

UNIVERSITY OF OXFORD

Capital Cost Analysis (4)

James Henderson November 2022

The Economics of Energy Corporations (2)

Outline of the course

Overall objective – understand how senior management use economic models to make investment decisions

- 1. Introduction to key themes in the global energy market
- 2. Introduction to financial modelling as a management tool
 - 1. Understanding some key concepts
- 3. Starting two models for an oil and a gas field revenues and prices
- 4. Inputting the costs capital expenditure
- 5. Operating costs and paying the government
- 6. A power plant a buyer and seller of energy
- 7. Calculating a discounted cashflow
 - 1. Why is it important
 - 2. How is it used to make decisions
- 8. Testing the investment decisions: running some numbers under different assumptions
- 9. Answering your questions

Key Cost Elements

Main assumptions

- Capital expenditure (initial investment)
- Operating expenditure (ongoing cost of operations)
- Transportation (getting the product to market)
- Taxes (operating taxes and profit tax)
- CAPEX, OPEX, Transport and Tax

Capital Expenditure - CAPEX

Key parameters

- Size of asset
- Location
- Complexity
- Competition for contractors / availability of local companies

Complex models are used by engineers

Project: SCEP Sample System							Project ID: rSSAMPLE							
Component	Name: Root				-	Comp	onent ID:	000	000000	0000000	00			
component T	ype Comp	onent Cost Dri	ver Attrib	utes —										
New	RELY	nominal 💌	DATA	nominal	*	CPLX	nominal	*	TIME	nominal				
Modified Exis	ting				_		-	_			_			
0 % Design	Mod. STOR	nominal 💌	VIRT	nominal	•	TURN	nominal	*	ACAP	nominal				
0 % Code I	ADD AEXP	nominal	PCAP	nominal	-	VEXP	nominal	-	LEXP	nominal				
0 % Test M	lod. HODE	nominal		ominal	-	CCED	nominal	-		-82				
ctual Compone	nt DSI:	Inominai 💽	TTOOL	IUIIIIIai		SUED	Inoninai							
mments:				-					OHR	ale. 10.00				
mments: s is the root comp	onent of the SCEP Sam	ple System.			_	2	Pr	ojec	он в <i>1 Маи</i> 1 Фи	igation	,			
mments: s is the root comp Phase	onent of the SCEP Sam Man-Months	ple System Cost (K\$)	м	onths	St	aff	Pr	ojec A GO	он в <i>1 Nav</i>	Find Compo	nent			
mments: s is the root comp Phase PD	onent of the SCEP Sam Man-Months 6.3	ple System Cost (K\$) 32.4	M	onths	St 2	aff .4	Pr ↓	ojec A GO	OH R	Find Compo	nent ling			
Phase PD DD	onent of the SCEP Sam Man-Months 6.3 9.1	Cost (K\$)	M	onths	St 25	aff .4	Pr	ojec A GO	H Nav	igation Find Compo	nent			
Phase PD DD CUT IT	onent of the SCEP Sam Man-Months 6.3 9.1 9.8 9.8 9.8 9.8	Die System Cost (K \$) 32.4 38.1 37.3 46.7	M	2.7 1.6 2.6	St 25.64	aff .4 .8 .3 .8	Pr	ojec A GO ¥		Find Compo	nent			
Phase PD DD CUT IT Total	Man-Months 6.3 9.1 9.8 9.8 35.1	Cost (K\$) 32.4 38.1 37.3 46.7 154.5	M	2.7 1.6 1.6 2.0 7.8	St 2 5 6 4	aff 4 8 3 8		ojec A GO ¥ ew Cł	oh R A Nav.	igation Find Compo	, nent			

- Cost estimates based on historical precedent and prices of key inputs today
- Steel price a key input, for example

Timing and planning is vital, with any slippage being potentially very expensive

ID		Task Name	Duration	Start	Finish	Predecessors		Feb 23	. '03	Mar	2. '03		Mar	9, '03
	0						WTFS	S M	TWT	FSS	MTW	T F S	S	M T W
1		MSE PROJECT	329 days?	Mon 1/20/03	Thu 4/22/04									
2		Background Reading & Research	12 days?	Mon 1/20/03	Tue 2/4/03									
3	0	Timelog Update	321 days	Mon 1/27/03	Mon 4/19/04				1					
69		Phase 1: Overview & Requirements	239 days?	Tue 2/11/03	Fri 1/9/04	2								
70		Project Overview Document	1 day	Thu 2/20/03	Thu 2/20/03		Gant	1						
71		Initial Program Analysis	4 days	Tue 2/11/03	Fri 2/14/03									
72		Initial Object Model	1 day?	Mon 2/24/03	Mon 2/24/03				Ganti					
73		Software Requirement Specification	4 days	Thu 2/27/03	Tue 3/4/03	72			Ĭ.		Ga	nti		
74		Software Quality Assurance Plan	4 days	Wed 3/5/03	Mon 3/10/03	73					Ľ.			Ganti
75		Cost Estimation	4 days	Mon 3/10/03	Thu 3/13/03									
76		Architecture Elaboration Plan	1 day?	Mon 12/15/03	Mon 12/15/03									
77	==	Demonstration	3 days	Tue 12/16/03	Thu 12/18/03	72								
78	==	Presentation 1	1 day?	Fri 1/9/04	Fri 1/9/04	70,71,74,75,76,77								
79		Phase 1 Complete	0 days	Fri 1/9/04	Fri 1/9/04	78								
80		Phase 2: Design and Specifications	21 days	Mon 1/12/04	Mon 2/9/04	79								
81		Implementation Plan	4 days	Mon 1/12/04	Thu 1/15/04									
82		Architecture Design	5 days	Tue 1/13/04	Mon 1/19/04									
83		Test Plan	6 days	Mon 1/19/04	Mon 1/26/04									
84		Formal Requirement Specification	6 days	Mon 1/26/04	Mon 2/2/04									
85		Design Documentation	4 days	Tue 2/3/04	Fri 2/6/04									
86		Presentation 2	1 day	Mon 2/9/04	Mon 2/9/04	81,82,83,84,85								
87		Phase 2 Complete	0 days	Mon 2/9/04	Mon 2/9/04	86								
88		Phase 3: Implementation	28 days?	Tue 3/16/04	Thu 4/22/04	87								
89		Implementing the project	10 days	Tue 3/16/04	Mon 3/29/04									
90		Testing	7 days	Tue 3/30/04	Wed 4/7/04	89								
91		Documentation	10 days	Thu 4/8/04	Wed 4/21/04	87,89,90								
92		Final Presentation	1 day?	Thu 4/22/04	Thu 4/22/04	91								
93		Phase 3 Complete	0 days	Thu 4/22/04	Thu 4/22/04	92								

Oil price naturally linked to spending

- Upstream costs fell sharply after oil price collapse in 2015/16
- 2020 has seen a further cut in spending

2020 saw costs slashed and a re-assessment of future plans overall

- Spending across the value chain has been cut radically
- In addition companies have started to questions which oil projects will be viable in a world of energy transition

Companies have been forced to re-think spending plans and to focus on efficiency gains

- As companies cut budgets they also look for efficiency gains which can reduce the impact on investment plans
- Often low oil prices catalyse technological innovation with long-lasting impacts

Where will breakeven prices be low enough to ensure survival and adequate returns?

Global liquids capacity in 2030 by breakeven

- The geography of projects is becoming increasingly important
- How can companies get access to assets in areas where the breakeven cost is low enough to guarantee profits?

It is not just oil producers who have to worry. Service companies are hit hard too

- Companies like Schlumberger, Halliburton and Baker Hughes are vital for oilfield developments
- They have much of the industry expertise ad equipment to hand
- They tend to suffer first in an oil price downturn as companies force through cuts in budgets

Job losses can cause long-term problems

- Jobs are often cut during a downturn, but now this could have radical consequences
- Will skilled workers return to the oil industry or look for employment elsewhere (e.g. offshore wind)
- Skills shortage is becoming a major problem for oil and gas sectors

In the US the rig count falls in line with the oil price

- It can also recover quickly, but again only if workers stay in the industry
- Some retired workers are being offered huge pay packages to return to work as there are not enough young engineers and other scientists interested in the oil and gas sector

Comparison of capex by countries

Source: Rystad Energy

- Low investment costs in Middle East thanks to huge reserves and easy conditions
- Highest costs offshore, especially in deep water

Comparison of field capex

- Specific fields exemplify the country trends
- Offshore fields are more expensive (Lula), as are those with complex geology (Kashagan)
- Onshore conventional fields (Ghawar, Novy Port) are lower cost

