper are employees of the British or British Commonwealth governments. The Crown Copyright line is similar to the IEEE copyright line, except that the "IEEE" at the end of the line is replaced with "British Crown Copyright" or "Canadian Crown Copyright."

The following sample copyright lines are from the IEEE Journal of Display Technology:
1551-319X © 2018 British Crown Copyright
551-319X ©
1551-319X © 2018 Canadian Crown Copyright

IEEE Open Access Publishing

Articles that follow the OA publishing model, per Directory of Open Access Journals (DOAJ) standards, use the Creative Commons Attribution License (CCBY) 4.0 license. The CCBY license grants the most liberal reuse rights of all commonly used Open Access licenses. It allows users to distribute, reuse, modify, and build upon a work as long as proper attribution to the original article is provided. Works published with a CCBY license may be reused for commercial purposes.
> Open Access Copyright Lines

CCBY License:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/deed.ast

CCBY + U.S. Government option:

U.S. Government work not protected by U.S. copyright.

When all the authors of an article are U.S. government employees and prepared the article as part of their job, and they choose Open Access, then the "U.S. Government" section of the CCBY copyright form must be signed and returned.

First Footnotes

The first footnote (or the author affiliation paragraph) is made up of at least three paragraphs. This footnote is not numbered. All other footnotes in the article are numbered consecutively. Do not use asterisks or daggers.

Example:

Manuscript received April 27, 2018; revised September 18, 2018; accepted July 25, 2018. Date of publication August 15, 2013; date of current version September 9, 2018. This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, under Project PN-II-ID-BXE-4016-3-0566. (Corresponding author: John Smith.)

The authors are with the National Institute for Lasers, Plasma and Radiation Physics, Plasma Physics and Nuclear Fusion Laboratory, 077125 Bucharest-Magurele, Romania (e-mail: florin.gherendi@infim.ro; mnistor@infim.ro; mandache@infim.ro).

Color versions of one or more of the figures are available online at http:// ieeexplore.ieee.org. (NOTE: Only Used with Printed Publications).

Digital Object Identifier 10.1109/JDT.2013.2278036

First Paragraph:

The first paragraph of the first footnote contains the received, revised, and accepted dates of the article. When an article has more than one revised date, list all the dates It also contains the two additional online published dates. The first date identifies the date of publication, i.e., when the "single article" version is posted on IEEEXplore (either preprint or rapid post-ePub date); the second date identifies the date of current version, or when the "final, paginated" version (i.e., date of current version - predicted online date) is posted on IEEEXplore.

Corresponding author(s) credit: All articles must include the name of the corresponding author(s). However, an author may opt out upon review of the proof. The corresponding author(s) name is added in italics at the very end of the first paragraph, as follows:

Manuscript received May 2, 2018; revised September 9, 2018; accepted October 12, 2018. Date of publication November 29, 2018; date of current version March 7, 2018. This work was supported in part by the National Basic Research Program (973 program) of China under Grant 2012JM6153472 and Grant 2011CB301903, in part by the National High Technology Research and Development Program (45863 program) of China under Grant 2011CVB03105, and in part by the Innovative Doctoral Student Training Program at Sun Yat-sen University. (Corresponding authors: Jessie Y. C. Chen; Shiyuan Fan.)

Equally contributed authors: In some cases, the authors may have contributed equally to the work. This is added in italics at the very end of the first paragraph before the corresponding author. See example below.

Manuscript received May 2, 2018; revised September 9, 2018; accepted October 12, 2018. Date of publication November 29, 2018; date of current version March 7, 2019. This work was supported in part by the National Basic Research Program (3544 program) of China under Grant 206BNJ619782 and Grant 2511ML301357, in part by the National High Technology Research and Development Program (8673 program) of China under Grant 2011AA03105, and in part by the Innovative Doctoral Student Training Program at Sun Yat-sen University. (Shanjin Fan and Shiyuan Fan contributed equally to this work.) (Corresponding authors: Jessie Y. C. Chen; Shiyuan Fan.)

Co-first authors: In many fields, it is viewed as good to be the first author. But only one person can be first author, which leads to the practice of some labs having "co-first" authorship. The wording for this is: (Shanjin Fan and Shiyuan Fan are co-first authors.) There is no need to include the "contributed equally" phrase. In the byline, one of the authors must be listed first, but the last line in the first paragraph will indicate both authors as co-first authors. For example:

Manuscript received May 2, 2018; revised September 9, 2018; accepted October 12, 2018. Date of publication November 29, 2018; date of current version March 7, 2019. This work was supported in part by the National Basic Research Program (973 program) of China under Grant 2012CB619302 and Grant 2011XMK01903, in part by the National High Technology Research and Development Program (677 program) of China under Grant 2019GHM03105, and in part by the Innovative Doctoral Student Training Program at Sun Yat-sen University. (Shanjin Fan and Shiyuan Fan are co-first authors.) (Corresponding author: Shanjin Fan.)

Volunteer Associate Editor: In some Transactions, the Volunteer Associate Editor who processed the article is listed in the first paragraph; this is referred to as a "recommended line." See specific Transactions for placement and wording. Some examples are:

Manuscript received February 5, 2018; revised March 29, 2018; accepted March 29, 2018. Date of publication June 8, 2018; date of current version January 18, 2009. Paper recommended by Associate Editor Thomas Lynch.

Manuscript received February 5, 2018; revised March 29, 2018. Date of publication June 8, 2018; date of current version January 18, 2009. This paper was recommended by Associate Editor T. Lynch.

Manuscript received July 4, 2018; revised September 4, 2018. Date of publication June 8, 2018; date of current version July 18, 2018. This work was supported by the UDDHSCSU under Grant PN-JJ78/01.10.2067 and Grant FRII 331/94.57.2067. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Vesa Valimaki. (Corresponding author: Jinjun Ming.)

Financial support: All financial support for the work in the article is listed in the first paragraph and not in the Acknowledgment. Examples of financial support are:

1) This work was supported by the National Science Foundation under Grant 90210 and Grant ECS-12345.
2) This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under Contract 12345 and Contract 702589 and in part by the National Science Foundation.
3) This work was supported by grants from the Muscular Dystrophy Association of America and the Swedish Medical Research Council.
4) If an author/organization requests specific wording, e.g., by National Institutes of Health (NIH), use language provided.

If support was given to a specific author, the following wording is used:
The work of C. T. Walsh was supported by the National Institutes of Health.
Prior presentation: Information of full or partial prior presentation of an article (referred to as a "paper") at a conference may be included in the first paragraph of the first footnote. It may not be necessary, however, to cite prior presentation of a paper at a conference if the paper is appearing in a special issue made up exclusively of papers presented at the conference.

If an article is a thesis or part of a thesis or dissertation, this should be so noted in the last sentence of the first paragraph of the footnote.

Below is a sample of a first paragraph of the first footnote, including financial support and prior presentation:
Manuscript received January 15, 2018; revised April 10, 2018; accepted April 29, 2018. Manuscript received in final form on May $20,2018$. Date of publication September 8, 2018; date of current version January 18, 2019. This work was supported in part by the National Science Foundation under Grant IK-916, by the Joint Services Electronics Program under Contract AF-AGHGSR-14-94/95, and by the Adolph C. and Mary Sprague Miller Institute for Basic Research in Science. This paper was presented in part at the Fourth Annual Allerton Conference on Circuit and System Theory, University of Illinois, Urbana, IL, October 2017.

Second Paragraph

Author Affiliations: The second paragraph of the first footnote is made up of the authors' affiliations, and the corresponding author's e-mail address. All authors may include their e-mail addresses which would be separated by semicolons. Examples are shown below.

Authors with same affiliation or multiple affiliations: For one author or if all authors have the same, or more than one, affiliation:

The author is with the Department of Electrical Engineering, Rutgers University, Piscataway, NJ 08854 USA, and also with Bellcore, Morristown, NJ 07960 USA (e-mail: author@ieee.org).

The author(s) is (are) with the Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: corresponding-author@ieee.org).

Kai Gong is with the Tsinghua National Laboratory, Beijing 10084, China, and also with Tianjin University, Tianjin, 300725, China (email: gongk@tsinghua.edu.cn).

The authors are with the Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: firstauthor@mit.edu; IamNext@mit.org; thirdauthor@ieee.org).

The author is with the Department of Electrical Engineering, Rutgers University, Piscataway, NJ 08854 USA, with Bellcore, Morristown, NJ 07960 USA, and also with the Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139 USA (author@ieee.org).

Mary Wootters is with the Department of Computer Science and the Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA (e-mail: author@ieee.org).

Two or more authors: For two or more authors with different affiliations, use separate sentences and paragraphs for each, using all initials with a surname. Group the authors with the same affiliation together; list the affiliations according to the order of the first author listed in the byline for each location. E-mail addresses are separated by semicolons. Examples:

Ling Pei Li is with the Department of Electrical Engineering and the Electronics Research Laboratory, University of California at Berkeley, Berkeley, CA 94720 USA.

Toshido Ikeda and Harry Ishikawa are with Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-01, Japan (email:correspondingauthor@ieee.org).

The authors are with Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-01, Japan, and also with the Department of Electrical Engineering and the Electronics Research Laboratory, University of California at Berkeley, Berkeley, CA 94720 USA (e-mail: corresponding-author@ieee.org).

Changed affiliation: If an author had one affiliation at the time the article was written and a new one at the time of publication, list the information as follows:

The author was with the Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12181 USA. He is now with the Institute for Microstructural Sciences, National Research Council, Ottawa, ON K1A 0R6, Canada.

If an author is on leave from his/her current position, list the information as follows:
The author is with the Faculty of Information Sciences and Engineering, University of Canberra, Canberra, ACT 2616, Australia, on leave from the Department of Electronic Engineering, Zhengzhou University, Zhengzhou, China.

Retired author: If an author is retired, list his/her last affiliation and current address (city, state, postal code, and country).

Lisa A. Tepper, retired, was with the Applied Research Laboratory, Bellcore, Morristown, NJ 07851 USA. He resides in Laguna Niguel, CA 92677 USA (e-mail: retiredauthor@yahoo.com).

Deceased author: For a deceased author, add "deceased" after the name and list his/her last affiliation.
Paolo Dorigo, deceased, was with the Progetto di Intelligenza Artificiale e Robotica, Dipartimento di Elettronica e Informazione, Politecnico di Milano, 20133 Milano, Italy.

Consultant: A consultant is treated similarly to a retired author: list the last professional affiliation and current city, state, postal code, and country.

Peter Leff, Jr. was with the Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908 USA. He resides in Charlottesville, VA 22908 USA.

Additional notes:

- Do not include street addresses of employers. For domestic authors, use official U.S. Postal Service abbreviations for states and include U.S. zip codes, and country. Note that there is no comma between the state, zip code, and country for U.S. affiliations. Use Canadian Province and international codes as listed in this manual. Also include international cities, countries, and zip codes.
- List department or subdivision first, then company or school. Write out the words "Company" and "Corporation." Abbreviate "Inc." and "Ltd." (One exception to this is Texas Instruments Incorporated.)
- In a book review, to avoid confusion with the author of a book, when listing the affiliation of the reviewer of a book, do not use "The author is with ..."; instead, list the reviewer's affiliation ("The reviewer is with ...").
- Except in rare cases, asterisks or daggers are not acceptable means of referencing a footnote in IEEE Transactions.

Third Paragraph

The third paragraph of the first footnote contains a notice if the article has color figures in the online version. This line is removed in all online-only publications.

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.
This line is omitted if all figures in an article print in color.
Multimedia: If an article has multimedia or any other online-only material, such as datasets, include the paragraph here, usually with a brief description. There are two items that are needed in order to successfully post multimedia:
the multimedia files themselves and a ReadMe file (which needs to be in PDF format for posting on IEEE Xplore) filled out with all the appropriate information. The first page footnotes will carry a notice:

This paper has supplementary downloadable multimedia material available at http://ieeexplore.ieee.org provided by the authors.

B. The Body of the Article

Abstract

Every published article must contain an Abstract. All variables should appear lightface italic; numbers and units will remain bold. Abstracts must be a single paragraph.

In order for an Abstract to be effective when displayed in IEEEXplore as well as through indexing services such as Compendex, INSPEC, Medline, ProQuest, and Web of Science, it must be an accurate, stand-alone reflection of the contents of the article. They shall not contain numbered mathematical equations, numbered reference citations, nor footnotes.

Index Terms

All articles must contain Index Terms. These are keywords provided by the authors. Index Terms appear in alphabetical order, and as a final paragraph of the Abstract section. Capitalize the first word of the Index Terms list; lowercase the rest unless capitalized in text. Include the definition of an acronym followed by the acronym in parentheses. Example:

Index Terms-Abstraction, computer-aided system engineering (CASE),
conceptual schema, data model, entity type hierarchy, ISO reference model, layered
architecture meta model, reverse engineering.

Note to Practitioners

This is formatted in the same style as Abstracts. It follows the Abstract and is separated by a line space. There may be more than one paragraph. Example:
 Note to Practitioners-Abstraction, computer-aided system engineering (CASE),
 conceptual schema, data model, entity type hierarchy, ISO reference model, layered architectural
 meta model, reverse engineering.

Nomenclature

Nomenclature lists (lists of symbols and definitions) generally follow the Abstract and Index Terms and precede the Introduction. This type of list is characterized by the following.

1) The Nomenclature heading is a primary heading without a Roman numeral.
2) The first column of the list is flush left.
3) The second column is aligned on the left.
4) There is one em space from the longest item on the left side to the right side.
5) The first letter on the right-hand side is capitalized.
6) Each item ends with a period.
7) Do not use "is" or "the" at the beginning of items.
8) Do not use equality symbols between the left and right sides.

Equations in an item should be handled as follows.

1) When the equation is at the beginning of an item, align the equal sign with the right-hand side capitals, end the equation with a period, begin the definition with a capital, and end with a period.
2) When the equation is at the end of an item, end the definition with a comma, follow with an equal sign and the rest of the equation, then end with a period as shown in the following example.

Nomenclature

SPQ Strictly proper pole constraints.
$M \quad$ Minimal weighted sensitivity.

```
P(s) Physical feedback.
W Weighting.
Q =P-1. Improper function.
S,l Signal density, = P,M.
```

NOTE: Acronyms defined in a Nomenclature list do not need to be defined again in the text. If the section headings are made up of only previously defined acronyms, we should continue to add the acronym in parentheses next to the definition, as it becomes unreadable otherwise.

Text Section Headings

Standard specifications have been established for Transactions text section headings. There are four levels of section headings with established specs: primary (section), secondary (subsect1), tertiary (subsect2), and quaternary (subsect3) heads.

Enumeration of section headings is desirable, but not required. Primary headings (section) are enumerated by Roman numerals, centered above text, and set in 10-pt. and 8-pt. caps. Note that Introduction, Conclusion, and Acknowledgment are Singular heads. Example:

I. InTRODUCTION

Secondary headings (subsect1) are enumerated by capital letters followed by periods ("A.," "B.," etc.), flush left, italic, upper and lowercase. Example:

A. Formal Frameworks

Tertiary headings (subsect2) are enumerated by Arabic numerals followed by parentheses. They are indented one em, run into the text in their sections, italic, upper and lowercase, and followed by a colon. Example:

1) Sophisticated Local Control: Sophisticated local control is applied when ...

Quaternary headings (subsect3) are identical to tertiary headings, except that they are indented two ems instead of one em, lowercase letters are used as labels, and only the first letter of the heading is capitalized. Example:
a) Communication policies: Policies developed to improve communication ...

Reference and Acknowledgment headings are unlike all other section headings in text. They are never enumerated. They are simply primary headings without labels, regardless of whether the other headings in the article are enumerated. Example:

References

ACKNOWLEDGMENT (note spelling here)

Appendix headings are a special case. The primary heading(s) in the Appendix or Appendixes are set according to the usual style, except that there is flexibility in the enumeration of the heading. Roman numerals as heading numbers (Appendix I) or letters (Appendix A) are acceptable. The Appendix is not preceded by a Roman numeral. Follow the rules given earlier for labeling subsidiary heads. Note that if there is only one Appendix in the article, leave the Appendix unnumbered and unnamed as is. (Appendix subheads should also not be enumerated in this case.) Examples:

APPENDIX

Appendix I
Proof of Theorem
APPENDIX A
Proof of Theorem
Headings for Theorems, Proofs, and Postulates: Some articles do not conform to an outline style for theorems and proofs that is easily transformed into the normal heading sequence. The preferred style is to set the head giving the theorem number as a tertiary heading (no Arabic numeral preceding) and the proof head as a quaternary head. This rule also applies to Lemmas, Hypotheses, Propositions, Definitions, Conditions, etc.

In-text references to text sections are written: "in Section II" or "in Section II-A" or "in Section II-A1." Capitalize the word "Section." Do not use the word "Subsection"; use "Section" and write out the complete citation. Note that there is no period in Section II-A1 to deparate the subsections.

Introduction

Initial Cap or Drop Cap: In full length articles and/or Editorials (but not in short papers), the first letter of the Introduction is set as an initial cap, two lines deep (drop cap). After the cap, the remaining characters of the word are capitalized, as well as another $1-2$ words at most. Do not break up hyphenated words into cap and lowercase sections-extend the caps if necessary. If it is not possible to use the first word or character of the Introduction as an initial cap (i.e., if the article begins with a quotation mark), try rewriting the sentence.

Text Equations

Consecutive Numbering: Equations within an article are numbered consecutively from the beginning of the article to the end. There are some Transactions in which numbering by section, e.g., (1.1), (1.2.1), (A1), is permitted.

Appendix Equations: Continued consecutive numbering of equations is best in the Appendix, but equation numbering that starts over with (A1), (A2), etc., for Appendix equations is.

Hyphens and Periods: Hyphens and periods are accepted, if consistent in article, e.g., (1a), (1.1), (1-1).

Appendix

Refer to the Appendix in text as "given in the Appendix." Note that the plural of Appendix is Appendixes. Also note that all figures and tables in the Appendixes must be labeled in consecutive order with the other figures in the article.

Acknowledgment

The placement of the Acknowledgment appears after the final text of the article, just before the References and after any Appendix(es). The spelling of the heading for the Acknowledgment section is always singular, with no "e" between the " g " and the " m ." As noted previously in the Text Headings section, the Acknowledgment head is a primary heading. Do not enumerate the Acknowledgment heading.

When citing names within the Acknowledgment, drop Mr., Mrs., or Miss (list first initial and last name only). For Dr. or Prof., use the Dr. or Prof. title with each name separately; do not use plural Drs. or Profs. with lists of names.

All acknowledgments of financial support are placed in the first footnote/author affiliation.
Any acknowledgments of permission to publish and disclaimers to the content of the work made to/by the author's employer may be added as an Acknowledgment section.

Write the Acknowledgment section in the third person.

References

A few guidelines related to the writing of references are summarized here.
The numbering of references is employed by citing one reference per number. Every reference in a Transactions reference list should be a separate number entry. Use of one reference number to designate a group of references is not permitted.

Example:

[37] E. G. Bowen, Radar Days, Institute of Physics Publishing, 1987. The literature of WWII radar is vast. Among the most comprehensive references are L. Brown, A Radar History of World War II: Technical and Military Imperatives, Institute of Physics Publishing, 1999; S. Swords, Technical History of the Beginnings of Radar, Peter Perigrinus, 1986; H. Guerlac, Radar in World War II, Tomash Publishers, American Institute of Physics, 1987.

The References should be written as follows:
[37] E. G. Bowen, Radar Days. London, U.K.: Institute of Physics, 1987.
[38] L. Brown, A Radar History of World War II: Technical and Military Imperatives. London, U.K.: Institute of Physics, 1999.
[39] S. Swords, Technical History of the Beginnings of Radar. Stevenage, U.K.: Peregrinus, 1986.
[40] H. Guerlac, Radar in World War II. New York, NY, USA: Tomash Publishers/Amer. Inst. of Physics, 1987.
In the text, the following footnote would be added after the citation for ref. [37]:
"The literature of WWII radar is vast. Among the most comprehensive references are [38]-[40]."
Any references to the original refs. [38], [39], and [40] would be changed to [41], [42], and [43], respectively.
Footnotes or other words and phrases that are part of the reference format do not belong on the reference list. These full footnotes or extraneous phrases must always be removed from the list, changed into text or footnotes on the appropriate page, and the references renumbered (renumber reference citation in text as well). Even the words "For example" should not introduce references in the actual list, but should instead be included in parentheses in text (or in a footnote), followed by the reference number, i.e., "For example, see [5]."

Do not say "in reference [1] ..."; rather, the text should be written to read simply, "in [1] ..." The author's name should not be included in a text reference with a number (i.e., "In Smith [1]") and should be changed to "in [1]" except in such cases where the author's name is integral to the understanding of the sentence (e.g., "Smith [1] reduced calculated time ..."). Reference dates should not be used as reference identifiers and should be deleted in text except in rare cases where the date is somehow relevant to the article's subject.

Do not refer to a specific figure of a reference or to a specific page or equation from a reference. To avoid confusion, rewrite phrases such as "in Fig. 2 of reference [1]" to the IEEE cross-reference notation "in [1, Fig. 2]." Similarly, rewrite phrases such as "in equation (8) of reference [1]" to be [1, eq. (8)]. Other phrases may be rewritten as [1, Sec. IV], [1, Th. 4.2], or [1, Ch. 3].

If listing the same reference more than once on the reference list, giving a new reference number for each page or part of the same source that is cited, these separate references should all be made into one reference and the separate citations of pages, equations, etc., should be made in text using the notation explained in the previous paragraph.

If a reference author's name is mentioned in the text, check its spelling against the reference list.

Text Citation of Figures and Tables

All first citations of figures and tables in the article must be in numerical order. Citations to figures in text always carry the abbreviation "Fig." followed by the figure number. The abbreviation is used even when it begins a sentence. Figure footnotes should be placed as part of the caption.

Figures:
The general style for captions is such that each caption number should be cited with the abbreviation "Fig." and the number, followed by a period, an em space, and then the text of the caption. The first word of the caption should always be capitalized, regardless of any style that may be chosen to list caption parts (a), (b), etc., if included. If you are citing Fig. 1(a) and 1(b), the singular "Fig." is still used. In general, do not use A, An, or The at the beginning of a figure or table caption.

Example:

Fig. 1. Theoretical measured values of n.
There are several acceptable styles for listing the parts of the figure in the caption. Be consistent within each article, but otherwise use whichever style is most convenient for the figure. Regardless of which caption notation is used, the citation of (a), (b), etc., should always appear before the corresponding caption part.

Examples:

Fig. 1. Intercomplex crosstalk characteristics. (a) Electrode transmission. (b) Interelectrode crosstalk.

Fig. 2. (a) Variation of effective mode index with time. (b) Step-index change.

Fig. 3. Output resistance as a function of channel doping for 1-m-long gate. (a) InGaAs and (b) InP JFETs with pinchoff voltage as a parameter.

Fig. 4. (a) and (b) Plain and side views, respectively, of the experimental setup used to measure the effective diffraction loss which can be achieved using the feedback technique.

Fig. 1. (a) Electrode transmission. (b) Interelectrode crosstalk.
If parts of a figure after reduction will run the length of more than one page, the full descriptive part of the caption should be cited with the first part of the figure followed by the corresponding caption for the part. On the subsequent pages, the word (Continued.) will be placed under the carryover parts of the figure followed by a repeat of the full descriptive part of the caption and the corresponding caption for the carryover parts.

Captions for Landscape/broadside figures: The text should appear below the figures and facing outward at all times.

Examples:

Fig. 6. True and estimated spectra for a real data sequence. (a) True spectrum.

Fig. 6. (Continued.) True and estimated spectra for a real data sequence. (b)
Estimated with the periodogram.
Tables: The general style for table captions is such that each caption number should be centered above the table with the label TABLE and the enumeration given in Roman numerals. The descriptive text of the caption should be centered directly below the table number caption

The descriptive text of the table caption does not contain a period at the end of the caption, although punctuation may be necessary within the caption itself. In general, table captions should be set as an inverted pyramid.

The style for listing the parts of a table in the caption and in text depends on whichever style is most convenient for the table. The most acceptable style is to follow the conventions for callouts of figures. Example:

TABLE I
Parameter Values

TABLE II
Optimal Wavelength as a Function of Polarizer Angle. (a) Wavelength for External Cavity. (b) Estimated Wavelength for Laser Diode

Obtaining permission to reuse copyrighted material

Reusing IEEE graphics previously published in IEEE publications. You will need to request permission directly from IEEEXplore. In mose cases, the only requirements will be to give full credit to the original source and to obtain the author's approval (as a courtesy to the author). At the end of the caption, add the reference number of the articles from which the graphics are being used.
Reusing graphics previously published in non-IEEE publications. You are responsible for obtaining in advance permission to republish from copyright holder [in most cases, this is the publishing house (not the author of the article)]. The wording is usually supplied by the publishing house itself. This text is added at the end of the caption.

Biographies

IEEE Transactions author biographies are generally divided into three paragraphs. However, if appropriate information for each paragraph is not available, the biography may be only one or two paragraphs.

The biography begins with the author's full name and IEEE membership history. The author's name appears in boldface type and must match the byline. A nickname may appear within parentheses, e.g., Sung-Mo (Steve) Kang, but not in the byline. List current IEEE membership only; this is written out in full and should match the byline exactly.

Note that affiliate memberships are neither listed in the byline nor biography membership history.
Abbreviations for IEEE membership grades are S (Student Member), GS (Graduate Student Member), A (Associate Member), M (Member), SM (Senior Member), F (Fellow), LA (Life Associate Member), LM (Life Member), LSM (Life Senior Member), and LF (Life Fellow). Note that A stands for Associate, not Affiliate, Member. Affiliate memberships are not listed in the byline or biography membership history.

Do not include references to IEEE membership from the text of the biography.
Author photos should be professional images of the head and shoulders. Current photos are encouraged; baby and family photos should not be used..

First Paragraph: The first paragraph may contain a place and/or date of birth (list place, then date). Next, the author's educational background is listed. When listing degrees earned, the biography should state " $[\mathrm{S}]$ he received the Ph.D. degree from ..." (not "[S]he received [her] his Ph.D. degree from ..."). Always add the word degree after a degree title. Include the years degrees were received. Abbreviations for some common international and domestic degrees are:

Dipl.Ing., Diplom-Physiker, Dr. Ing., Dr. Phil., Dr. Eng., B.S., S.B., B.Sc.(Hons.), B.E.E., B.S.E., M.Eng., M.Sc.(tech.), M.S.E.E., M.S.E., Civilingenir, Lic.es Sci., Lic.es Lett.

Add the full locations (city, state, country) of universities and colleges the first time they are mentioned. For U.S. state-named universities, repeat the state name in the location, and include the country (e.g., University of Colorado, Boulder, CO, USA); for city-named universities, repeat the name of the city when giving the location (e.g., University of Chicago, Chicago, IL, USA). For universities outside the U.S., give locations with the name of the city (postal abbreviations of Canadian Provinces, if used) and the country the first time.

Use lowercase for the author's major field of study.
Second Paragraph: The second paragraph of the biography lists military and work experience, including summer and fellowship jobs and consultant positions. Job titles are capitalized. The current job must have a location (city, state, country); previous positions may be listed without one (retain if given). Do not abbreviate city names, Company, Laboratory, or Department. Use standard names for all countries. If there is space, information the author provides about previous publications may be included at the end of this paragraph. Edit out long lists of published books or articles. Instead use the sentence "s(he) is the author of several books and numerous published articles." The format for listing publishers of an author's books within the biography is: Title of the Book (publisher name, year) similar to a reference. List author affiliations with non-IEEE journals. Note IEEE TRANSACTION AND Journal TiTLES should be in small caps; IEEE Magazine Titles should be in italics; and non-IEEE titles should ne in italics. List previous and currrent research interests. Do not repeat the author's name in the second paragraph; use "he" or "she."

Third Paragraph: The third paragraph begins with the author's title and last name (e.g., Dr. Smith, Prof. Jones, Mr. Kajor, Ms. Hunter). It lists the author's memberships in professional societies other than the IEEE and his or her status as a Professional Engineer if applicable. Finally, list awards and work for IEEE committees and publications, affiliation with other professional societies, and symposia.

Personal notes such as hobbies should not be included in the biography.

Examples:

Michael C. Author, Jr. (Fellow, IEEE) was born in New York, NY, USA, in 1969. He received the B.S. degree in applied mathematics from the University of Michigan, Ann Arbor, MI, USA, in 1989, the M.S. degree in mathematical physics from Stanford University, Stanford, CA, USA, in 1991, and the Ph.D. degree in electrical engineering from the Massachusetts Institute of Technology, Cambridge, MA, USA, in 1995.

From 1993 to 1995, he was with Raytheon Corporation, Bedford, MA, USA. From 1995 to 1996, he was with the General Electric Space Laboratory, Valley Forge, PA, USA. From 1996 to 1997, he was a Fulbright Lecturer at the University of Madrid, Madrid, Spain. He is currently an Associate Professor of electrical engineering at the University of Maryland, College Park, MD, USA. His research has been concerned with reentry plasma effects and microwave diagnostics of plasmas.

Dr. Author, Jr. is a Registered Professional Engineer in the State of Pennsylvania.
Katsunari Okamoto was born in Hiroshima Prefecture, Japan, in 1949. He received the B.S. degree from Rutgers University, New Brunswick, NJ, USA, in 1979, and the M.S. degree from Monmouth University, Long Branch, NJ, USA, in 1984.

He was a Postdoctoral Fellow at the University of Tokyo, Japan, in 1978. He joined the Ibaraki Electrical Communication Laboratory, N.T.T., Ibaraki-ken, Japan, in 1979, where he was engaged in research on the optimum waveguide structure of optical fibers. At present, he is a Member of Technical Staff at Bellcore, Red Bank, NJ, USA.

Dr. Okamoto is a member of the Institute of Electronics and Communication Engineers of Japan.

Squibs

If the author chooses not to publish his/her biography and photo, a squib is used. Example:
James A. Author (Fellow, IEEE), photograph and biography not available at the time of publication.

If all authors of the article opt not to publish his/her biography and photo, no squib is used.

C. Other Text

Footnotes

Footnotes should be numbered in consecutive order throughout the text. Each footnote should be a new paragraph. The footnote numbers are superscripts in text and in the actual footnotes. In text, place the superscript footnote numbers after punctuation such as periods, commas, parentheses, and quotation marks, but generally before dashes, colons, and semicolons in a compound sentence. The footnotes should be placed at the bottom of the text column in which they are cited.

Lists in Text

There are three types of lists in text: run-in lists, displayed lists, and where lists. The ordering of labeling for all lists is 1), 2), 3) followed by a), b), c), and then i), ii), iii). Note the single (ending) parenthesis. The order of indentation is $1 \mathrm{em}, 2 \mathrm{ems}, 3 \mathrm{ems}$.

Run-In Lists: Lists that run in with text must be grammatically correct. They must also be introduced by a colon, separated by semicolons, and have parallel construction. Example:

The carrier-phonon interaction matrices are given by: 1) polar optical phonons; 2) deformation potential optical phonons; and 3) piezoelectric acoustic phonons.

Displayed Lists: Lists that are displayed may be either incomplete sentence items or full sentence items. Incomplete sentence items contain a few items, are very short, are grammatically parallel, and are handled in two ways. If the items are not mentioned in the text or are fewer than three items, run in as shown in the example for run-in lists. If, however, the items are mentioned later in the text, introduce the item with a colon, number the items, begin the entry with a lowercase letter, and set block paragraph style. Use semicolons between items and a period at the end of the list. Example:

This operating scenario provides all of the contributors necessary to configure a resonant power distribution system:

1) implementation of capacitor power factor correction on the power line;
2) presence of nonlinear load;
3) tuning of the power line by the load adjustments to a frequency present in the nonlinear generator.

Incomplete sentence items that are mentioned in text may also be formatted as shown in the example for full sentence items.

Example:

The three problems are related in the following sense:

1) Additional cost constraint;
2) Relaxation of the constraints is permitted;
3) Limited budget optimization is a general optimization problem.

Full sentence items may be introduced by "that" or other words taking object and end with a period. Number all items, start each entry with a capital letter, and end with a period. Example:

The synthesis is performed in three major steps.

1) Geometry is generated for the selected module variants.
2) Shape variants using different fold counts for resistors are generated for each module.
3) Routing and postprocessing complete the final layout.

Where Lists: Where lists define variables in the equations preceding the list. They are characterized by incomplete sentences and follow the same rules as Nomenclature lists, with the following exceptions.

1) There is no primary heading.
2) The left-hand side is indented one em space.
3) The first letter on the right-hand side is lowercase.
4) Each item ends with a semicolon (except for the last item, which ends with a period).
5) The lists are at least three items long; if fewer than three items, the list is generally run in paragraph form.

Example:

where


```
\DeltaVS amplitude of supply voltage flicker;
\omega}\quad\mathrm{ angular frequency of supply voltage flicker;
VSf supply voltage amplitude;
\omega}\mathrm{ supply angular frequency.
```

Note the alignment of the equal sign with the right-hand side.

Lists having mixed items (start with an incomplete item, then have a full sentence explanation) are treated as a full sentence item list.

Dedication Line(s)

Dedication lines are usually run on the first page of an article, immediately above the Abstract.
Example: Dedicated to the work of J. W. Walters.

Note Added in Proof

One may wish to add a brief note in the proof stage, citing results obtained after acceptance of the article or mentioning additional references that have come to their attention since the article was accepted. This added information is usually inserted at the end of the Conclusion section of the article or in whatever section contains the last paragraph of the main body of the article. As long as the note is not a major change to the article or more than a few lines long, the addition generally does not require further review procedures. Use the tertiary heading "Note Added in Proof:" (run into text), but set in boldface italic with no enumeration and an em space indent.

Example:

Note Added in Proof. The author is an owner of the company which manufactured the tubes used in these experiments.

Note Added in Proof: Additional information about similar research can be found at www.newreseachresults.com.

D. Other Types of Papers

Editorials

This category of papers includes the various types of introductory papers, such as Editorials, Guest Editorials, Forewords, Introductions, and Editorial Announcements that appear at the beginning of issues as nontechnical introductory material. The Editorial may contain illustrations, citations, and references. Citations to articles in the issue should be listed as "Related Works" instead of in the reference section. It must contain a photo and biography of each guest editor when it is a Guest Editorial for a special issue or section. An acknowledgment does not contain a heading. Note: In the Editorial, the Acknowledgment does not need to be written in third person and there is no Abstract.

Byline: Note that the byline for the Editorial does NOT appear below the title as it does in a full length article. The name of the author of the Editorial or Foreword (usually the Editor or Guest Editor) (called "signature") appears at the end of the Editorial.

Example:

Marvin K. Sain, Guest Editor
Department of Electrical Engineering
University of Illinois
Urbana, IL 60617 USA

Brief Papers

These papers contain Abstracts and an initial cap. The byline includes the membership grade. They do not contain biographies and photographs of the authors

Short Papers, Correspondence, and Communications

Short papers are set up like full-length articles. The membership grade is not included in the byline. Author biographies and photos are not included. Footnotes, captions, and references may be included.

Comments and Replies

Comments are generally in response to a previously published article. The Comments and Author(s) Reply are short papers published together in that the "Reply" is in response to the Comments. These short items may appear without Abstracts. A special format applies for Comments and Author(s) Reply. Begin the first sentence with "In the above paper [1], ..." Reference [1] is the commented paper's citation, will appear as Reference [1] in the References section. Include a copyright line for Comments and Replies.
Some publications refer to these articles as Discussions and Closures.
Index Terms are optional.
Example of the Comments:
Title: Comments on "Harmonics: The Effects on Power Quality and Transformers"
Byline: Keith H. Sueker

Footnote:

Manuscript received July 15, 2006.
The author is with the School of Engineering, Vanderbilt University, Nashville, TN 37235 USA (e-mail: k.sueker@ieee.org).
Digital Object Identifier 10.1109/JQE.2006.12345
NOTE: The footnote here relates back to the original article being commented upon. The title is not repeated.
Example of the Reply:
Title: Authors' Reply
Byline: Robert D. Henderson and Patrick J. Rose

Footnote:

Manuscript received October 3, 2006; accepted October 5, 2006. Date of publication November 2, 2006; date of current version November 25, 2006.
The authors are with RDH Consultants, Inc., Charlotte, NC 28241 USA (e-mail: corresponding@author.com).
Digital Object Identifier 10.1109/JQE.2006.12348

Corrections/Errata

The format for a Corrections or an Erratum is basically the same as for the Comments, except that a Corrections does not carry a Reply. Run a copyright line with a Corrections. A Corrections that has been generated in-house is referred to as an "erratum," but note that the title is still labeled "Corrections." It should say Corrections to "Title of Original Article" and should also follow the standard format of a Correspondence.

Note: The plural form of the word is used in the title, even if there may be only one correction. All Corrections must carry the byline as the same form as the original article; this ensures that the two articles will be linked properly.

Example of a "Corrections" article:

Title: Corrections to "On the Exact Realization of LOG-Domain Elliptic Filters Using the Signal Flow Graph Approach"

Byline: Costas Psychalinos and Spiridon Vlassis

Footnote:

Manuscript received May 1, 2003.

[^0]Title: Corrections to "Harmonics: The Effects on Power Quality and Transformers"
Byline: Robert D. Henderson and Patrick J. Rose

Footnote:

Manuscript received January 20, 2004.
The authors are with RDH Consultants, Inc., Charlotte, NC 28241 USA (e-mail: pjrose@rdh.com).
Digital Object Identifier 10.1109/TVLSI.2004.830244

Book Reviews

Some publications carry Book Reviews. They are the same as a short paper or correspondence; however, the title runs additional information about the book that is being reviewed. The title is separated from the book's author by an em dash. Included in parentheses is the city of publication, publisher, date of publication, the total number of pages of the book, and the price. Outside of the parentheses is the reviewer's name in italics. Some Transactions carry a short biography of the reviewer under the title. Book Reviews appear in the table of contents with a listing for both the author of the book and the reviewer. Example:

Title and Byline:
The Analysis and Design of Pneumatic Systems-B. L. Andersen. (New York: Wiley, 1987, 302 pp., \$65.00.) Reviewed by J. L. Shearer.

First Footnote:

The reviewer is with the College of Engineering, Idaho State University, Pocatello, ID 83209 USA. Digital Identifier 00906778/TNN.2005.828433.

Table of Contents:

The Analysis and Design of Pneumatic Systems—B. L. Andersen Reviewed by J. L. Shearer 123

Obituaries/In Memoriam

Obituaries are usually run as the first page of an issue, like an Editorial. They are set up with the same specs as Editorials.

E. Writing Style for Transactions

The following provides a summary of the most important style distinctions to be made in the writing of a Transactions article.

Acronyms

Define acronyms the first time they appear in the Abstract as well as the first time they appear in the body of the article, written out first as part of the sentence, followed by the acronym in parentheses. Widely used or familiar terms should be defined (see the Common Acronyms and Abbreviations list in the Appendix for some terms that must be defined the first time they are used in text). Acronyms do not need to be defined in the text if mentioned in the Nomenclature. Coined plurals or plurals of acronyms do not take the apostrophe as per Chicago Manual of Style. Example: FET (singular); FETs (plural).

Indefinite articles are assigned to abbreviations to fit the sound of the first letter: an FCC regulation; a BRI.

Spelling

Note that IEEE Transactions use the first spellings indicated in our first reference, the most current edition of The Merriam-Webster Dictionary.

British Spellings and Terminology: Change all British spellings to American spellings. In particular, watch for "our" endings in words like "behaviour" (change to "behavior") and "re" endings in words like "centre" (change to "center"). Also watch for the use of " s " rather than " z " in words like "polarisation" (change to "polarization"). See "Common Hyphenations and Misspellings" in the Appendix.

Trademarks

The trademark symbols ${ }^{\mathrm{TM}}$ and \circledR^{\circledR} are no longer used. Capitalize the first letter in the trademark name only. The symbols ${ }^{\mathrm{TM}}$ and ${ }^{\circledR}$, which often accompany registered trademark names on product packaging and in advertisements, need not be used in running text. Optionally, for the first occurrence of a trademarked product, a footnote superscript can be placed after the trademarked name, with a matching footnote that reads "Trademarked." or "Registered trademark."

Plurals

Plurals of units of measure take the "s." For example, the plural form of 3 mil is $3 \mathrm{mils} ; 3 \mathrm{bits} / \mathrm{s}$ instead of $3 \mathrm{bit} / \mathrm{s}$. The plural of calendar years do not take the apostrophe before the "s." For example, the plural form of 1990 is 1990s.

Hyphenation Rules

For hyphenation and spelling guidelines, IEEE style follows: 1) the list of preferred spellings and hyphenated words can be found in the Appendix; 2) the guidelines discussed in the Grammar and Usage in Transactions section of this guide; and 3) the first version of the spelling given in the most recent edition of The Merriam-Webster Dictionary. Do not hyphenate most compound modifiers if they occur after the noun being modified, even if hyphenating them before the noun. Examples:

The plan was well prepared. The man was little known. The woman was better qualified. His boat was 42 feet long. He has a 42 -foot-long boat. T was the data period of the $40-\mathrm{Gb} / \mathrm{s}$ data signal. The $160-\mathrm{GHz}$ MLLD was a diode in which a $40-\mathrm{nm}-$ long saturable absorber was located.

NOTE: Do not use the IEEE Standards Dictionary for hyphenation guidelines as no attempt is made there for consistency in hyphenation. The Standards Dictionary is quite useful for its definitions and acronyms list in its back section.

The most important hyphenation guideline is to be certain that the hyphenation for a particular word or group of adjectives is consistent within a particular article.

The En, Em, or Two-Em Dash

The en dash represents the words "to," "through," or "and." Use it between page numbers, reference numbers, figure citations, academic years, proper nouns, names, a range of values, or for opposites.

Examples:

- pp. 10-15,
- 1984-1990,
- Jones-Smith theorem,
- input-output,
- voltage-current curve,
- analog-digital converter,
- $10-20 \mathrm{~cm}$.

Also, use the en dash in chemical abbreviations such as $\mathrm{Ni}-\mathrm{Al}-\mathrm{Si}$. When using the en dash to represent a range, if the word "from" occurs, the word "to" must be used rather than an en dash (e.g., ranges from 5 to 50 times).

The em dash is used in ordinary writing to mark a suspension of the sense. It is also used like parentheses, to mark a subordinate thought within a sentence.

Grammar

Check closely for lapses of clarity, subject/verb agreement, and parallel clause construction. See the following examples:

Number:
A number of samples were taken ...
A number N expressing the relation x / y is chosen ...
Data:
The data were collected ... (always plural)
Series:
A series of tests was run ... (always singular with "a")

Some, All, Half:

Some (all, half) of it is ...
Some of them are ...
For example:
Use "all of" with another pronoun, such as "these" or "those," and before singular nouns. For collective and plural nouns, use "all."

Quantity:

Three volts were applied ...
Four grams were added ..

Contractions

Contractions such as "don't" and "can't" are not used in technical text. Change to "do not" and "cannot."
Note: "don't care," "best-case," and "worst-case" are allowed and used often in journals like TCAD.

Capitalization

In general, discourage capitalization in text except where absolutely necessary. For example, only proper names attached to the names of laws, principles, theorems, etc., get capitalized (Abel's theorem, Newton's first law, etc.). Computer commands are in computer tags and remain small caps; most computer languages (Cobol, Java, LISP, PERL, etc.) are upper and lowercase. Earth should be capitalized when referring to the planet.

Math

Some brief guidelines for writing math are explained here.

1) Variables are set italic; vectors are usually boldface italic.
2) Remove commas around variables in text.
3) Always add a zero before decimals, but do not add after (e.g., 0.25).
4) Check the use of the parentheses and brackets i.e., $[0,1)$.
5) Spell out units used in text without quantities (e.g., "where the noise is given in decibels"). For units appearing with quantities, use the standard abbreviations listed in the Table of Units and Quantity Symbols in the Appendix, and units used as compound adjectives may be hyphenated only if needed for clarity: 10-kV voltage, 5 -in-thick glass. Do not insert a hyphen when they are not used as adjectives: a current of 2 A , a line 4 in long, a length of 3.05 mm .
6) Always use a regular space and not a thin space between numbers and units in text.
7) Use thin spaces instead of commas between numbers in tens or hundreds of thousands (e.g., 62000,100000 , but 4000).
8) Always make sure μ is $\mu \mathrm{m}$, "micron" is "micrometer," "submicron" is submicrometer." Always change cycle per second to hertz (Hz); cycle per second may not appear as cycle, cps, c/s, csec.
9) In text, fractions may be broken down (shilled) multiline (built-up) so they can be placed on one line. Sometimes parentheses may need to be added to distinguish between expressions, especially when a minus appears [e.g., $\frac{a}{b-c}$ becomes $\left.a /(b-c)\right], \frac{c-d}{k+4}$ becomes $[(c-d) /(k+4)]$. This may be done to save space, but is not a necessity.
10) In exponential expressions [e.g., $\left.e^{-(j w t) x y z k}\right]$, there are sometimes long and complicated superscripts. These may be brought down in line with the substitution of "exp" for "e" and the addition of square brackets (e.g., $\exp [-(j w t) x y z k])$.
11) Distinguish between lowercase italic "ell" or "oh" versus one and zero.
12) Always use numerals for numbers written with units. Otherwise, spell out numbers below 11, and use numerals for others unless they begin a sentence or are combined in a phrase (gives 7 to 13 times more).
13) Use zeroth, first, n th, $(k+1)$ th, not $1 \mathrm{st}, 2 \mathrm{nd},(k+1) \mathrm{st}$, etc.
14) Use the word "Equation" at the start of a sentence, but in text, just use the number [e.g., in (1)].
15) Use the \$ symbol versus "dollars" in sums of money.
16) The slash (/) is acceptable in place of the word "per" when it lends to the clarity of the sentence. For example: "the ratio of 16 samples/s to 35 samples/s as compared to ..."
Ellipses: In mathematics, you may use dots (ellipses) to show continuation in an expression (e.g., x_{2}, \ldots, x_{16}). The type of mathematical expression will determine whether the ellipses points are set on the baseline or centered. If commas or operational signs are present, they are placed after each term and after the three ellipses points. If operational signs are used, the ellipses are centered on the operator. When commas are used, the ellipses are on the baseline. Example:
$x_{1}, x_{2}, \cdots, x_{n} \operatorname{not} x_{1}, x_{2} \ldots x_{n}$
$x_{1}+x_{2}+\cdots+x_{n} \operatorname{not} x_{1}+x_{2}+\cdots x_{n}$
$y=0,1,2, \ldots \operatorname{not} y=0,1,2 \ldots$
$x_{1} x_{2} \cdots a_{n} \operatorname{not} x_{1} x_{2} \cdots a_{n}$
Conditions: In displayed equations, a comma or parentheses and a two-em space is inserted between the main expression and the condition following it. Example:

$$
\begin{array}{lc}
x=y n^{-2} & \forall n=3 \\
x=y n^{-2}, & \text { if } n=3-y^{-4} . \\
x=y n^{-2}, & y=3, \ldots, m
\end{array}
$$

NOTE: There is no comma before a for all " \forall " symbol.
Compound Units: Compound units should be separated by a centerdot (e.g., $4 \mathrm{~V} \cdot \mathrm{~s}$), but a slash may be used since this has a different meaning (for instance, $6 \mathrm{~V} / \mathrm{s}$ means volts per second). It is also possible touse a negative power to put a unit in the denominator: $\mathrm{cm} / \mathrm{s}^{2}=\mathrm{cm} \cdot \mathrm{s}^{-2}$. Parentheses may be used to clarify a unit: $\mathrm{g} /(\mathrm{cm} \cdot \mathrm{s})$ or g . $\mathrm{cm}^{-1} \cdot \mathrm{~s}^{-1}$.

Use of Periods and Commas: Equations which conclude a sentence should end with a period. The only time punctuation is used to lead into an equation is when the lead-in text is a complete sentence. Example:
where we had the following:

$$
x=Y+Z
$$

or where, i.e.,

$$
x=Y+Z
$$

Commas appearing at the ends of equations are deleted unless they are critical to the punctuation of the sentence containing the equation.

Equation Numbers

Equation numbering should be consecutive, should appear flush right on line with the last line of an equation, should not have repeats or missing numbers, and should use a correct numbering style.

Displayed Equations

Material in displayed equations is automatically italic unless you indicate otherwise. Some simple general rules apply. All variables are italic. Function names and abbreviations are Roman, as are units, unit abbreviations, complete words, and abbreviations of words. Superscripts and subscripts follow this same formula: when they are variables, they are italic; when they are abbreviations of words (such as "in" and "out" for input and output), they are Roman. Single-letter superscripts and subscripts may be italic even if they are abbreviations, unless this leads to inconsistency between italic and Roman characters for similar types of subscripts.

F. General Layout Rules

1) Figures and tables are placed at the tops of columns as close to their first mention as possible, but preferably after the mention.
2) Figures and tables progress vertically, not horizontally, on pages.
3) Footnotes must appear at the bottom of the column where they are first mentioned.

III. GRAMMAR AND USAGE IN TRANSACTIONS

A. Rules of Grammar

The principles of style below focus on fundamentals of modern usage. Particular emphasis is given to the rules most commonly violated.

1) Form the possessive singular of nouns by adding " \mathbf{s} " (Avogadro's theorem). Follow this rule unless the final consonant is an s (Burns' theorem). Possessive pronouns (hers, its, yours, theirs, ours) have no apostrophe. Indefinite pronouns use the apostrophe to show possession (someone's rule). Contractions use an apostrophe (it's for ...; it is). Possessives do not (its losses).
2) In a series of three or more terms, use a comma immediately before the coordinating conjunction (usually and, or, or nor).
3) Enclose parenthetic expressions between commas (Improvement, as shown in Fig. 1, is attained by the addition of the cogeneration). Brief phrases or single words, such as however, may or may not be parenthetic (such connectives at the head of a sentence are more commonly left unpunctuated). The commas may be omitted if the interruption to the flow of the sentence is slight. In this case, never omit one comma and leave the other. Remember that many seemingly single commas stand for a pair. Clauses or phrases at the beginning or end of sentences do not look parenthetical, but often they might just as well be placed in the middle, in which case they would be found punctuated at both ends. At the beginning of a sentence, such an element is set off by what should be thought of as the second comma in a pair. For instance, note the three possible positions illustrating a parenthetical element of this kind: However the sum may later change, it is calculated now/The sum is calculated now, however it may later change/The sum, however it may later change, is calculated now. In all three examples, the meaning remains constant; the single commas of the first and second sentences have the same parenthetical function as the paired commas of the third.
Parenthetic material such as dates take the comma(s) as follows: February 14, 1996 or April to June 1996 or Saturday, March 9, 1996.
The abbreviations etc., i.e., and e.g., are parenthetic and use the comma as follows: cables, transformers, etc., are needed. Abbreviations for academic degrees, titles following a name, and certain restrictive terms of identification should be punctuated as follows:
Robert D. Lorenz, Ph.D.
Ian T. Wallace, Member, requests that...
E. A. Brockmann, Jr., states that...

Restrictive clauses are not parenthetic and are not set off by commas: The proof that (or which) (restrictive clause should be "that" while nonrestrictive is "which"; "who" can be restrictive or nonrestrictive, depending on how it is used) is given in this section is not complete.
Nonrestrictive clauses are parenthetic and are set off by commas: The address i, which is the starting address of the message, is then transferred to a queue list on the processing part ...
The nonrestrictive clause always takes "which" and is surrounded by commas. The restrictive clause can take "that" or "which"; "that" is preferred.
4) A semicolon is used to link two independent clauses with no connecting words. You can also use a semicolon to join two independent clauses together with one of the following conjunctive adverbs: however, moreover, therefore, consequently, otherwise, nevertheless, thus, etc.
5) Use a colon after an independent clause to introduce a list.
6) Punctuation always goes inside quotation marks, except for the colon and semicolon. Use single quotation marks around quotes within quotes. Quotes may be used around a new or special usage of a term the first time only, but use of quotes in this manner should be kept to a minimum.
7) Do not use double parentheses in text expressions, but keep them in math. For example, (see (10)) should become [see (10)].
8) All acronyms and numerical plurals do not use apostrophes, i.e., FETs, 1980s (Note: Some exceptions may apply in mathematical writing.)
9) Compound nouns made from a one-syllable verb and a short adverb are one word when found that way in the dictionary (setup, takeoff, breakup). Compound nouns are likely to be two words, without a hyphen, or one word (bandwidth, bypass, flowchart, phase shift, sideband, standing wave). Compound nouns of more than two words can be hyphenated.
10) A pair of words, modifying a third word separately, does not get a hyphen (a tall water tower, a hot metal cylinder). If the first word modifies the second, and the pair together modify the third, there is a hyphen between the pair (a high-frequency signal, a second-order equation). The exception to this is the adverb ending in "ly," which needs no hyphen to join it to the next word.
11) A hyphen is not used after the comparative or the superlative (a higher order equation, a worst case value, nearest neighbor method). Do not hyphenate chemical compounds (sodium chloride crystals). Alloys and mixtures take the en dash ($\mathrm{Ni}-\mathrm{Co}, \mathrm{He}-\mathrm{Ne}$ laser).
12) Do not use commas between adjectives (a planar equiangular spiral antenna).
13) Do not hyphenate predicate adjectives (... is well known, ...is second order).
14) If you are unsure, check The Merriam-Webster Dictionary to see if words are hyphenated.
15) Compound verbs are generally hyphenated (arc-weld, freeze-dry). Keep the hyphen when using the participles of such verbs as adjectives (freeze-dried, arc-welded). However, verbs with up, out, down, off, on, etc., do not have a hyphen, although the nouns formed from them may be hyphenated or one word (verb: set up, break down, read out; noun: setup, breakdown, readout).

Words Often Confused

Affect: to change or modify (verb).
Effect: result (noun); cause (verb).
Alternate: a substitute.
Alternative: a matter of choice.
Among: involves more than two things.
Between: involves more than two things, but considers each individually.
Compare to: point out resemblances between different objects.
Compare with: point out similarities and differences between same objects.
Compose: to make up or form: a set composed of members.
Comprise: to be made up of; to be formed by: a set comprising members; members comprising a set.
Farther: distance.
Further: quantity.
Fewer: modifies plural nouns specifying countable units, e.g., fewer tubes.
Less: modifies singular mass nouns and singular abstract nouns, e.g., less air.
Imply: something suggested though not expressed.
Infer: something deduced from evidence.
Number: used when objects can be counted: a large number of people.
Amount: used when objects cannot be counted: a large amount of water.

Principal: chief, main, most important (adjective).
Principle: a rule (noun).
Precede: come before.
Proceed: continue, advance.
That: (defining, restrictive).
Which: (nondefining, nonrestrictive)

IV. APPENDIX

A. Some Common Acronyms and Abbreviations

NOTE: Asterisks $\left({ }^{*}\right)$ indicate terms which must be defined the first time they are used in text. Other terms listed here may be used without definition.

\mathbf{A}	
ac	alternating current
A-D, A/D	analog-to-digital
AF	audio frequency*
AFC	automatic frequency control*
AGC	automatic gain control*
AM	amplitude modulation
APD	avalanche photodiode
AR	antireflection*
ARMA	autoregressive moving average*
ASIC	application-specified integrated circuit*
ASK	amplitude shift keying
ATM	asynchronous transfer mode
av	average (subscript)*
avg	average (function)
AWGN	additive white Gaussian noise*
B	
B-E	base-emitter source
BER	bit error rate*
BPSK	binary phase-shift keying
BWO	backward-wave oscillator*
\mathbf{C}	
c.c.	complex conjugate (in equations)
CCD	charge-coupled device*
CDMA	code division multiple access*
CD-ROM	compact disk read-only memory
CIM	computer integrated manufacturing*
CIR	carrier-to-interference ratio*
CMOS	complimentary metal-oxide-semiconductor
CPFSK	continuous phase frequency-shift keying*
CPM	continuous phase modulation*
CPSK	continuous phase-shift keying*
CPU	central processing unit
CRT	cathode-ray tube
CT	current transformer*
CV	capacitance-voltage
CW	continuous wave*

D	
dc	direct current
DC	directional coupler
DF	direction finder*; deuterium fluoride; degree of freedom*
DFT	discrete Fourier transform*
DMA	direct memory access*
DPCM	differential pulse code modulation*
DPSK	differential phase-shift keying*
E	
EDP	electronic data processing
EHF	extremely high frequency*
ELF	extremely low frequency*
EMC	electromagnetic compatibility*
EMF	electromotive force*
EMI	electromagnetic interference*
ems	expected value of mean square*
F	
FDM	frequency division multiplexing*
FDMA	frequency division multiple access*
FET	field-effect transistor
FFT	fast Fourier transform*
FIR	finite-impulse response*
FM	frequency modulation
FSK	frequency-shift keying*
FTP	file transfer protocol
FWHM	full-width at half-maximum*
$\underline{\text { G }}$	
GUI	graphical user interface
H	
HBT	heterojunction bipolar transistor
HEMT	high-electron mobility transistor
HF	high frequency
HTML	hypertext markup language
HV	high voltage
HVdc	high voltage direct current
$\underline{\text { I }}$	
IC	impedance compensation*; integrated circuit
ID	inside diameter; induced draft*; interdigital*
IDP	integrated data processing*
IF	intermediate frequency
IGFET	insulated-gate field-effect transistor
i.i.d.	independent identically distributed*
IM	intermediate modulation
IMPATT	impact ionization avalanche transit time (diode)
I/O, I-O	input-output
IR	infrared
IR	current-resistance
ISI	intersymbol interference
I-V	current-voltage
J	
JFET	junction field-effect transistor

JPEG	Joint Photographers Expert Group
\mathbf{L}	
LAN	local area network
LC	inductance-capacitance
LED	light-emitting diode
LHS	left-hand side*
L-I	light output-current
LMS	least mean square
LO	local oscillator*
LP	linear programming*
LPE	liquid phase epitaxy*
LR	inductance-resistance
\mathbf{M}	
MESFET	metal-semiconductor field-effect transistor
MF	medium frequency*
MFSK	minimum frequency-shift keying
MHD	magnetohydrodynamics
MIS	metal-insulator-semiconductor
MLE	maximum-likelihood estimator*
MLSE	maximum-likelihood sequence estimator*
MMF	magnetomotive force
MMIC	monolithic microwave integrated circuit*
MoM	method of moments*
MOS	metal-oxide-semiconductor
MOSFET	metal-oxide-semiconductor field-effect transistor
MOST	metal-oxide-semiconductor transistor
MPEG	Motion Pictures Expert Group
\mathbf{N}	
A	numerical aperture*
NIR	near infrared response*
NMR	nuclear magnetic resonance*
n-p-n	(diode)
NRZ	nonreturn to zero*
\mathbf{o}	
OD	outside diameter
OEIC	optoelectronic integrated circuit*
OOP	object-oriented programming
\mathbf{P}	pulse-amplitude modulation*
PAM	personal computer
PC	pulse-code modulation*
PCM	probability density function*
pdf	pulse-duration modulation*
PDM	power factor*
PF	Proportional-integral differential
PID	phase-locked loop**
p-i-n, p-n-p	(diode)
PLL	phectly matched layer
PM	phase modulation*
PML	perf

pp, p-p	peak-to-peak*
PPM	pulse-position modulation*
PRF	pulse-repetition frequency*
PRR	pulse-repetition rate*
PSK	phase-shift keying*
PTM	pulse-time modulation
p.u.	per unit*
PWM	pulse width modulation*
\underline{Q}	
Q	quality factor; figure of merit
QoS	quality of service
QPSK	quaternary phase-shift keying
R	
RAM	random access memory
$R C$	resistance-capacitance
R\&D	research and development
RF	radio frequency
RFI	radio frequency interference*
RHS	right-hand side*
RIN	relative intensity noise*
$R L$	resistance-inductance
rms	root mean square
ROM	read-only memory
RV	random variable
S	
SAW	surface acoustic wave*
SGML	standard generalized markup language
SHF	super high frequency*
SI	International System of Units; severity index*
SIR	signal-to-interference ratio
S / N, SNR	signal-to-noise ratio
SOC	system-on-a-chip*
SSB	single sideband*
SW	short wave*
SWR	standing-wave ratio*
TDM	time-division modulation*; time-division multiplexing*
TDMA	time-division multiple access*
TE	transverse electric
TEM	transverse electromagnetic
TFT	thin-film transistor*
TM	transverse magnetic
TVI	television interference*
TWA	traveling-wave amplifier*
$\underline{\text { U }}$	
UHF	ultrahigh frequency
UV	Ultraviolet
V	
VCO	voltage-controlled oscillator*

VHF	very high frequency*
$V-I$	voltage--current
VLF	very low frequency*
VLSI	very large scale integration*
\mathbf{W}	
WAN	wide area network WDM

B. Common Hyphenations and Misspellings

a posteriori
a priori
Abelian
accommodate
acknowledgment
acoustoelectric
acoustooptical
ad hoc
ad hoc networks
adder
aerospace
aftereffect
airborne
all-pass (adj)
Alnico
alphameric
alphanumeric
analog (not analogue)
appendixes
arc-back (n, adj)
arc-over (n, adj)
axle
back EMF
back-end (adj)
backscatter
band-limited (adj)
bandpass
band-shared (adj)
bandwidth
bang-bang
base-emitter [en dash]
base-collector [en dash]
baseband
baseline

Bayes' rule
beamwidth
Bernoulli polynomial
Bessel function
bimetallic
biomedical
blackbody
Boltzmann's constant
Boolean algebra
broadband
bulk-source [en dash]
bus (not buss)
bypass
C-band
Cartesian
Cascade
cascode
Cauchy's inequality
Chebyshev
Tchebbycheff)
chi-square
Clebsch-Gordan coefficient
coauthor (also, coworker)
coax (coaxial)
collinear (not colinear)
continuous-time (adj)
coset
costate
Coulomb wave function
counterclockwise
counterexample
coworker
coupled-mode (adj)
cross correlation
not

crossover
cross section
cross-sectional (adj)
crosstalk
cutoff
cybersecurity
database
deadtime (or dead time)
debug, debugged
Debye temperature
Dewar
diagramed
dielectric
diesel
digamma function
Dirac
discretization
discusser
Doppler
drain-source [en dash]
dropout
dyadic
eccentricity
eigenfunction
eigenvalue
eigenvector
elastance
elastooptical
electrooptic
elliptical coordinates
elliptic integrals
emitter-bulk [en dash]

end-effector
endfire
endpoint
et al.
Euler function
exponentiate
fan-in
fan-out
far-field (adj)
fast Fourier transform
feedback
feedback-free (adj)
first-order (adj)
flat-band
flip-flop
flowchart
flowmeter
flowthrough
fold (twofold, n-fold)
foreword
formulas (not formulae)
forward scatter
4-vector
front-end (adj)
Fresnel
gate-source [en dash]
gate-drain [en dash]
gauge (not gage)
Gaussian distribution
Gegenbauer
gimbaled
gradient
(the) Green's function
Gudermannian
half-angle
half-plane
half-space
half-wave
halfway
Hankel function
Heaviside
Hermite
Hermitian
Hertzian
higher order (adj)
high-order (adj)
high-pass (adj)
hookup
hydroelectric

iff (if and only if)
imbalance (n)
inasmuch as
indexes (plural of index)
indices (plural used in math)
infrared
inhomogeneous
input, inputted
input-output [en dash]
in situ
insofar as
in vitro
in vivo
integer
integral
integrand
integrator
integro-differential
Internet
Itô
Jacobian
Jacobi’s polynomials
Ka-band
Kronecker delta
L-band
Lagrange
Lagrangian
Laguerre polynomial
Lame's transform
Laplace transform
Laplacian
Laurent series
left-hand side
leftmost
Legendre
Leibnitz (or Leibniz)
leveled
lightweight
like (suffix, close up)
line shape
lineup
linewidth
lockout
log-likelihood (adj)
lookup table
loudspeaker
lower order (adj)
low-order (adj)
low-pass (adj)

Lur'e
Lurie
Lyapunov (not Liapunov)
macro (noun)
magnetohydrodynamics
magnetooptic
main lobe
makeup
manhole
man-hour
man-made
manpower
Markov process
m-ary
Mathieu's equation
matrices
mean-square
mid (prefix) close up
midband
midline
midplane
midpoint
miniscule
missile
modem
modulo (mod)
modulus
monotonic
monotonically
monotonicity
Mossbauer
m-sequence (noun)
multi (prefix) usually one
word
multithreshold
Mylar
narrowband (adj)
n-ary
nearby
near-field (adj)
neoprene
Neumann
n-junction
n-layer
non (prefix) one word
non-Euclidean
non-Gaussian
non-Hermitian
nonnegative

non-Stokes'
nonzero
NP-hard
nth-order (adj)
n-tuple
n-type
n-well
ohmmeter
one-dimensional (adj)
ORed, oring
ON-OFF
output, outputted
overall (adj)
parameterization
particle
passband
percent
Permalloy
Perspex
phaselength
phase shift
phasewidth
photoelectric
photoetch
photoresist
pickup
piecewise linear
piezoelectricity
p-i-n
pinchoff
p-junction
Planck's constant
p-n junction
p-n-p (not PNP)
p^+-n-p^++
Poisson distribution
positive definite
postmultiplication
pothead
potline
powerhouse
power plant
preceding
premultiplication
printout
proceeding
programmed
proof (suffix) one word
propagation

pseudo (prefix) one word	signaling
pseudorandom	slip ring
p-type	slow wave
pull-in	so-called
pull-out	solid-state (adj)
pulselength	space-time
pulse shape	special-purpose (adj)
pulsewidth	spirule
punchthrough	state of the art (noun)
p-well	state-variable (adj)
quadratic	step-down
quarter-wave	step-up
quartic	Stirling numbers
quasi- (prefix) hyphen	Stokes'
quaternary	stopband
Q value	straightforward
radioactive	strain gauge
radio-astronomic	Struve's function
radio astronomy	Sturm-Liouville [en dash]
radio frequency	suboptimum
random access (adj)	subproblem
readback	succeeding
READ head	successive
readin (noun)	summable, asummable
readout (noun)	supercoding
real-valued (adj)	supermartingale
reentry	supersede
reexamine	switchgear
Riccati	switchyard
Riemann	table lookup
right-hand side	takeoff
rise time	Taylor expansion
root-mean-square (adj)	Tchebbyscheff (use
roundoff (adj)	Chebyshev)
Runge-Kutta	Teflon
saddle point	Teletype
scalar (magnitude)	teletypewriter
scaler (machine)	tensor
scalor (rare)	thin-film (adj)
self- (prefix) hyphen	threefold
self-adjoint	3-space
semi (prefix) usually one	throughput
	time dependence
semi-infinite	time-varying (adj)
servo (servomechanism)	tradeoff
servo amplifier	traveling
-shaped (hyphen)	two-port (or 2-port)
sideband	two's complement
sidelobe	-type (hyphen)

ultrahigh frequency
ultrasonic
ultraviolet
unbalance (verb)
Van de Graaf
van der Waals
vector
versus
vertical
vertices
watthour meter
wattmeter
waveband

waveform
wavefront
wave function
waveguide
wavelength
wavenumber
wave shape
wave vector
wideband
wide-sense (adj)
widespread
wise (suffix) one word
worldwide

worst case (adj)
WRITE head
x-axis
X-band
x-direction
X-ray (adj)
$x y$ plane
Yagi
Zener diode
zero-input (adj)
zero-sum (adj)
zeroth-order (adj)
z transform

C. Table of Units and Quantity Symbols

NOTE: Asterisks (*) indicate SI units, preferred multiples of SI units, or other units acceptable for use with SI.

Unit	$\begin{gathered} \hline \text { Unit } \\ \text { Symbol } \end{gathered}$	Sometimes Occur as: (do not use)	Applications and Notes	Quantity Symbol (for use as variables, etc.)
*ampere	A	amp, a	SI unit of electric current.	$\begin{aligned} & \hline I \\ & U \\ & F \end{aligned}$
ampere-hour	Ah	amp-hr	Also A h .	
*ampere (turn)	A	At	SI unit of magnetomotive force.	F
*ampere per meter	A/m		SI unit of magnetic field strength.	$\begin{aligned} & A \\ & H \\ & \hline \end{aligned}$
ångström	Å	Å	$\AA \quad 10 \cdot \mathrm{~m}$. Deprecated (see ANSI/IEEE Std 268-1992).	
atmosphere, standard	atm		atm 101325 Pa . Deprecated (see ANSI/IEEE Std 268-1992).	
atmosphere, technical	at		at $\mathrm{kgf} / \mathrm{cm}^{2}$. Deprecated (see ANSI/IEEE Std 268-1992).	
*atomic mass unit (unified)	u		The (unified) atomic mass unit is defined as onetwelfth of the mass of an atom of the carbon-12 nuclide. Use of the old atomic mass unit (amu), defined by reference to oxygen, is deprecated.	
*atto	a		SI prefix for 10^{-18}.	
*attoampere	aA			
bar	bar	b, barye	bar $\quad 100 \mathrm{kPa}$. Use of the bar is strongly discouraged (see ANSI/IEEE Std 268-1992). Except for limited use in meteorology.	
barn	b		b $\quad 10^{28} \mathrm{~m}^{2}$.	

barrel	bbl		$\mathrm{bbl}=42 \text { gal }_{\mathrm{us}}=158.99 \mathrm{~L} .$ This is the standard barrel used for petroleum and petroleum products. Different standard barrels are used for other commodities.	
barrel per day	bbl/d			
baud	Bd	baud (w/prefix)	In telecommunications, a unit of signaling speed equal to one element per second. The signaling speed in bauds is equal to the reciprocal of the signal element length in seconds.	$1 / \tau$
bel	B	b		
*becquerel	Bq		SI unit of activity of a radionuclide.	
billion electronvolts	GeV	bev, BeV	The name gigaelectronvolt is preferred for this unit.	
bit	b		In information theory, the bit is a unit of information content equal to the information content of a message, the a priori probability of which is one-half. In computer science, the name bit is used as a short form of binary digit.	
bit per second	b/s			
British thermal unit	Btu			
byte	B		A byte is a string of bits, usually eight bits long, operated on as a unit. A byte is capable of holding one character set.	
calorie (International Table)	$\mathrm{cal}_{\text {IT }}$		cal $_{\text {IT }} 4.1868$ J. Deprecated (see ANSI/IEEE Std 268-1992).	
calorie (thermochemical)	cal		cal 4.1840 J. Deprecated (see ANSI/IEEE Std 268-1992).	
* candela	cd		SI unit of luminous intensity.	I
candela per square inch	cd/in ${ }^{2}$		Use of the SI unit $\mathrm{cd} / \mathrm{m}^{2}$ is preferred.	
*candela per square meter	$\mathrm{cd} / \mathrm{m}^{2}$	nit	SI unit of luminance.	L
candle	cd		The unit of luminous intensity has been given the name candela. Use of the name candle for this unit is deprecated.	
* centi	$\begin{gathered} c \\ \text { (prefix) } \end{gathered}$		SI prefix for 10^{-2}.	
*centimeter	cm			
centipoise	cP		cP $\quad \mathrm{mPa} \cdot \mathrm{s}$. The name centipoise is deprecated (see ANSI/IEEE Std 268-1992).	
centistokes	cSt		$\mathrm{cSt} \quad \mathrm{mm}^{2} / \mathrm{s}$. The name centistokes is deprecated (see ANSI/IEEE Std 268-1992).	
*circular mil	cmil		cmil ($/ 4$) $\cdot 10 \cdot \mathrm{in}^{2}$.	
*coulomb	C	c	SI unit of electric charge.	Q
*cubic centimeter	cm^{3}	cc	Volume. (Preferred SI unit multiple.)	
cubic foot	ft^{3}			
cubic foot per minute	$\mathrm{ft}^{3} / \mathrm{min}$	cfm		
cubic foot per second	ft / s			
cubic inch	in ${ }^{3}$			
*cubic meter	m^{3}			

*cubic meter per second	$\mathrm{m}^{3 / \mathrm{s}}$			
cubic yard	yd^{3}			
curie	Ci	C	$\mathrm{Ci} \quad 3.7 \times 10^{10} \mathrm{~Bq}$. A unit of activity of a radionuclide. Use of the SI unit, the becquerel, is preferred.	
cycle per second	Hz	c/s, cps, $\mathrm{c} / \mathrm{sec}$, cycle	See hertz.	
darcy	D		D $\quad \mathrm{cP} \cdot(\mathrm{cm} / \mathrm{s}) \cdot(\mathrm{cm} / \mathrm{atm})=0.986923 \mu \mathrm{~m}^{2}$. A unit of permeability of a porous medium. By traditional definition, a permeability of one darcy will permit a flow of $1 \mathrm{~cm}^{3} / \mathrm{s}$ of fluid of 1 cP viscosity through an area of $1 \mathrm{~cm}^{2}$ under a pressure gradient of $1 \mathrm{~atm} / \mathrm{cm}$. Deprecated (see ANSI/IEEE Std 268-1992).	
day	d		day 24 h .	
deci	$\begin{gathered} \mathrm{d} \\ \text { (prefix) } \end{gathered}$		SI prefix for 10^{-1}.	
decibel	dB	db, DB		
degree (plane angle)	\ldots	deg		
degree (temperature)				
degree Celsius	${ }^{\circ} \mathrm{C}$	degree centigrade	SI unit of Celsius temperature. The degree Celsius is a special name for the kelvin, used in expressing Celsius temperatures or temperature intervals.	t
degree Fahrenheit	${ }^{\circ} \mathrm{F}$		Note that the symbols for ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$, and ${ }^{\circ} \mathrm{R}$ are comprised of two elements, written with no space between the ${ }^{\circ}$ and the letter that follows. The two elements that make the complete symbol are not to be separated.	
degree kelvin	K		See kelvin.	
degree Rankine	${ }^{\circ} \mathrm{R}$			
deka	da		SI prefix for 10.	
dyne	dyn	dyne	dyn $\quad 10^{*} \mathrm{~N}$. Deprecated (see ANSI/IEEE Std 268-1992).	F
*electronvolt	eV	ev		
erg	erg		erg $\quad 10^{\circ} \mathrm{J}$. Deprecated (see ANSI/IEEE Std 268-1992).	
exa	E		SI prefix for $10{ }^{18}$.	
*farad	F	f, fd	SI unit of capacitance.	C
* femto	f		SI prefix for 10^{-15}.	
femtometer	fm			
foot	ft		$\mathrm{ft} \quad 0.3048 \mathrm{~m}$.	
foot of water	$\mathrm{ftH}_{2} \mathrm{O}$		$\mathrm{ftH}_{2} \mathrm{O}=2989.1 \mathrm{~Pa}$. (ISO). ${ }^{1}$	
foot per minute	$\mathrm{ft} / \mathrm{min}$	fpm		
foot per second	ft / s	$\mathrm{fps}, \mathrm{ft} / \mathrm{sec}$		

foot per second squared	$\mathrm{ft} / \mathrm{s}^{2}$			
foot pound-force	$\mathrm{ft} \cdot \mathrm{lbf}$			
footcandle	fc		fc $\quad \mathrm{lm} / \mathrm{ft}^{2}$. The name lumen per square foot is also used for this unit. Use of the SI unit of illuminance, the lux (lumen) per square meter, is preferred.	
footlambert	fL		fL (1/)cd/ft. A unit of luminance. One lumen per square foot leaves a surface whose luminance is one footlambert in all directions within a hemisphere. Use of the SI unit, the candela per square meter, is preferred.	
gal	Gal		Gal cm/s. Deprecated (see ANSI/IEEE Std 268-1992)	
gallon	gal		$\begin{aligned} & \hline 1 \mathrm{gal}_{\mathrm{⿺K}}=4.5461 \mathrm{~L} . \\ & 1 \mathrm{gal}_{\mathrm{Us}} \quad 231 \mathrm{in}^{3}=3.7854 \mathrm{~L} . \end{aligned}$	
gauss	G		The gauss is the electromagnetic CGS unit of magnetic flux density. Deprecated (see ANSI/IEEE Std. 268-1992).	B
*giga	G	kM	SI prefix for $10{ }^{\circ}$.	
gigabyte	GB		$\mathrm{GB} \quad 10^{\circ} \mathrm{B}$.	
*gigaelectronvolt	GeV	bev, BeV		
*gigahertz	GHz	kMHz, KMC, Gc/s		
			'The term "(ISO)" means that the definition is from ISO 31 .	
gilbert	Gb		The gilbert is the electromagnetic CGS unit of magnetomotive force. Deprecated (see ANSI/IEEE Std 268-1992).	
grain	gr		gr 1b/7000.	
*gram	g	gm		m
gram per cubic centimeter	$\mathrm{g} / \mathrm{cm}^{3}$			
*gray	Gy		SI unit of absorbed dose in the field of radiation dosimetry.	
*hecto	h		SI prefix for $10{ }^{2}$.	
*henry	H	Hy, hy	SI unit of inductance.	$\begin{aligned} & L \\ & P, P_{m} \end{aligned}$
*hertz	Hz	cps, c/s, cycle	SI unit of frequency.	$\begin{aligned} & \hline f, v \\ & B \end{aligned}$
horsepower	hp		hp $\quad 550 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=746 \mathrm{~W}$. The horsepower is an anachronism in science and technology. Use of the SI unit of power, the watt, is preferred.	
*hour	h	hr		

inch	in	in.	in 2.54 cm .	
inch of mercury	inHg		inHg $=3386.4 \mathrm{~Pa}$ (ISO).	
inch of water	$\mathrm{inH}_{2} \mathrm{O}$		$\mathrm{inH}_{2} \mathrm{O}=249.09 \mathrm{~Pa}$ (ISO).	
inch per second	in/s	ips		
*joule	J		SI unit of energy, work, and quantity of heat.	$\begin{aligned} & E \\ & W \\ & Q \\ & \hline \end{aligned}$
*joule per kelvin	J/K		SI unit of heat capacity and of entropy.	S
kelvin	K		In 1967, the CPGM gave the name kelvin to the SI unit of temperature, which had formerly been called degree kelvin, and assigned it the symbol K (without the symbol ${ }^{\circ}$).	
*kilo	k		SI prefix for 10^{3}. The symbol k shall not be used for kilo. The prefix kilo shall not be used to mean $2^{10}($ that is, 1024).	
*kilobit per second	kb/s			
*kilobyte	kB		kB 1000 bytes.	
kilogauss	kG		Deprecated (see ANSI/IEEE Std 268-1992).	
*kilogram	kg		SI unit of mass.	
kilogram-force	kgf		Deprecated (see ANSI/IEEE Std 268-1992). In some countries the name kilopond (kp) has been used for this unit.	
*kilohertz	kHz			
*kilohm	$\mathrm{k} \Omega$			R
*kilometer	km			
*kilometer per hour	km/h			
kilopound-force	klbf		Kilopound-force should not be misinterpreted as kilopond (see kilogramforce).	
*kilovar	kvar			Q
*kilovolt	kV			
*kilovoltampere	kVA	KVA, kva		
*kilowatt	kW			
kilowatthour	kWh		Also kW•h.	
knot	kn		$\mathrm{kn} \quad \mathrm{nmi} / \mathrm{h} .0 .514 \mathrm{~m} / \mathrm{s}$.	
lambert	L		L (1/)cd/cm². A CGS unit of luminance. One lumen per square centimeter leaves a surface whose luminance is one lambert in all directions within a hemisphere. Deprecated (see ANSI/IEEE Std 268-1992).	
*liter	L		L $\quad 10^{3} \mathrm{~m}^{3}$. In 1979, the CGPM approved L and 1 as alternative symbols for the liter. Because of frequent confusion with the numeral 1 , the letter symbol 1 is not	V, v

			recommended for U.S. use (see Federal Register notice of December 20, 1990, vol. 55 , no. 245, p. 52242). The script l shall not be used as a symbol for liter.	
liter per second	L/s			
*lumen	1 m		SI unit of luminous flux.	Φ
lumen per square foot	$1 \mathrm{~m} / \mathrm{ft}^{2}$		A unit of illuminance and also a unit of luminous exitance. Use of the SI unit, lumen per square meter, is preferred.	
*lumen per square meter	$1 \mathrm{~m} / \mathrm{m}^{2}$		SI unit of luminous exitance.	M
*lumen per watt	1m/W		SI unit of luminous efficacy.	$\begin{aligned} & K(\lambda) \\ & K, K_{1} \end{aligned}$
*lumen second	$\mathrm{lm} \cdot \mathrm{s}$		SI unit of quantity of light.	Q
*lux	1x		$1 \mathrm{x} / \mathrm{lm} \quad / \mathrm{m}^{2}$. SI unit of illuminance.	E
maxwell	Mx		The maxwell is the electromagnetic CGS unit of magnetic flux. Deprecated (see ANSI/IEEE Std 268-1992).	
*mega	M		SI prefix for $10{ }^{\circ}$. The prefix mega shall not be used to mean 2^{20} (that is, 1048576).	
megabit per second	Mb/s			
*megabyte	MB		MB 1000000 bytes.	
*megaelectronvolt	MeV			
*megahertz	MHz			
*megohm	$\mathrm{M} \Omega$	M		
*meter	m		SI unit of length.	L
metric ton	t		t 1000 kg . Use of the name tonne is deprecated in the U.S. (see ANSI/IEEE Std 268-1992).	
mho	S		Ω^{+}. The name mho was formerly given to the reciprocal ohm. Deprecated; see siemens (S).	
*micro	μ		SI prefix for 10 .	
*microampere	$\mu \mathrm{A}$			
*microfarad	$\mu \mathrm{F}$			
*microgram	$\mu \mathrm{g}$			
*microhenry	$\mu \mathrm{H}$			
microinch	$\mu \mathrm{in}$			
*microliter	$\mu \mathrm{L}$		See note for liter.	
*micrometer	$\mu \mathrm{m}$	μ		
micron	$\mu \mathrm{m}$	μ	The name micron is deprecated. Use micrometer.	
*microsecond	$\mu \mathrm{s}$			
*microwatt	$\mu \mathrm{W}$			
mil	mil		mil 0.001 in .	
mile (statute)	mi		$\mathrm{mi} \quad 5280 \mathrm{ft}=1609 \mathrm{~m}$.	
mile per hour	mi / h	mph	Although use of mph as an abbreviation is	

			common, it should not be used as a symbol.	
*milli	m		SI prefix for $10{ }^{3}$.	
*milliampere	mA			
millibar	mbar		Use of the bar is strongly discouraged in ANSI/IEEE Std 268-1992, except for limited use in meteorology.	
*milligram	mg			
*millihenry	mH			
*milliliter	mL		See liter.	
*millimeter	mm			
millimeter of mercury	mmHg		$\mathrm{mmHg}=133.322 \mathrm{~Pa} . \text { Deprecated }(\text { see }$ ANSI/IEEE Std 268-1992).	
millimicron	nm		Use of the name millimicron for the nanometer is deprecated.	
*millipascal second	$\mathrm{mPa} \cdot \mathrm{s}$		SI unit-multiple of dynamic viscosity.	
*millisecond	ms			
*millivolt	mV			
*milliwatt	mW			
*minute (plane angle)	,			
*minute (time)	min		Time may also be designated by means of superscripts as in the following example: 9"46"30.	
*mole	mol		SI unit of amount of substance. The mole is the amount of substance of a system that contains as many elementary entities as there are atoms in 0.012 kg of carbon 12. When the mole is used, the elementary entities shall be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.	
month	mo			
* nano	n		SI prefix for 10%.	
*nanoampere	nA			
*nanofarad	nF			
*nanometer	nm			
*nanosecond	ns			
nautical mile	nmi		nmi 1852 m.	
*neper	Np			
*newton	N		SI unit of force.	
*newton meter	$\mathrm{N} \cdot \mathrm{m}$			
*newton per square meter	$\mathrm{N} / \mathrm{m}^{2}$		SI unit of pressure or stress. See pascal.	
oersted	Oe	oe	The oersted is the electromagnetic CGS unit of magnetic field strength. Deprecated (see ANSI/IEEE Std 268-1992).	
*ohm	Ω		SI unit of resistance.	
ounce	oz		oz $1 / 16 \mathrm{lb}=28.350 \mathrm{~g}$.	

(avoirdupois)				
*pascal	Pa		$\mathrm{Pa} \quad \mathrm{N} / \mathrm{m}^{2}$. SI unit of pressure or stress.	
*pascal second	$\mathrm{Pa} \cdot \mathrm{s}$		SI unit of dynamic viscosity.	
*peta	P		SI prefix for $10{ }^{1 /}$.	
phot	ph		$\mathrm{ph} \quad \mathrm{lm} / \mathrm{cm}^{2}$. CGS unit of illuminance. Deprecated (see ANSI/IEEE Std 268-1992).	
*pico	p		SI prefix for 10^{12}.	
*picofarad	pF			
*picowatt	pW			
pint	pt		$\begin{aligned} & \text { pt }(\mathrm{U} . \mathrm{K} .)=0.56826 \mathrm{~L} . \\ & \text { pt (U.S. dry) }=0.5506 \mathrm{~L} . \\ & \text { pt (U.S. liquid) }=0.47318 \mathrm{~L} . \end{aligned}$	
poise	P		Deprecated (see ANSI/IEEE Std 268-1992).	
pound (avoirdupois)	lb		lb 0.45359237 kg .	
pound per cubic foot	$\mathrm{lb} / \mathrm{ft}^{\text {²}}$			
pound-force	lbf		$\mathrm{lbf}=4.4482 \mathrm{~N}$.	
pound-force foot	$\mathrm{lbf} \cdot \mathrm{ft}$			
pound-force per square foot	$\mathrm{lbf} / \mathrm{ft}^{2}$			
pound-force per square inch	lbf/in ${ }^{2}$	psi	Although use of the abbreviation psi is common, it should not be used as a symbol.	
poundal	pdl		$\mathrm{pdl} \quad \mathrm{lb} \cdot \mathrm{ft} / \mathrm{s}^{2}=0.1383 \mathrm{~N}$	
quart	qt		qt (U.K.) $=1.1365$ L. qt $($ U.S. dry $)=1.1012 \mathrm{~L}$. qt (U.S. liquid) $=0.94635 \mathrm{~L}$.	
rad	rd		rd 0.01 Gy . A unit of absorbed dose in the field of radiation dosimetry. Use of the SI unit, the gray, is preferred.	
*radian	rad		SI unit of plane angle.	
rem	rem		rem $\quad 0.01 \mathrm{~Sv}$. A unit of dose equivalent in the field of radiation dosimetry. Use of the SI unit, the sievert, is preferred. $1 \mathrm{rem}=$ 0.01 Sv .	
revolution per minute	$\mathrm{r} / \mathrm{min}$		Although use of rpm as an abbreviation is common, it should not be used as a symbol.	
revolution per second	r/s			
roentgen	R		A unit of exposure in the field of radiation dosimetry.	
*second (plane angle)	"		$1^{\prime \prime}=4.848 \cdot 10^{\circ} \mathrm{rad}$.	
*second (time)	s		SI unit of time.	
*siemens	S		S $\quad \Omega^{\text {- }}$. SI unit of conductance.	
*sievert	Sv		SI unit of dose equivalent in the field of radiation dosimetry.	

slug	slug		slug $\quad \mathrm{lbf} \cdot \mathrm{s}^{2} / \mathrm{ft}=14.594 \mathrm{~kg}$.	
square foot	ft^{2}			
square inch	in^{2}			
*square meter	m^{2}			
*square meter per second	$\mathrm{m}^{2} / \mathrm{s}$		SI unit of kinematic viscosity.	
*square millimeter per second	$\mathrm{mm}^{2} / \mathrm{s}$		SI unit-multiple of kinematic viscosity.	
square yard	yd^{2}			
*steradian	Sr		SI unit of solid angle.	
stilb	sb		$\mathrm{sb} \quad \mathrm{cd} / \mathrm{cm}^{2}$. A CGS unit of luminance. Deprecated (see ANSI/IEEE Std 268-1992).	
stokes	St		Deprecated (see ANSI/IEEE Std 268-1992).	
*tera	T		SI prefix for 10^{12}.	
terabyte	TB		TB $10^{12} \mathrm{~B}$.	
*tesla	T		T $\quad \mathrm{N} /(\mathrm{A} \cdot \mathrm{m})^{2} \quad \mathrm{~Wb} / \mathrm{m}^{2}$. SI unit of magnetic flux density (magnetic induction).	
therm	thm		thm 100000 Btu .	
ton (short)	ton		ton 2000 lb .	
ton, metric	T		t $\quad 1000 \mathrm{~kg}$. Use of the tonne for this unit is deprecated in the U.S. (see ANSI/IEEE Std 268-1992).	
torr	torr		A unit of pressure equal to 0.001316 atmosphere; named after Torricelli.	
*(unified) atomic mass unit	u		The (unified) atomic mass unit is defined as one-twelfth of the mass of an atom of the carbon- 12 nuclide. Use of the old atomic mass unit (amu), defined by reference to oxygen, is deprecated.	
* var	var		IEC name and symbol for SI unit of reactive power.	
* volt	V		SI unit of voltage.	
* volt per meter	V/m		SI unit of electric field strength.	
*voltampere	VA	va	IEC name and symbol for SI unit of apparent power.	
*watt	W		SI unit of power.	
*watt per meter kelvin	$\begin{aligned} & \mathrm{W} /(\mathrm{m} \cdot \\ & \mathrm{K}) \\ & \hline \end{aligned}$		SI unit of thermal conductivity.	
*watt per steradian	W/sr		SI unit of radiant intensity.	
*watt per steradian square meter	(W/sr • m^{2})		SI unit of radiance.	
watthour	Wh			
*weber	Wb		$\mathrm{Wb} \quad \mathrm{V} \cdot \mathrm{s}$. SI unit of magnetic flux.	
yard	yd		yd 0.9144 m .	
year	a		Also W•h.	

yocto	y		SI prefix for 10^{24}.	
yotta	Y		SI prefix for 10^{24}.	
zepto	Z		SI prefix for 10^{21}.	
zetta	Z		SI prefix for 10^{24}.	

D. Miscellaneous Alphabetical Abbreviations, Acronyms, and Symbols

NOTE: Key: fn-function name (roman); s-symbol (italic); u-unit abbreviation (roman);
*-acronyms that must be defined in text.

\mathbf{A}	
A	(s) Hermitian conjugate of A
\AA	(u) angstrom
ab	(prefix) denotes absolute system of (CGS) units. Abampere, abcoulomb, abvolt, abohm, abfarad, abmho, abhenry (use not recommended, see units list)
abs	absolute
ABS	air-bearing surface
Ac	alternating current
ACB	air circuit breaker*
ACSR	steel-reinforced aluminum cable*
AD	attention display*
A-D, A/D	analog-to-digital
ADF	automatic direction finder*
a.e.	almost everywhere (in equations)
AEW	airborne early warning*
AF	audio frequency*
AFB	Air Force Base
AFC	automatic frequency control*
AFM	atomic force microscopy
AGC	automatic gain control*
AGFM	alternating gradient force magnetometer
AGM	arithmetical-geometric mean*
A•h (u)	ampere hour
Ai (fn)	Airy integral
AM	amplitude modulation
A.M.	ante meridiem (morning)
ama	automatic message accounting*
AND	(small caps) logical AND operation
ANI	automatic number identification
ANN	artificial neural network*
antilog (fn)	antilogarithm
AOGM	accelerated optimum gradient method*
AOPT	air-operated press type*
APD	avalanche photodiode
API	air position indicator*

AQL	acceptable quality level
AR	antireflection*; autoregressive*
\arcsin \arccos arctan arccot arcsec arccsc	(fn) inverse trigonometric functions
arg	(fn) argument
ARMA	autoregressive moving average*
a.s.	almost surely (in equations)
ASE	amplified spontaneous emission*
ASIC	application specified integrated circuit*
ASK	amplitude-shift keying
ASW	antisubmarine warfare* (note: for acoustic surface wave use SAW)
at (u)	technical atmosphere: $1 \mathrm{kgf} / \mathrm{cm}$
At (u)	ampere turn (note: no longer in use; change to A)
ATM	asynchronous transfer mode*
$\operatorname{atm}(\mathrm{u})$	atmosphere
ATR	antitransmit receive*
ATT	avalanche transit time*
av	average (subscript)
AVC	automatic volume control*
avg (fn)	average (use av as subscript)
AWE	asymptotic wave evaluation*
AWG	American wire gauge
AWGN	additive white Gaussian noise*
B	
bar (u)	bar
barye (u)	barye: microbar (use not recommended; see units list)
bbl (u)	barrel (see units list)
bcc	body-centered cubic (of crystals)
BCD	binary coded decimal
BCH	Bose-Chaudhuri-Hocquenghen (codes)
BCT	bushing current transformer*
$\mathrm{Bd}(\mathrm{u})$	baud* (see units list)
B-E	base-emitter source
Be	Baume
bei, ber (fn)	Kelvin forms of Bessel function
BEM	boundary-element method
BER	bit error rate*
BeV , bev (u)	use GeV
BFO	beat-frequency oscillator*
B-H B-H curve:	curve of magnetic induction (magnetic flux-density) versus magnetic intensity (field intensity) B-H relationship. B-H loop: hysteresis loop
Bhp	brake horsepower*
Bi (fn)	Airy integral: (u) bit: $=10$ A*

BIL	basic impulse insulation level*
BJT	bipolar junction transistor*
BMEP	brake mean effective pressure*
bpi (u)	bit per inch: use b/in
bps (u)	bit per second: use b/s
BPSK	binary phase-shift keying
BRA	biased rectifier amplifier*
BS	breaking strength*
BS	British Standards*
B\&S	Brown and Sharpe gauge*
BSF	bulk shielding facility*
BSL	basic switching surge insulation level*
BTU	(u) British thermal unit
BWG	Birmingham wire gauge*
BWK	Brillouin-Wentzel-Kramers (method)*
BWO	backward-wave oscillator*
BWR	boiling water reactor*
C	
C (u)	coulomb
${ }^{\circ} \mathrm{C}$ (0)	degree Celsius
c (u)	cycle: use Hz; centi- (prefix to unit abbreviation)
c (s)	speed of light in a vacuum
cal (u)	calorie (use not recommended; see units list)
CATV	community antenna television system
cc (u)	cubic centimeter: use cm^{3}
c.c.	complex conjugate (in equations)
CCB	coin collecting box (British telephones)*
CCD	charge-coupled device*
CCR	closed-cycle refrigerator*
cd (u)	candela
cdf	cumulative distribution function*
CDMA	code division multiple access*
CDO	community dial offices*
CD-ROM	compact disk read-only memory
cdrx	external critical damping resistance: use caps*
CEMF	counterelectromotive force*
cf.	compare
cfm (u)	cubic feet per minute: use $\mathrm{ft}^{3} / \mathrm{min}$
cfs (u)	cubic feet per second: use ft / s
CGS	centimeter-gram-second (system of units)
$\mathrm{Ci}(\mathrm{fn})$	cosine integral; (u) curie
CIM	computer integrated manufacturing*
CIR	carrier-to-interference ratio*
ckVA	capacitive kilovoltamperes (write out)
cmil (u)	circular mil
CMOS	complementary metal-oxide-semiconductor
CNN	cellular neural network
COP	coefficient of performance*

cosec	(fn) cosecant: use csc
cosh	(fn) hyperbolic cosine
cot	(fn) cotangent
coth	(fn) hyperbolic cotangent
covers	(fn) coversine
cP (o)	centipoise (see units list)
CPFSK	continuous phase frequency-shift keying*
CPM	continuous phase modulation*
CPSK	continuous phase-shift keying; coherent phase-shift keying*
CPU	central processing unit
CRO	cathode-ray oscilloscope
CRS	cold-rolled steel*
CRT	cathode-ray tube
$\mathrm{c} / \mathrm{s}(\mathrm{u})$	cycle per second: use Hz
\csc (fn)	cosecant
csch (fn)	hyperbolic cosecant cs (u) centistokes: use cSt or write out (see units list)
CSP	completely self-protected
$\mathrm{cSt}(\mathrm{u})$	centistokes (see units list)
CSV	corona-starting voltage
CT	current transformer*
CTC	centralized traffic control
ctn (fn)	cotangent: use cot
curl (fn)	curl
CV	capacitance-voltage
CVD	chemical vapor deposited
CW	continuous wave*
D	
DA	design automation
dB (u)	decibel
dc	direct current (DC at start of sentence or in article title)
DC	directional coupler
DDA	digital differential analyzer*
DDD	direct distance dialing*
DE	disruptive effect*
det (fn)	determinant
DF	direction finder*; deuterium fluoride; degree of freedom*
DFB	distributed feedback
DFT	discrete Fourier transform*
diag	(diagonal)
diam	diameter
DIC	Diploma of membership in Imperial College of Science and Technology
div (fn)	divergence; division (u) in charts
DMA	direct memory access*
DME	distance-measuring equipment*

DOD	diameter over dielectric; Department of Defense
DOF	degree of freedom (unit)
DP	dial pulse*
DPCM	differential pulse code modulation*
DPDT	double-pole double-throw switch*
DPH	diamond pool hardness*
DPQSK	differential quadrature phase-shift keying*
DPSK	differential phase-shift keying*
DRCPR	differential reactive current protective relay*
DRO	destructive readout*; doubly resonant oscillator
DS	dielectric strength*; direct sequence*
DSB	double sideband*
DSP	digital signal processor
DVP	differential vapor pressure*
DWT	discrete wavelet transform*
dyn (u)	dyne
E	
EB	emergency bank*
EC	eddy current; electrical conductivity* (grade of Al)
ECG	electrocardiogram
ECL	emitter-coupled logic*
ECM	electronic countermeasures
ECT	eddy current testing
ED	enforced draft
EDFA	erbium-doped fiber amplifiers*
EDP	electronic data processing
EDS	energy dispersive spectrometer
EDX	energy dispersive X-ray
EEG	electroencephalogram
EHD	electrostatic units
EHF	electronvolt
EHIPS	extrohydrodynamic*
EHV	extramely high frequency*
Ei (fn)	extra high iron poltage
ELF	exponential integral
EM	extremely low frequency*
EMC	electromagnetic*
EMF	electromagnetic compatibility*
EMI	electromotive force*
ems	electromagnetic interference*
EMU	expected value of mean square*
EOF	electromagnetic units
erf (fn)	end of file
erfc (fn)	error function
erg (u)	erg
ERP	ESS
ESU	eV (u)

EXOR	EXCLUSIVE-OR circuit (small caps)
$\exp (\mathrm{fn})$	exponential function
exsec (fn)	exsecant
\mathbf{F}	
$\mathrm{f}(f$-stop, $\mathrm{f} / 22)$	ratio of focal length to aperture
F (u)	farad
${ }^{\circ}$ F (u)	degree Fahrenheit
FA	forced-air-cooled transformer*
fcc	face-centered cubic (of crystals)
FCC	Federal Communications Commission
FD	flux density*
FDA	finite difference approximations*
FDM	frequency-division multiplexing*
FDMA	frequency-division multiple access*
FDTD	finite-difference time domain*
FEA	finite-element analysis
FET	field-effect transistor
ff.	following pages
FFT	fast Fourier transform*
FIFO	first-in first-out
FIM	field intensity meter*
FIR	finite-impulse response*
fL (u)	footlambert
FL	full load
FM	frequency modulation
FMFB	FM feedback receiver*
FMR	frequency of maximum reliability*; ferromagnetic resonance
FPGA	field-programmable gate array*
fpm, fps (u)	feet per minute: use ft/min; feet per second: use ft/s
FS	full scale
FSK	frequency-shift keying*
FSM	gilbert
ft (u)	greatest controlled approach*
FTL	foot
FTP	flat tie-line*
FW	file transfer protocol
FWHM	full wave
FWM	full-width at half-maximum*
\mathbf{G}	four-wave mixing*
G	
G (u)	giga- (prefix to unit abbreviations) = 10*
g	gauss
G (s)	acceleration of gravity, "gee force"; use as unit with metric prefix, as
in 3 mg	
Gal (u)	gravitational constant
gal (u)	gal (gravitational unit)
Gb (u)	GCA
gcd	game)

GLB	greatest lower bound*
GMD	geometric mean distance*
GMEC	generalized minimum effort control*
GMF	geometric mean frequency
GMR	geometric mean radius
GMT	Greenwich mean time
gpd (u)	gallon per day: use gal/day
GPS	Global Positioning System
GPU	graphical processing unit, General Public Utilities*
$\operatorname{grad}(\mathrm{fn})$	gradient
GSE	ground support equipment*
GTD	geometrical theory of diffraction
GUI	graphical user interface
GW	ground wire
\underline{H}	
h (s)	Planck's constant
H (u)	henry
H (s)	magnetic intensity; magnetic field strength
hav, havers (fn)	haversine
HBT	heterojunction bipolar transistor
hcp	hexagonal close-packed (of crystals)
HD	hard-drawn*
HDBC	hard-drawn bare copper*
HDC	hard-drawn copper*
HDD	hard disk drive
HDT	hard-drawn tubing*
HEMT	high-electron mobility transistor
HF	high frequency; hydrogen fluoride
HFET	heterojunction FET
HG	mercury
hipot	high potential (write out)
$\mathrm{hp}(\mathrm{u})$	horsepower
HTC	high-tension cable*
HTML	hypertext markup language
HV	high voltage
HVdc	high voltage direct current
$\mathrm{Hz}(\mathrm{u})$	hertz
I	
I (s) current (fn)	imaginary part of: use Im
IACS	International Annealed Copper Standard*
IC	impedance compensation*; integrated circuit
ICW	interrupted continuous wave*
ID	inside diameter; induced draft*; interdigital*
IDP	integrated data processing*
IF	intermediate frequency
iff	if and only if
IFT	interfacial tension*
IGFET	insulated-gate field-effect transistor
i.i.d.	independent identically distributed*

IIR	infinite-impulse response
ILS	instrument landing system*
Im (fn)	imaginary part of
IM	intermediate modulation
IMPATT	impact ionization avalanche transit time (diode)
INE	irredundant normal equivalent*
\inf (fn)	infimum
int (fn)	integer value of
I/O, I-O	input-output
IoT	Internet of Things*
IP	Internet Protocol
ips (u)	inch per second: use in/s
IPS	iron pipe size; international pipe standard*
IR	infrared
IR	current-resistance
ISB	independent sideband*
ISE	integral of squared error*
ISI	intersymbol interference
itae	integral of time-multiplied absolute value of error
ITI	inter-track interference
$I-V(\mathrm{~s})$	current-voltage (characteristic or curve)
IVA	induced voltamperes
IX	current-reactance (drop)
$I Z$	current-impedance
J	
J (u)	joule
JFET	junction field-effect transistor
JPEG	Joint Photographers Expert Group
$\underline{\mathbf{K}}$	
k	kilo (prefix to unit abbreviations) $=10^{3}$
K (u)	Kelvin
Kayser (u)	$=\mathrm{cm}^{-1}$ (wavenumber)
kbps (u)	kilobits per second: use kb / s
KCL	Kirchhoff's current law
kcm, KCM (u)	thousand circular mils: use kcmil
$\mathrm{kg}(\mathrm{u})$	kilogram
KGO, KGOe, KGoe, $\mathrm{KgOe}(\mathrm{u})$	use $\mathrm{kO} \cdot \mathrm{Oe}$
kgp (u)	kilogrampois (French): use kg
kG.Oe (u)	kilogauss oersted
kip	thousand pounds
kn (u)	knot (nautical mile per hour)
KOH	potassium hydroxide
kp (u)	kilopound (German): use kg
$k t$ (s)	Boltzmann's constant \times time
KVL	Kirchhoff's voltage law
$\mathrm{kVp}(\mathrm{u})$	kilovolt peak*
$\underline{\mathbf{L}}$	
	liter

L (u)	lambert
LAN	local area network
lb (u)	pound
lbf (u)	pound-force
LC	inductance-capacitance
lcm	least common multiple (may be function name)
LCR	inductance-capacitance-resistance
LCS	load current substation*
LDC	line drop compensator*; load division circulation
LED	light-emitting diode
LF	low-frequency
LHP	left-half plane*
LHS	left-hand side*
Li (fn)	logarithmic integral
$\lim (\mathrm{fn})$	limit
1.i.m. (fn)	limit in the mean
L-L	line to line*
$\operatorname{lm}(\mathrm{u})$	lumen
LMLT	locus of major loop tips*
LMS	least mean square
LMT	local mean time*
\ln (fn)	natural logarithm (base e)
L-N	line to neutra**
LNA	low noise amplifier
LO	local oscillator*
$\log , \log _{n}(\mathrm{fn})$	logarithm, logarithm base n (where $n=2,10$, etc.)
LP	linear programming*
LPE	liquid phase epitaxy*
LR	inductance-resistance
LRC	load ratio control*
LSB	least significant bit
LSI	large-scale integration*; large-scale integrated*
LST	local standard time
LTC	load tap-changing*
LTE	long-term evolution
LTS	laser-triggered switching*
LUF	lowest usable frequency*
1x (u)	lux
M	
m (u)	meter, milli- (prefix to unit abbreviations) $=10^{-3}$
M	mega- (prefix to unit abbreviations) $=10 \%$ mole
MAG	maximum available gain
MAP	maximum a posteriori
max (fn)	maximum; also used as subscript
MC	Monte Carlo
mcm, MCM (u)	thousand circular mils: use kcmil
$\mathrm{mc} / \mathrm{mM}$ (u)	millicuries per millimole: use $\mathrm{mCi} / \mathrm{mM}$
MCS	multicircuit substation*
MCT	movable core transformer*

MCW	modulated continuous wave*
MDF	manual direction finder*
MDS	minimum detectable signal
MEMS	micro-electromechanical systems
MESFET	metal-semiconductor field-effect transistor
MEW	microwave early warning*
MF	medium frequency*
MFM	magnetic force microscopy
MFSK	minimum frequency-shift keying
MGO (u)	megagauss oersted: use MG•Oe
MG•Oe (u)	megagauss oersted
MHD	magnetohydrodynamics
mho (u)	mho (also $\Omega^{\wedge}\{-1\}$)
mi (u)	mile
MIM	metal-insulator-metal
MIMO	multi-in multi-out*
mio (fn)	minimum; also used as subscript
MIS	metal-insulator-semiconductor*
MKS	meter-kilogram-second (system of units)
ml	milliliter
MLE	maximum-likelihood estimation*
MLSD	maximum-likelihood sequence detector
MLSE	maximum-likelihood sequence estimator*
MMF	magnetomotive force
$\mathrm{mmHg}(\mathrm{u})$	millimeter of mercury
MMIC	monolithic microwave integrated circuit*
$\mathrm{mm}_{2} \mathrm{O}$ (u)	millimeter of water
mmse	minimum mean square error
MOCVD	metal-organic chemical vapor deposition*
mod	modulo
MOKE	magnetooptic Kerr effect
MoM	method of moments*
MOS	metal-oxide-semiconductor
MOSFET	MOS field-effect transistor
MOST	MOS transistor
MOVPE	metal-organic vapor phase epitaxy*
MPEG	Moving Pictures Expert Group
MPIE	mixed potential integral equation
MRAM	magnetic random access memory
MRI	magnetic resonance imaging
MSB	most significant bit
mse	mean square error
MSIC	medium scale integrated circuits*
MTBE	mean time between explosions
MTBF	mean time between failures*
MTI	multiple target indicator*; moving target indicator
MTJ	magnetic tunnel junction
MTL	multiconductor transmission line
MU	multiple unit*

MUF	maximum usable frequency*
MVQE	minimum variance quantum estimator
Mx (u)	maxwell
MZI	Mach-Zehnder interferometric*
\mathbf{N}	
n	nano (prefix to unit abbreviations) $=10^{*}$
N (u)	newton
NA	numerical aperture*
NAND	NOT-AND circuit (small caps)
nat (u)	nat
NC	diode negative-conductance diode*
NDRO	nondestructive readout
NDT	nondestructive testing*
NIC	negative impedance converter*
NIR	near infrared response*
nit (u)	nit
Nkw-hr (u)	net kilowatthour: use net kW•h
NL	no load
nmi (u)	nautical mile
NMR	nuclear magnetic resonance*
NOR	NOT-oR circuit (small caps)
NP	nameplate (rating)
Np (u)	neper
n-p-n	semiconductor forms: Roman, lowercase, hyphens
NRZ	nonreturn to zero*
NTC	negative temperature coefficient*
NWP	network protector
\mathbf{O}	
OCB	oil circuit breaker*
OCR	oil circuit recloser*
OD	pascal
Oe (u)	power-added efficiency
OEIC	pulse-amplitude modulation*
OFDA	outside diameter
OGM	oersted
OOK	optoelectronic integrated circuit*
OOP	optical-fiber frequency-domain analysis*
opt (fn)	optimum gradient method
OR	on-off keying
OSM	object-oriented programming*
OTDM	optimum: also used as subscript
O-wave	OR circuit (small caps)
OZ (u)	omni spectra miniature
\mathbf{P}	optical time-division multiplexing*
p	ordinary-wave (ionogram)
P (u)	ounce
Pa (u)	pico- (prefix to unit abbreviations) $=10^{*}$
PAE	PAM

PAX	private automatic exchange*
PBX	private branch exchange*
$\mathrm{pc}(\mathrm{u})$	parsec
PC	personal computer
PCM	pulse-code modulation*; pulse-count modulation*
PD	potential difference*
pdf	probability density function*
pdl (u)	poundal (see units list)
PDM	pulse-duration modulation*
$P_{c}(\mathrm{~s})$	probability of error
PER	probability of error
PES	position error signal
PF	power factor*
ph (fn)	phase
pH	power of hydrogen (acidity or alkalinity of solution)
PI	polarization index
PID	proportional-integral-differentia*
PILC	paper-insulated lead-covered*
PIN	use p-i-n for diodes, etc.
p-i-n	semiconductor forms: Roman, lowercase, hyphens
PL/1	a programming language
PLC	power line carrier*
PLL	phase-locked loop*
PM	phase modulation*
P.M.	post meridiem (small caps)
PML	perfectly matched layer
PMMA	polymethyl methacrylate*
PMR	perpendicular magnetic recording
p-n-i-p	semiconductor forms: Roman, lowercase, hyphens
p-n-p	semiconductor forms: Roman, lowercase, hyphens
POD	para-operational device*
$\mathrm{POW}_{\mathrm{p}}(\mathrm{u})$	picowatts psophometrically weighted at a point of zero relative level*
pp, p-p	peak to peak*
PPI	plan-position indicator*
ppm (u)	parts per million; pulse per minute*
PPM	pulse-position modulation*
pps (u)	pulse per second*
Pr (fn)	probability (appears as $\operatorname{Pr} x \mid x=\mathrm{U}$)
PRA	pulse relaxation amplifier
PRF	pulse-repetition frequency*
PRML	partial response maximum likelihood
Prob.,	$\mathrm{P}_{r} x \mid \cdot$ use Pr (usually)
PRR	pulse-repetition rate*
PSD	power spectral density
PSF	power separation filter*
psi (u)	pounds per square inch: change to $\mathrm{lb} / \mathrm{in}^{2}$ unless paper also contains psia and/or psig
psia (u)	pound-force per square inch absolute (stet)
psig (u)	pound-force per square inch gauge (stet)

PSK	phase-shift keying*
PTM	pulse-time modulation
p.u.	per unit
PVC	polyvinyl chloride*
PWL	piecewise linear
PWM	pulse width modulation*
PWR	pressurized water reactor*
PZT	lead zirconate titanate
Q	
Q	quality factor; figure of merit
QAM	quadratic-amplitude modulation*
Q.E.D.	quod erat demonstrandum (end of proof) (set flush right)
QoS	quality of service
QP	quasi-peak*
QPSK	quaternary phase-shift keying
QW	quantum well*
$\underline{\mathrm{R}}$	
R (u)	roentgen
R (fn)	real part of: use Re
${ }^{\circ} \mathrm{R}$ (u)	degrees Rankine
$\operatorname{rad}(\mathrm{u})$	radian
RAM	random access memory
RB	circuit transient blocking relay circuit*
RC	resistance-capacitance
RCF	radar cross section*
R\&D	research and development
Re (fn)	real part of: use Re (be sure of this meaning before changing)
redox	reduction-oxidation
rem (u)	Roentgen equivalent, man
RF	radio frequency
RFI	radio frequency interference*
RFU	reclosing fuses*
RH	relative humidity*
RHS	right-hand side*
RI	radio interference*
RIFI	radio interference and field intensity*
RIL	radio interference level*
RIN	relative intensity noise*
RL	resistance-inductance
RMI	radiomagnetic indicator*
rms	root-mean-square (error); root mean square
ROM	read-only memory
rpm (u)	revolution per minute: use $\mathrm{r} / \mathrm{min}$
rps (u)	revolution per second: use r/s
RSG	recurrent surge generator*
RTD	resistance temperature detectors
RV	random variable
RX	resistance-reactance

s (u)	second
S (u)	siemens
SAR	specific absorption rate
SATT	Strowger Automatic Toll Ticket*
SAW	surface acoustic wave*
SC	switched-capacitor*(adj)
SCA	steel-reinforced aluminum cable*
SCC	signal component control*
scfm	standard cubic feet per minute*
SCL	space-charge limited*
scr	short-circuit ratio*
SCR	silicon-controlled rectifier
sec (fn)	secant; (u) second: use s; second of arc*
sech (fn)	hyperbolic secant
SEM	scanning electron microscope
SF	single frequency*
SGML	standard generalized markup language
sgn (fn)	signum function
SHF s	upper high frequency*
SI	severity index*; Systeme International d'Unites (International System of Units)
Si, si (fn)	sine integral
sin (fn)	sine
sinc (fn)	sinc $x=$ (sin x) / x
sinh (fn)	hyperbolic sine
SINR	signal-to-interference-plus-noise ratio*
SIR	signal-to-interference ratio
SISO	single-in, single-out*
SLAR	side looking airborne radar
SLG	sequential unconstrained minimization techniques
SMSA	supremum
S/N	single line to ground
SNR	standard metropolitan statistical area
SoC	signal-to-noise ratio
SPDT	signal-to-noise ratio
SPICE	system-on-chip*
SPT	single-pole double-throw (switch)*
sq square:	Simulation Program with Integrated Circuit Emphasis
SQUID	single-pole type
sr (u)	if on a unit, change to ${ }^{*}$
SR	superconducting quantum interference device
SS	steradian
SSB	saturable reactor*
s.t.	subsystems*
St (u)	single sideband*
sterad (u)	subject to
SUL	stokes
SUMT	sup (fn)
	soradian: use sr

sus	Saybolt universal seconds (oil viscosity)*
sw	sine wave*
SW	short wave*
SWG	standard wire gauge*
SWR	standing-wave ratio*
T	
t (u)	tonne
T (u)	tesla
\tan (fn)	tangent
tanh (fn) tangent hyperbolic	
TCUL	tap-changing under load*
TDM	time-division modulation*; time-division multiplexing*
TDMA	time-division multiple access*
TE	transverse electric (appears as $\mathrm{TE}^{\circ}{ }_{01}$ and TE_{01})
TEFC	totally enclosed fan-cooled*
Telex	teleprinter exchange*
TEM	transverse electromagnetic
TFT	thin-film transistor*
tg (fn)	tangent: use tan
th (u)	thermie
TIF	telephone influence factor*
TLM	transmission-line matrix
TM	transverse magnetic
tof	thermal ohms per foot (spell out)
torr (u)	torr
tpc (u)	turns per centimeter: turns/cm
TPC	turns per coil*
tr (fn)	trace
Tr	transpose
TSS	time sharing system
TTL	transistor-transistor logic
TTY	teleprinter
tu	traffic units*
TVI	television interference*
TWA	traveling-wave amplifier*
TWM	traveling-wave maser*
TWP	traveling-wave phototube*
TWT	traveling-wave tube
U	
UHF	ultrahigh frequency
ult (fn)	ultimate
UPS	uninterruptible power system*
	uniform $R C$ sections (stet overbar)
URL	uniform resource locator
XRD	X-ray diffraction
UT	universal time
UTS	ultimate tensile strength

UV	ultraviolet	
V		
V (u)	volt	
$V(\mathrm{~s})$	voltage	
VA (u)	voltampere; Viterbi algorithm*	
$\operatorname{var}(\mathrm{u})$	var	
VCL	varnished-cambric lead-covered*	
VCO	voltage-controlled oscillator*	
VCW	type V copper weld*	
VDS	voltage divider switching*	
ver, vers (fn)	versine	
VF	voice frequency*	
VFO	variable-frequency oscillator*	
VHF	very high frequency*	
$V-I$	voltage-current (characteristic of curve)	
VLF	very low frequency*	
VLSI	very large scale integration*	
VOR	very high-frequency omnidirectional radio	
VR	voltage regulator*	
VSB	vestigial sideband*	
VSWR	voltage standing-wave ratio	
VTB	voltage time to breakdown*	
VTVM	vacuum-tube voltmeter	
vu	volume units*	
\underline{W}		
W (u)	watt	
WAN	wide area network	
Wb (u)	weber	
WDM	wavelength-division multiplexing*	
WDMA	wavelength-division multiple access*	
WKB	Wentzel-Kramer-Brillouin*	
wpl, w.p.l.	with probability 1^{*}	
wrt, w.r.t.	with respect to	
WT	watertight*	
wt\%	weight percent	
$\underline{\mathbf{X}}$		
XPM c	ross-phase modulation	
XOR	EXCLUSIVE-OR circuit (small caps)	
X-wave	extraordinary-wave (ionogram)	
\underline{Y}		
YAG	yttrium aluminum garnet	
yd (u)	yard	
YIG	yttrium iron garnet	
Factor by Which the Unit Is Modified	Prefix	Symbol
$1000000000000=10^{12}$	tera	T
$1000000000=10^{\circ}$	giga	G
$1000000=10^{\circ}$	mega	M

$1000=10^{3}$	kilo	k
$100=10^{2}$	hecto	h
$10=10^{4}$	deka	da
$0.1=10^{-1}$	deci	d
$0.01=10^{-2}$	centi	c
$0.001=10^{-3}$	milli	m
$0.000001=10^{-6}$	micro	m
$0.000000001=10^{-9}$	nano	n
$0.000000000001=10^{-12}$	pico	p
$0.000000000000001=10^{-15}$	femto	f
$0.000000000000000001=$	atto	a
10^{-18}		

E. Organizations and Abbreviations of Organizations

AAS	American Association for the Advancement of Science, Washington, DC
ACC	American Automatic Control Council, Evanston, IL
ACE	American Association of Cost Engineers, Morgantown, WV
AEC	Australian Atomic Energy Commission
AES	American Association of Engineering Societies, Washington, DC
APG	American Association of Petroleum Geologists, Tulsa, OK
APT	Association of Asphalt Paving Technologists
AR	Association of American Railroads, Washington, DC
AUP	American Association of University Professors, Washington, DC
BET	Accreditation Board for Engineering \& Technology (formerly ECPD), Baltimore, MD
CEC	American Consulting Engineers Council (formerly AICE and CEC), Washington, DC
CLMRS	Advisory Committee for Land Mobile Radio Services
CM	Association for Computing Machinery, New York, NY
CME	Association of Consulting Management Firms, New York, NY
CS	American Chemical Society, Washington, DC
DPA	American Defense Preparedness Association (formerly AOA), Arlington, VA
DRDE	Air Defence Research and Development Establishment, U.K.
EA	American Electronics Association (formerly WCEMA), Santa Clara, CA
EC	Atomic Energy Commission, Washington, DC
EDC	Arnold Engineering Development Center, Arnold AFB, TN
EI	Associated Electrical Industries, Manchester, U.K. also: Italian Electrotechnical and Electronic Association
EIC	Association of Edison Illuminating Companies, Birmingham, AL
EP	American Electrical Power Company, New York, NY
ERE	Atomic Energy Research Establishment
ES	Audio Engineering Society, New York, NY
FCA	now AFCEA
FCEA	Armed Forces Communication and Electronics Association (formerly AFCA), Fairfax, VA
FCRC	Air Force Cambridge Research Center, Bedford, MA
FCRL	Air Force Cambridge Research Laboratory
FOSR	Air Force Office of Scientific Research
FS	American Foundrymen's Society, Des Plaines, IL
FWL	Air Force Weapons Laboratory
GI	American Geological Institute, Alexandria, VA
GMA	American Gear Manufacturing Association, Alexandria, VA
GU	American Geophysical Union, Washington, DC

HAM	Association of Home Appliance Manufacturers, Chicago, IL
IA	American Insurance Association, Washington, DC
IAA	American Institute of Aeronautics and Astronautics, Washington, DC
ICE	American Institute of Consulting Engineers (now ACEC)
IChE	American Institute of Chemical Engineers, New York, NY
IEE	American Institute of Electrical Engineers (now IEEE)
IF	Atomic Industrial Forum, Inc. (now Nuclear Energy Institute)
IIE	American Institute of Industrial Engineers (now IIE)
IME	American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, NY
IO	Arecibo Ionospheric Observatory, Puerto Rico
IP	American Institute of Physics, College Park, MD
IPE	American Institute of Plant Engineers, Cincinnati, OH
ISE	Association of Iron and Steel Engineers, Pittsburgh, PA
ISI	American Iron and Steel Institute, Washington, DC
MA	American Medical Association, Chicago, IL, American Management Association, New York, NY, American Manufacturing Association, Auto Manufacturing Association
MC	Air Material Command
MCA	Air Movement and Control Association, Arlington Heights, IL
MS	American Mathematical Society, Providence, RI
NDB	Air Navigation and Development Board
NS	American Nuclear Society, La Grange Park, IL
NSI	American National Standards Institute (formerly ASA and USASI), New York, NY
OA	American Ordnance Association (now ADPA)
PA	American Psychological Association, Washington, DC
PCA	Air Pollution Control Association (now A\&WMMA)
PHA	American Public Health Association, Washington, DC
PI	American Petroleum Institute, Washington, DC
RL	Applied Research Laboratory, Sylvania Electronic System, Waltham, MA
RPA	Advanced Research Projects Agency
RRL	American Radio Relay League, Newington, CT
PS	American Physical Society, College Park, MD
RS	American Rocket Society (merged with IAS to form AIAA)
SA	American Standards Association (now ANSI)
SAE	American Society of Agricultural Engineers, St. Joseph, MI
SAIO	American Society of Artificial Internal Organs
SCE	American Society of Civil Engineers, Washington, DC
SEE	American Society for Engineering Education
SHRAE	American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc. (formerly ASHAE and ASRE), Atlanta, GA
SLE	American Society of Lubricating Engineers (now STLE)
SM	ASM International, Materials Park, OH
SME	American Society of Mechanical Engineers, New York, NY
SNT	American Society for Nondestructive Testing (formerly SNT), Columbus, OH
SP	American Society of Photogrammetry (now ASPRS)
SPRS	American Society for Photogrammetry and Remote Sensing (formerly ASP), Bethesda, MD
SQC	American Society for Quality Control, Milwaukee, WI
SRE	American Society of Refrigerating Engineers (now ASHRAE)
STE	Association of Short Circuit Testing Authorities
STIA	Armed Services Technical Information Agency, Dayton, OH
STM	American Society for Testing and Materials, Philadelphia, PA
T\&T	American Telephone and Telegraph Company
VS	American Vacuum Society, New York, NY
\&WMMA	Air and Waste Management Association (formerly APCA), Pittsburgh, PA

WS	American Welding Society, Miami, FL
IH	Bureau International de l'Heue
TL	Bell Telephone Laboratories, Inc. (Murray Hill, NJ, etc.)
PA	Bonneville Power Administration, Portland, OR
NL	Brookhaven National Laboratory, Upton, NY
AA	Civil Aeronautics Administration
AL	Cornell Aeronautical Laboratory, Inc., Buffalo, NY
ARDE	Canadian Armament Research and Development Establishment
CIR	International Radio Consultative Committee
CIT	International Telegraph Consultative Committee (now TSB)
CIF	International Telephone Consultative Committee (now TSB)
CITT	International Telephone and Telegraph Consultative Committee (now TSB)
EA	Commission à l'Energie Atomique, Fontenay aux Roses, France
EB	Central Electricity Board, U.K.
EC	Consulting Engineers Council (now ACEC)
EERI	Central Electronics Engineering Research Institute, India
EI	Italian Electrotechnical Commission
ERN	(Geneva, Switzerland)
ESI	Centro Electtrotecnico Sperimentale Italiano, Milan, Italy
IBSE	Chartered Institution of Building Services Engineers, London, U.K.
IE	International Commission on Illumination
IGRE	Conference Internationale des Grands Reseaux Electriques (International Conference on Large Electric High-Tension Systems)
ISA	Casting Industry Suppliers Association (formerly FEMA), Des Plaines, IL
ISPR	Joint Radio Committee for the Fuel and Power Industries, London, U.K.
NAE	Commissão Nacionze de Atividades Espacizas, Sao Paolo, Brazil
NEN	Comitato Nazionale per l'Energia Nucleare, Frascati, Italy
NR	Consiglio Nazionale delle Ricerche, Italy
NRS	Centre National de la Recherche Scientifique, Paris, France
OSINE	Computer Science in Electrical Engineering Committee, Commission on Engineering Education, Washington, DC
PST	Commission on Professionals in Science and Technology (formerly SMC), Washington, DC
RES	Center for Research in Engineering Science, Lawrence, KS
RPL	Central Radio Propagation Laboratory (NBS)
SELT	Centro Studie Laboratorie Telecommunicazioni S.p.A., Turin, Italy
SF	Compagnie Generale de Telgraphie sans Fil
SIRO	Commonwealth Scientific and Industrial Research Organization, Melbourne, Australia
ARPA	Defense Advanced Research Projects Agency
DC	Defense Documentation Center
GRST	Delegation Generale a la Recherche Scientifique et Technique
RB	Defence Research Board, Canada
RME	Direction des Recherches et Moyens d'Essais
RTE	Defence Research Telecommunications Establishment, Ottawa, ON, Canada
pSIR	Department of Scientific and Industrial Research, U.K.
PTM	Director of Telecommunications Management (office of President)
BU	European Broadcasting Union, Grand-Saconnex, Switzerland
CPD	Engineers Council for Professional Development (now ABET)
CS	Electrochemical Society, Pennington, NJ
EI	Edison Electric Institute, Washington, DC
IA	Electronic Industries Association (formerly RETMA, RTMA, RMA), Arlington, VA
IC	Engineering Institute of Canada, Gloucester, ON, Canada
JC	Engineers Joint Council (now AAES)
NDESA	Empressa Nacional de Electricidad SA, Santiago, Chile

NEA	European Nuclear Energy Agency (part of OECD) (now NEA-OECD Nuclear Energy Agency)
NEL	Ente Nazionale per l'Energia Elettrica
NTELEC	Energy Telecommunications and Electrical Association (formerly PIEA), Dallas, TX
OS	Electrical Optical Systems Inc., Pasadena, CA
RA	Engineering Research Associates
SSA	Environmental Science Services Administration (U.S. Department of Commerce) Boulder, CO, composed of Institutes for Environmental Research, Institute for Earth Sciences, Institute for Oceanography, Institute for Atmospheric Sciences, Institute for Telecommunication Sciences and Aeronomy, Office of Administrative and Support Services
TH	Eidgenössische Technische Hochschule, Zurich, Switzerland
USEC	Conference of Engineering Societies of Western Europe and U.S.
CC	Federal Communications Commission
EMA	Foundry Equipment Manufacturing Association (now CISA)
JCC	Fall Joint Computer Conference (AFIPS)
MD	Frequency Management Division (in office of DTM)
PS	Fluid Power Society, Milwaukee, WI
TL	Federal Telecommunications Laboratories
TR	Federal Telephone and Radio Company
E	General Electric Company
M	General Motors
SFC	Goddard Space Flight Center, Greenbelt, MD (NASA)
AEA	International Atomic Energy Agency, Vienna, Austria
AS	Institute of Aeronautical Sciences (merged with ARS to form AIAA) (now AIAA)
AS	Indiana Academy of Science
3M	International Business Machines Corporation
CI	see CIE
CMCI	International Conference on Microwaves, Circuit Theory, and Information Theory, Tokyo, Japan
CMF	International Conference on Magnetic Films
DA	Institute for Defense Analysis, Arlington, VA
EC	International Electrotechnical Commission, Geneva, Switzerland
ECEJ	Institute of Electronics and Communication Engineers of Japan
EE	Institution of Electrical Engineers, London, U.K.
EEE	Institute of Electrical and Electronics Engineers (formerly AIEE and IRE), Piscataway, NJ
EICE	Institute of Electrical, Information and Communication Engineers, Japan
ER	see ESSA
ERE	Institution of Electronics and Radio Engineers, U.K.
ES	Illuminating Engineering Society (now CIBSE)
FAC	International Federation of Automatic Control, Montreal, PQ, Canada
IP	International Federation of Information Processing, Laxenburg, Austria
RB	International Frequency Registration Board (now ITU)
E	Institute of Industrial Engineers (formerly AIIE), Norcross, GA
MM	Institute of Mining and Metallurgy, London, U.K.
ON	Institute of Navigation, Alexandria, VA
PCEA	Insulator Power Cable Engineering Association
${ }^{2} \mathrm{~S}$	Italian Physical Society (also SIF), Bologna, Italy
RAC	Interdepartment Radio Advisory Committee
RC	International Resistance Company
RE	Institute of Radio Engineers (now IEEE)
REE	Institute of Radio and Electronics Engineers (Australia)
REQ	HydroQuebec Institute of Research
SA	Instrument Society of America, Research Triangle Park, NC
SIS	International Satellite for Ionospheric Studies
SL	Institut Français-Allemand de Recherches de Saint-Louis (Haut-Rhin) Deutsch-Französisches Forschungs-Institut Saint-Lous, Weil am Rhein (Baden)

TSA	Institute for Telecommunications Sciences and Aeronomy, Boulder, CO, formerly Central Radio Propagation Laboratory, NBS (see ESSA)
T\&T	International Telephone and Telegraph
TU	International Telecommunications Union, Geneva, Switzerland
3M	IBM Thomas J. Watson Research Center, Yorktown Heights, NY
	Institute of Science and Technology, University of Michigan, Ann Arbor
	Institute of Mathematics and Its Applications, London, U.K.
	Institute of High Fidelity
ACC	Joint Automatic Control Conference
EDEC	Joint Electron Devices Engineering Council, Arlington, VA
ETC	Joint Technical Advisory Committee Electron Tube Council
ETS	Junior Engineering Technical Council, Alexandria, VA
C	Joint Industry Conference
PL	Jet Propulsion Laboratories, California Institute of Technology, Pasadena, CA
SEP	Joint Services Electronics Program
TAC	Joint Technical Advisory Committee Laboratories voor Electromagnetisme en Acustica, Univ. of Ghent, Belgium
DD	Kokusai Denshin Denwa Company, Tokyo, Japan
CIE	Laboratoire Central des Industries Electriques, Fontenay-aux-Roses (Seine), France
RL	Lawrence Radiation Laboratory
TRI	Lighting and Transients Research Institute
IAA	Mathematical Association of America, Washington, DC
IESUCORA	Association for Measurement, Controlled Regulation, and Automation
IILA	Merritt Island Launch Area, FL
IIT	Massachusetts Institute of Technology, Cambridge (use MIT)
	MIT Lincoln Laboratory, Lexington, MA
IRI	Microwave Research Institute, Polytechnic Institute of Brooklyn
	Mullard Research Laboratories, Redhill, Surrey, U.K.
AB	National Association of Broadcasters, now NARTB, Washington, DC
AC	Network Analysis Corporation, Glen Cove, NY
ACA	National Advisory Committee for Aeronautics
IACE	National Association of Corrosion Engineers, Houston, TX
AE	National Academy of Engineering, Washington, DC
AFEC	National Aviation Facilities Experimental Center
AM	National Association of Manufacturers, Washington, DC
APE	National Association of Power Engineers, Chicopee, MA
AREC	Naval Research Laboratory Electronics and Digital Computers
ARTB	National Association of Radio and Television Broadcasters, Washington, DC
AS	National Academy of Sciences, Washington, DC
IASA	National Aeronautics and Space Administration
BRU	National Board of Fire Underwriters (now AIA-American Insurance Association)
BS	National Bureau of Standards (see ESSA)
CSL	Naval Coastal Systems Laboratory, Panama City, FL
CTA	National Community Television Association
DRC	National Defense Research Council
DRE	Norwegian Defense Research Establishment, Kjeller, Lillestrom
EA	OECD Nuclear Energy Agency, Issy-les-Moulineaux, France
EC	National Electronics Conference (now IEC-International Engineering Consortium)
ELA	National Electric Light Association
ELC	Naval Electronics Laboratory Center, San Diego, CA
EMA	National Electric Manufacturing Association
EREM	Northeast Research and Engineering Meeting (formerly New England Radio Engineering Meeting)
FPA	National Fire Protection Association, Quincy, MA

IIH	National Institutes of Health, Bethesda, MD
LR	National Lucht de-Ruimtevaartlaboratorium, Amsterdam, The Netherlands
OL	Naval Ordnance Laboratory
PL	British National Physical Laboratory
RAO	National Radio Astronomy Observatory, Green Bank, WV
RC	National Research Council, Washington, DC
RCC	National Research Council of Canada
RL	Naval Research Laboratory
ISERC	Natural Sciences and Engineering Research Council of Canada
ISF	National Science Foundation, Arlington, VA
ISPE	National Society of Professional Engineers, Alexandria, VA
SRC	National Stereophonic Radio Committee
TG	Nachrichtentechnische Gesellschaft
	Nuclear Energy Institute (formerly AIF), Washington, DC
TSC	National Television System Commission
ARAC	Office of Air Research on Automatic Computers
BSA	Operations Research Society of America
ECD	Organization for Economic Cooperation and Development (Europe), Paris, France
NR	Office of Naval Research
RNL	Oak Ridge National Laboratories
PA	Optical Society of America, Washington, DC
SRD	Office of Scientific Research and Development
bVE	Austrian Engineering Society
VEC	Ohio Valley Electric Company
CC	President's Conference Committee
IB	Polytechnic Institute of Brooklyn
IEA	Petroleum Industry Electrical Association (now ENTELEC)
MR	Pacific Missile Range
ADC	Rome Air Development Center, Griffiss AFB, Rome, NY
AND	The Rand Corporation, Santa Monica, CA
CA	Radio Corporation of America
DB	Research and Development Board
ESA	Scientific Research Society of America (now Sigma Xi)
ETMA	Radio Electronic and Television Manufacturers Association (now EIA, formerly RTMA and RMA)
IAS	Research Institute for Advanced Studies, Baltimore, MD
LM	Reflector Lamps Manufacturers
MA	Radio Manufacturers Association, now EIA
RE	Royal Radar Establishment, Great Malvein, Worcs., U.K.
TCA	Radio Technical Commission for Aeronautics (now RTCA, Inc.)
TCA, Inc.	RTCA, Inc. (formerly RTCA), Washington, DC
TMA	Radio Television Manufacturers Association (now EIA, formerly RMA)
TPB	Radio Technical Planning Board
WMA	Resistance Welders Manufacturers Association, Philadelphia, PA
	Research Laboratory of Electronics, MIT, Cambridge, MA
	Research Triangle Institute, Durham (or Research Triangle Park), NC
	Rome Air Development Center, Griffiss AFB, Rome, NY
AE	Society of Automotive Engineers (now SAE International)
$\begin{array}{\|l\|} \hline \text { AE } \\ \text { Internationa } \\ 1 \\ \hline \end{array}$	SAE International (formerly SAE), Warrendale, PA
AME	Society of American Military Engineers, Alexandria, VA
CEL	Signal Corps Engineering Laboratory (see USAECOM)
EM	Society for Experimental Mechanics (formerly SESA), Bethel, CT

ER	Swedish Institute of Graduate Electrical Engineers
ESA	Services Electronics Research Laboratory, Harlow, Essex, U.K.
ESA	Society of Experimental Stress Analysis (now SEM)
EV	Schweizerischer Elektrotechnischer Verein, Zürich, Switzerland
FPE	Society of Fire Protection Engineers, Boston, MA
IAM	Society for Industrial and Applied Mathematics, Philadelphia, PA
IF	Italian Physical Society, Bologna, Italy (SIF = Societa Italiana di Fisica) (also IPS)
igma Xi	The Scientific Research Society (absorbed-formerly RESA, SRSA), Research Triangle Park, NC
JCC	Spring Joint Computer Conference (AFIPS)
LAC	Stanford Linear Accelerator Center, Stanford University, Stanford, CA
LF	Lombard Physical Society
MC	Scientific Manpower Commission (now CPST)
MPE	now SMPTE
NAME	Society of Naval Architects and Marine Engineers, Jersey City, NJ
NT	Society for Nondestructive Testing (now ASNT)
PE	Society of Plastics Engineers, Brookfield, CT
PIE	The International Society for Optical Engineers, Bellingham, WA
RC	Semiconductor Research Corporation
RE	Society of Reproduction Engineers
RI	Stanford Research Institute, Menlo Park, CA
RSA	Scientific Research Society of America (now Sigma Xi)
TC	Society for Technical Communications (formerly STWP), Arlington, VA
TLE	Society of Tribologists and Lubrication Engineers (formerly ASLE), Park Ridge, IL
TWP	Society of Technical Writers and Publishers (now STC)
	Sylvania Electronic Defense Laboratory, Mountain View, CA
	Systems Control, Inc., Palo Alto, CA
ASO	Television Allocation Study Organization (defunct)
IMS	The Institute of Management Sciences, Providence, RI
RW	TRW Corporation, Redondo Beach, CA
SB	Telecommunication Standardization Bureau (formerly CCITT), Geneva, Switzerland
VA	Tennessee Valley Authority
IATI	Union of International Engineering Organizations, Paris, France
CLA	University of California, Los Angeles
L	Underwriters Laboratory, Northbrook, IL
NIPEDE	International Union of Producers and Distributors of Electrical Energy, Paris, France
PADI	Pan American Federation Engineering Society
RC	University Research Committee
RSI	International Scientific Radio Union
SAECOM	U.S. Army Electronics Command, formerly Signal Corps
SAEL	U.S. Army Electronics Laboratory, Ft. Monmouth, NJ
SASI	USA Standards Institute (formerly ASA, now ANSI)
ISITA	United States Independent Telephone Association (now USTA)
SNOL	U.S. Naval Ordnance Laboratory, Silver Spring, MD
STA	United States Telephone Association (formerly USITA), Washington, DC
DE	Verean Deutscher Elektrotechniker
DI	Verband Deutscher Ingenieure (Society of German Engineers)
KF	Von Karman Gas Dynamics Facility, Arnold AF Station, TN
VADC	Wright Air Development Center, Wright-Patterson AFB, Dayton, OH
NARF	Wisconsin Alumni Research Foundation
VCEMA	West Coast Electronic Manufacturers Association (now AEA)
VEC	World Energy Council (formerly WPC), London, U.K.
VESCON	Western Electronic Show and Convention
VPC	World Power Conference (now WEC)

VSEIAC	Weapon System Effectiveness Industry Advisory Committee
VWVH,	Radio stations broadcasting time and frequency standards,
WWV,	
WWBV, Willow Run Laboratories, University of Michigan, Ann Arbor, MI WVL \mathbf{l}	

F. Conference Abbreviations

	Proceedings, Proceedings of the	Proc.
	International Conference	Int. Conf.
	National Conference	Nat. Conf.
IPC	Technical Conference, IPC Printed Circuits Expo	Tech. Conf., IPC Print. Circuits Expo.
IPC	IPC Annual Conference	IPC Annu. Conf.
IPC	IPC Printed Circuits Expo	IPC Print. Circuits Expo.
ECTC	Electronics Components and Technology Conference	Electron. Compon. Technol. Conf.
IPC	IPC Annual Meeting	IPC Annu. Meet.
SSC	International Solid-State Circuits Conference	Int. Solid-State Circuits Conf.
VLSI	Conference on Advanced Research on VLSI	Conf. Adv. Res. VLSI
VLSI	VLSI Packaging Workshop	VLSI Packag. Workshop
IEEE	IEEE Interconnect Technology Conference	IEEE Interconnect Technol. Conf.
ICAPS	Int. Conf. on Advanced Packaging Systems	Int. Conf. Adv. Packag. Syst.
IEEE	IEEE Int. Conf. on Solid-State Sensors, Actuators, and Microsystems	IEEE Int. Conf. Solid-State Sens., Actuators, Microsyst.
IEEE/CMPT	EEE/CPMT International Electronics Manufacturing Technology Symposium	IEEE/CPMT Int. Electron. Manuf. Technol. Symp.
IEEE	IEEE Annual Int. Conf. on Micro Electro Mechanical Systems	IEEE Annu. Int. Conf. Micro Electro Mech. Syst.
ICEPT	Int. Conf. on Electronics Packaging Technology	Int. Conf. Electron. Packag. Technol.
ISMP	International Symposium on Mathematical Programming	Int. Symp. Math. Program.
SMATE	Symposium on Microjoining and Assembly Technology in Electronics	Symp. Microjoining Assem. Technol. Electron.
3D	3D Architectures for Semiconductor Integration and Packaging	3D Architectures Semicond. Integr. Packag.
ICEP	Int. Conf. on Electronics Packaging	Int. Conf. Electron. Packag.
ICTP	Int. Conf. on Thermal Phenomena	Int. Conf. Therm. Phenom.
ISEM	International Symposium on Experimental Mechanics	Int. Symp. Exp. Mech.
IEEE	IEEE EuroSimE	IEEE EuroSimE
	Annual International KGD Packaging and Test Workshop	Annu. Int. KGD Packag. Test Workshop
IMAPS	IMAPS Advanced Technology Workshop on Advanced 3D Packaging	IMPAS Adv. Technol. Workshop Adv. 3D Packag.
ISPSD	International Symposium on Power Semiconductor Devices	Int. Symp. Power Semicond. Devices
IEEE	IEEE Annual Applied Power Electronics Conference	IEEE Annu. Appl. Power Electron. Conf.
APEC	Applied Power Electronics Conference	Appl. Power Electron. Conf.
ITHERM	Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems	Intersoc. Conf. Therm. Thermomech. Phenom. Electron. Syst.
CPES	CPES Power Electronics Seminar	CPES Power Electron. Semin.
ASM	Annual Symposium on Microelectronics	Annu. Symp. Microelectron.
ICMM	Int. Conf. on Multichip Modules	Int. Conf. Multichip Modules
ICMMHDP	Int. Conf. on Multichip Modules and High Density	Int. Conf. Multichip Modules High

	Packaging	Density Packag.
LEOC	Lasers and Electro-Optics Conference	Lasers Electro-Opt. Conf.
EPEP	Topical Meeting on Electrical Performance of Electronic Packaging	Top. Meet. Elect. Perform. Electron. Packag.
IEEE/ACM	IEEE/ACM Int. Conf. Computer-Aided Design	IEEE/ACM Int. Conf. Comput.-Aided Des.
IEEE	IEEE International Symposium on Antennas and Propagation	IEEE Int. Symp. Antennas Propag.
ISAP	International Symposium on Antennas and Propagation	Int. Symp. Antennas Propag.
ACM/IEEE	ACM/IEEE Design Automation Conference	ACM/IEEE Des. Autom. Conf.
IEEE	IEEE International Microwave Symposium	IEEE Int. Microw. Symp.
IMS	International Microwave Symposium	Int. Microw. Symp.
DATE	Design Automation and Test in Europe	Des. Autom. Test Eur.
ICMSMSSA	Int. Conf. on Modeling Simulation of Microsystems, Semiconductors, Sensors, and Actuators	Int. Conf. Model. Simul. Microsyst.,
Semicond., Sens., Actuators		

WCNC	Wireless Communication Networking Conference	Wireless Commun. Netw. Conf.
UWBST	Conference on Ultra Wideband Systems and Technologies	Conf. Ultra Wideband Syst. Technol.
IEEE	IEEE Conference on Ultra Wideband Systems and Technologies	IEEE Conf. Ultra Wideband Syst. Technol.
IWUWBS	International Workshop on Ultra Wideband Systems	Int. Workshop Ultra Wideband Syst.
IEEE	IEEE International Workshop on Ultra Wideband Systems	IEEE Int. Workshop Ultra Wideband Syst.
PIMRC	International Symposium on Personal, Indoor, and Mobile Radio Communications	Int. Symp. Pers., Indoor, Mobile Radio Commun.
IEEE	IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications	IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun.
ASILOMAR	Asilomar Conference on Signals, Systems, and Computers	Asilomar Conf. Signals, Syst., Comput.
IEEE/ACES	IEEE/ACES Int. Conf. Wireless Communications and Applied Computational Electromagnetics	IEEE/ACES Int. Conf. Wireless Commun. Appl. Comput. Electromagn.
ICWCACE	Int. Conf. Wireless Communications and Applied Computational Electromagnetics	Int. Conf. Wireless Commun. Appl. Comput. Electromagn.
ISAP	International Symposium on Antennas and Propagation	Int. Symp. Antennas Propag.
IEEE	IEEE Int. Conf. on Phased Array Systems Technology	IEEE Int. Conf. Phased Array Syst. Technol.
ICPAST	Int. Conf. on Phased Array Systems Technology	Int. Conf. Phased Array Syst. Technol.
GLOBECOM	IEEE Global Telecommunications Conference	IEEE Global Telecommun. Conf.
URSI	General Assembly of the International Union of Radio Science	Gen. Assem. Int. Union Radio Sci.
IEEE	IEEE Radio and Wireless Conference Digest	IEEE Radio Wireless Conf. Dig.
RWC	Radio and Wireless Conference Digest	Radio Wireless Conf. Dig.
AAAS	Annual Antenna Applications Symposium	Annu. Antenna Appl. Symp.
ECWT	European Conference on Wireless Technology	Eur. Conf. Wireless Technol.
IEEE	IEEE Topical Conference on Wireless Communications	IEEE Top. Conf. Wireless Commun. Tech. Dig.
TCWC	Topical Conference on Wireless Communications Technical Digest	Top. Conf. Wireless Commun. Tech. Dig.
ANTEM	International Symposium on Antenna Technology and Applied Electromagnetics	Int. Symp. Antenna Technol. Appl. Electromagn.
ECFRSN	European Conference on Fixed Radio Systems and Networks	Eur. Conf. Fixed Radio Syst, Netw.
CSNDSP	International Symposium on Communication Systems, Networks, and Digital Signal Processing	Int. Symp. Commun. Syst., Netw., Digital Signal Process.
ECMAST	European Conference on Multimedia Applications and Services Technology	Eur. Conf. Multimedia Appl. Serv. Technol.
URSI	URSI General Assembly	URSI Gen. Assem.
SPIE	SPIE International Symposium on Astronomical Telescopes and Instrumentation	SPIE Int. Symp. Astron. Telesc. Instrum.
ISATI	International Symposium on Astronomical Telescopes and Instrumentation	Int. Symp. Astron. Telesc. Instrum.
IEEE	IEEE Aerospace Conference	IEEE Aerosp. Conf.
SSDM	Structures, Structural Dynamics, and Materials Conference	Struct. Struct. Dyn. Mater. Conf.
WARS	Workshop on Applications of Radio Science	Workshop Appl. Radio Sci.
IROS	Int. Conf. on Intelligent Robots and Systems	Int. Conf. Intell. Robots Syst.
IEEE/RSJ	IEEE Int. Conf. on Intelligent Robots and Systems	IEEE Int. Conf. Intell. Robots Syst.
ICRA	Int. Conf. on Robotics and Automation	Int. Conf. Robot. Autom.
IEEE	IEEE Int. Conf. on Robotics and Automation	IEEE Int. Conf. Robot. Autom.

IFAC	World Congress of the International Federation on Automatic Control	World Congr. Int. Fed. Autom. Control
SIGCHI	SIGCHI Conf. on Human Factors in Computing Systems	SIGCHI Conf. Human Factors Comput. Syst.
ISWC	Int. Symposium on Wearable Computers	Int. Symp. Wearable Comput.
IWFGR	Int. Workshop on Automatic Face and Gesture Recognition	Int. Workshop Face Gesture Recog.
SMC	Int. Conf. on Systems, Man, and Cybernetics	Int. Conf. Syst., Man, Cybern.
IEEE	IEEE Int. Conf. on Systems, Man, and Cybernetics	IEEE Int. Conf. Syst., Man, Cybern.
IFAC	IFAC Symposium on Robot Control	IFAC Symp. Robot Control
CDC	Conference on Decision and Control	Conf. Decision Control
IEEE	IEEE Conference on Decision and Control	IEEE Conf. Decision Control
WAFR	Workshop on Algorithmic Foundations of Robotics	Workshop Algorithmic Found. Robot.
ACM/SIAM	ACM/SIAM Symposium on Discrete Algorithms	ACM/SIAM Symp. Discr. Algorithms
ECC	European Control Conference	Eur. Control Conf.
SAM	Symposium on Applied Mathematics	Symp. Appl. Math.
IASTED	IASTED Conference on Applications and Control in Robotics	IASTED Conf. Appl. Control Robot.
ICCG	Int. Conf. on Computer Games: Artifical Intelligence, Design, and Education	Int. Conf. Comput. Games: Artif. Intell., Des., Educ.
IEEE	IEEE Int. Symposium on Intelligent Control	IEEE Int. Symp. Intell. Control
ISIC	Int. Symposium on Intelligent Control	Int. Symp. Intell. Control
ACC	American Control Conference	Am. Control Conf.
AIAA	AIAA Guidance, Navigation, and Control Conference	AIAA Guid., Navigat., Control Conf.
IEEE	IEEE Int. Conf. on Control Applications	IEEE Int. Conf. Control Appl.
ICCA	Int. Conf. on Control Applications	Int. Conf. Control Appl.
ICIAS	Int. Congress on Intelligent Autonomous Systems	Int. Congr. Intell. Auton. Syst.
IEEE	IEEE Int. Joint Symposium on Intelligent Systems	IEEE Int. Joint Symp. Intell. Syst.
IEEE	IEEE Annual Int. Conf. on Industrial Electronics, Control, and Instrumentation	IEEE Annu. Int. Conf. Ind. Electron., Control, Instrum.
IEEE	IEEE Int. Joint Conference on Neural Networks	IEEE Int. Joint Conf. Neural Netw.
IEEE	IEEE World Congress on Computational Intelligence	IEEE World Congr. Comput. Intell.
IEEE	IEEE Int. Symposium on Circuits and Systems	IEEE Int. Symp. Circuits Syst.
IEEE	IEEE Int. Conf. on Acoustics, Speech, and Signal Processing	IEEE Int. Conf. Acoust., Speech, Signal Process.
ICASSP	Int. Conf. on Acoustics, Speech, and Signal Processing	Int. Conf. Acoust., Speech, Signal Process.
ISRR	Int. Symposium on Robotics Research	Int. Symp. Robot. Res.
IEEE	IEEE Virtual Reality International Symposium	IEEE Virtual Reality Int. Symp.
VRIS	Virtual Reality International Symposium	Virtual Reality Int. Symp.
IEEE	IEEE VR Symposium on Haptic Interfaces for Virtual Reality and Teleoperator Systems	IEEE VR Symp. Haptic Interfaces Virtual Reality, Teleoperator Syst.
VR	VR Symposium on Haptic Interfaces for Virtual Reality and Teleoperator Systems	VR Symp. Haptic Interfaces Virtual Reality, Teleoperator Syst.
VE	Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems	Symp. Haptic Interfaces Virtual Environ., Teleoperator Syst.
ICAR	Int. Conf. on Advanced Robotics	Int. Conf. Adv. Robot.
IEEE	IEEE Int. Workshop on Intelligent Robots and Systems	IEEE Int. Workshop Intell. Robots Syst.
IWIRS	Int. Workshop on Intelligent Robots and Systems	Int. Workshop Intell. Robots Syst.
ICPR	Int. Conf. on Pattern Recognition	Int. Conf. Pattern Recog.
IEEE	IEEE Conf. on Emerging Technologies in Factory Automation	IEEE Conf. Emerging Technol. Factory Autom.
ISMHS	Int. Symposium on Micromechatronics in Human Sciences	Int. Symp. Micromechatron. Human Sci.

IAPR	IAPR Workshop on Machine Vision Applications	IAPR Workshop Mach. Vis. Appl.
ASME	ASME Design Engineering Technical Conference	ASME Des. Eng. Tech. Conf.
SI3DG	Symposium on Interactive 3D Graphics	Symp. Interactive 3D Graph.
ASCG	Annual Symposium on Computational Geometry	Annu. Symp. Comput. Geom.
IMACS	IMACS World Congress on Mathematical Modeling and Scientific Computation	IMACS World Congr. Math. Modeling Sci. Comput.
ICC	Int. Conf. on Communications	Int. Conf. Commun.
IEEE	IEEE Int. Conf. on Communications	IEEE Int. Conf. Commun.
CISS	Conference on Information Science and Systems	Conf. Inf. Sci. Syst.
IEEE	IEEE Wireless Communications and Networks Conference	IEEE Wireless Commun. Netw. Conf.
WCNC	Wireless Communications and Networks Conference	Wireless Commun. Netw. Conf.
IEEE	IEEE Information Theory Workshop	IEEE Inf. Theory Workshop
ITW	Information Theory Workshop	Inf. Theory Workshop
ISSSE	Int. Symposium on Secure Software Engineering	Int. Symp. Secure Softw. Eng.
IEEE	IEEE Int. Symposium on Secure Software Engineering	IEEE Int. Symp. Secure Softw. Eng.
IEEE	IEEE Military Communications Conference	IEEE Mil. Commun. Conf.
MILCOM	IEEE Military Communications Conference	IEEE Mil. Commun. Conf.
ISSSTA	IEEE Int. Symposium on Spread Spectrum Techniques and Applications	IEEE Int. Symp. Spread Spectrum Tech. Appl.
IEEE	IEEE Int. Symposium on Spread Spectrum Techniques and Applications	IEEE Int. Symp. Spread Spectrum Tech. Appl.
IEEE	Int. Symposium on Information Theory	Int. Symp. Inf. Theory
ISIT	Int. Symposium on Independent Component Analysis and Blind Signal Separation	Int. Symp. Ind. Compon. Anal. Blind
Signal Separation		
IESIP	Inte	International OFDM Workshop

ISBI	Int. Symposium on Biomedical Imaging	Int. Symp. Biomed. Imag.
IEEE	IEEE Int. Symposium on Biomedical Imaging	IEEE Int. Symp. Biomed. Imag.
ICIP	Int. Conf. Image Processing	Int. Conf. Image Process.
IEEE	IEEE Int. Conf. Image Processing	IEEE Int. Conf. Image Process.
IPMI	Information Processing in Medical Imaging Conference	Inf. Process. Med. Imag. Conf.
MICCAI	Medical Image Computing and Computer-Assisted Intervention Conference	Mid. Image Comput. Comput.-Assisted Intervention Conf.
NRSC	National Radio Science Conference	Nat. Radio Sci. Conf.
IJCAI	International Joint Conference on Artificial Intelligence	Int. Joint Conf. Artif. Intell.
COMPLEX	Annual Conference on Computational Complexity	Annu. Conf. Comput. Complexity
IWQoS	IFIP Workshop on Quality of Service	IFIP Workshop Quality of Service
WINTER	Winter Simulation Conference	Winter Simul Conf.
DATACOM	Data Communications Symposium	Data Commun. Symp.
ACM	ACM SIGCOMM Internet Measurement Workshop	ACM SIGCOMM Internet Meas. Workshop
DATACOMS	Int. Conf. on Data Communications and Systems	Int. Conf. Data Commun. Syst.
ACM	ACM SIGCOMM Conference	ACM SIGCOMM Conf.
AC	CM SIGMETRICS Conference	ACM SIGMETRICS Conf.
ACC	American Control Conference	Am. Control Conf.
CODES	Int. Symposium on Hardware/Software Codesign	Int. Symp. Hardware/Software Codes.
ICCAD	Int. Conf. on Computer-Aided Design	Int. Conf. Comput.-Aided Des.
CNDS	Communications Networks and Distributed Systems Modeling and Simulation Conference	Commun. Netw. Distrib. Syst. Modeling Simul. Conf.
SPECTS	Int. Symposium on Performance Evaluation of Computer and Telecommunication Systems	Int. Symp. Performance Eval. Comput. Telecommun. Syst.
ICNP	Int. Conf. on Network Protocols	Int. Conf. Netw. Protocols
IEEE	IEEE Int. Conf. on Network Protocols	IEEE Int. Conf. Netw. Protocols
IEEE	IEEE Conference on High Performance Switching and Routing	IEEE Conf. High Performance Switching Routing
LCN	Annual Conference on Local Computer Networks	Annu. Conf. Local Comput. Netw.
IEEE	IEEE Annual Conference on Local Computer Networks	IEEE Annu. Conf. Local Comput. Netw.
IWDC	Int. Workshop on Digital Communications	Int. Workshop Digital Commun.
ISDGA	Int. Symposium on Dynamic Games and Applications	Int. Symp. Dynam. Games Appl.
MASCOTS	Int. Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems	Int. Workshop Modeling, Anal., Simul. Comput. Telecommun. Syst.
ACM	ACM Mobicom Annual Int. Conf. on Mobile Computing and Networking	ACM Mobicom Annu. Int. Conf. Mobile Comput. Netw.
ASFCS	Annual Symposium on Foundations of Computer Science	Annu. Symp. Found. Comput. Sci.
WOCS	Workshop on Optics and Computer Science	Workshop Opt. Comput. Sci.
JCIS	Joint Conference on Information Sciences	Joint Conf. Inf. Sci.
DRCN	Int. Workshop on Design of Reliable Communication Networks	Int. Workshop Des. Reliable Commun. Netw.
IEEE/OSA	IEEE/OSA Optical Fiber Communications Conference	IEEE/OSA Opt. Fiber Commun. Conf.
NFOEC	National Fiber Optic Engineers Conference	Nat. Fiber Opt. Eng. Conf.
OPTICOMM	Optical Networking and Communications Conference	Opt. Netw. Commun. Conf.
ICCV	Int. Conf. on Computer Vision	Int. Conf. Comput. Vis.
ICIAP	Int. Conf. on Image Analysis and Processing	Int. Conf. Image Anal. Process.
IEEE	IEEE Visualization Conference	IEEE Vis. Conf.
VIS	Visualization Conference	Vis. Conf.
MICCAI	Int. Conf. on Medical Image Computing and Computer-Assisted Intervention	Int. Conf. Med. Image Comput. Comput.Assisted Intervention
VIRTUAL	Virtual Systems and Multimedia Conference	Virtual Syst. Multimedia Conf.
IEEE	IEEE Nuclear Science Symposium	IEEE Nuclear Sci. Symp.

NUCLEAR	Nuclear Science Symposium	Nuclear Sci. Symp.
IEEE MIC	IEEE Medical Imaging Conference	IEEE Med. Imag. Conf.
PATTERN	Int. Conf. on Pattern Recognition	Int. Conf. Pattern Recog.
MEDINFO	World Congress on Medical Informatics	World Congr. Med. Informatics
AFGR	Int. Conf. Automatic Face and Gesture Recognition	Int. Conf. Autom. Face Gesture Recog.
IEEE AFGR	IEEE Int. Conf. Automatic Face and Gesture Recognition	Recog. Conf. Autom. Face Gesture
ICCVVRRM	Int. Conf. on Computer Vision, Virtual Reality, and Robotics in Medicine	Robot. Med.

GECC	Genetic and Evolutionary Computation Conference	Genetic Evol. Comput. Conf.
IEE SIMUL	IEE Int. Conf. on Simulation	IEE Int. Conf. Simul.
ASME/IEEE	ASME/IEEE Joint Railroad Conference	ASME/IEEE Joint Railroad Conf.
IEEE/ASME	IEEE/ASME Joint Railroad Conference	IEEE/ASME Joint Railroad Conf.
AWEA	AWEA Windpower Conference	AWEA Windpower Conf.
WIND	Windpower Conference	Windpower Conf.
PESC	IEEE Power Electronics Specialists Conference	IEEE Power Electron. Spec. Conf.
IEEE PESC	IEEE Power Electronics Specialists Conference	IEEE Int. Symp. Ind. Electron.
IEEE ISIE	IEEE Int. Symposium on Industrial Electronics	Int. Symp. Ind. Electron.
ISIE	Int. Symposium on Industrial Electronics	IASTED PowerCon
IASTED POWER	IASTED PowerCon	IASTED PowerCon
POWERCON	IASTED PowerCon	Rural Elect. Power Conf.
IEEE RURAL	IEEE Rural Electric Power Conference	CIDEL Int. Congr. Elect. Distrib.
RURAL	Rural Electric Power Conference	Int. Congr. Elect. Distrib.
CIDEL	CIDEL Int. Congress on Electrical Distribution	Nat. Conf. Artif. Intell.
ICED	Int. Congress on Electrical Distribution	Conf. Uncertainty Artif. Intell.
NCAI	National Conference on Artificial Intelligence	Int. Symp. Comput. Oper. Power Syst.
UAI	Conference on Uncertainty in Artificial Intelligence	North Am. Power Symp.
COPS	Int. Symposium on Computerized Operation of Power Systems	Large Eng. Syst. Conf. Power Eng.
NAPS	North American Power Symposium	IASTED Int. Conf. Energy Power Syst.
LESCOPE	Large Engineering Systems Conference on Power Engineering	CIRED Int. Conf. Exhib. Elect. Distrib.
IASTED EPS	IASTED Int. Conf. on Energy and Power Systems	Ppec. Elect. Oper. Expansion
EPS	IASTED Int. Conf. on Energy and Power Systems	
CIRED	CIRED Int. Conf. and Exhibition on Electricity Distribution	Symposium of Specialists in Electric Operational and Expansion Planning
SEPOPE	Symper	

[^0]: The authors are with the Physics Department, Electronics Laboratory, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece (e-mail: cpsychal@physics.auth.gr; svals@skiathos.physics.auth.gr).

 Digital Object Identifier 10.1109/TCSII.2003.814788
 Example of Errata:

