Hypothalamus and adenohypophysis functions.

Neuroendocrine regulation

THALAMUS

- NON-SPECIFIC NUCLEI
- SPECIFIC SENSORY NUCLEI
- SPECIFIC NONSENSORY NUCLEI
- ASSOCIATION NUCLEI

HYPOTHALAMUS

- SYSTEM OF SEVERAL DOZENS OF NUCLEI
- PARAVENTRICULAR
- MEDIAL
- LATERAL REGION

HYPOPHYSIS

- PARS DISTALIS (STH, PRL, TSH, FSH, LH, ACTH) -
- PARS TUBERALIS (FSH, LH) -
- PARS INTERMEDIA (MSH) -

Response to stress

Ventrolateral medulla (heart, stomach)

Amygdala (associative regions of neocortex, olfactory bulb, hippocampal formation, subcortical structures including brain stem)

Hippocampus (associative regions of neocortex, thalamus, reticular formation nuclei, etc.)

Nucleus solitarius

(viscerosensory information– heart, lungs, GIT, blood vessels – baro-/chemoreceptors)

Orbitofrontal cortex

(sensory perception, reaction to reward/punishment)

Hypothalamus

Locus coeruleus (prefrontal cortex, N. paragigantocellularis – integration of external and autonomic stimuli – stress, panic)

Lamina terminalis (blood, blood composition)

Behavior

Body temperature regulation

Neuroendocrine regulation

Appetitive behavior (hunger, thirst, sexual behavior)

Defensive reactions

Biorhythms and their regulation

Autonomic nervous system (modulation)

Circumventricular organs

Eminentia mediana

- Afferent sensoric organ
- Functional connection of hypothalamus and hypophysis
- Point of entry of some hormones from circulation (fenestration) leptin
- CONVERSION HUMORAL FACTORS HYPOTHALAMIC REGULATION NEURONS

OVLT

- Regulation of autonomous processes
- Febrile regulation
- Blood osmolality
- Regulation of secretion of GnRH stimulated by estrogens

Area postrema

- Afference (n. vagus, n. glossopharyn-geus)
- R for GLP-1 and amylin
- Chemosensoric neurons with osmoR
- "detection" of toxins
- coordinated regulation of blood pressure (R for ATII, ADH, ANP)

Subfornical organ

- Body fluid homeostasis
- Blood pressure regulation (R for ANP and ATII)
- Oxytocin secretion regulation

Subcommissural organ

- Mainly unknown function
- R for neuropeptides and neurotransmitters
- ? Production of somatostatin
- "catching" of monoamines from CSF

CC – corpus calosum OC – chiasma opticum ac – commisura anterior pc – commisura posterior AP – area postrema CP – choroid plexus ME – eminentia mediana NH – neurohypophysis OVLT – organum vasculosum laminae terminalis PI – pineal gland/epiphysis SCO – subcommissural organ SFO – subfornical organ

Anatomical and functional connection of hypothalamus and hypophysis

Neurosecretion

SON – supraoptic nucleus PVH – paraventricular nucleus PeVH – periventricular nucleus Arc – arcuate nucleus LHA – lateral hypothalamic region

Magnocellular and parvocellular neurons – neurotransmitters and neuromodulators

Magnocellular neurons

- Angiotensin II
- Cholecystokinin (CCK)
- **Dynorphins**
- Glutamate
- Nitric oxide
- Oxytocin
- ADH

Parvocellular neurons

- Angiotensin II
- GABA
- ANP
- ССК
- GRP
- neuromedin B
- CRH

- Endocannabinoids
- Enkephalins -
- Galanin -
- IL-1 -
- -Neuropeptide Y
- Nitric oxide -
 - SST, TRH -

VIP

dopamine

- Acetylcholin
- GABA
- Agouti-related peptid
- CART
- Dopamine
- Dynorphin
- Endocannabinoids
- Enkephalins
- Galanin, Galanin-like peptid (GALP)
- Glutamate
- GnRH

Arcuate nucleus

- GHRH
- **Kisspeptins**
- Melanocortins, including ACTH
- Neurokinin B
- Pancreatic polypeptide
- Prolactin
- POMC
- SST
- etc.

S eu

ے

σ

Hypothalamic hormones

Hypothalamic hormones are secreted in eminentia mediana region and enter portal circulation via fenestrations

Axons of oxytocin and ADH synthesizing neurons go through eminentia mediana region. Hormones are secreted in neurohypophysis

PIH (prolactin-inhibiting hormone) = dopamine

Environmental factors Neural stimuli Hormonal stimuli

vasopressin
<i>Cys</i> -Tyr-Phe-Gln-Asn- <i>Cys</i> -Pro-Arg-Gly-NH₂ (MW = 1084.38)
Oxytocin
Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH₂ (MW = 1007.35)
Thyrotropin-Releasing Hormone
$pGlu-His-Pro-NH_2$ (MW = 362.42)
Gonadotropin-Releasing Hormone
pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH₂ (MW = 1182.39)
Corticotropin-Releasing Hormone
Ser-Glu-Glu-Pro-Pro-Ile-Ser-Leu-Asp-Leu-Thr-Phe-His-Leu-Leu-Arg-Glu-Val-Leu-Glu- Met-Ala-Arg-Ala-Glu-Gln-Leu-Ala-Gln-Gln-Ala-His-Ser-Asn-Arg-Lys-Leu-Met-Glu-Ile- Ile-NH ₂ (MW = 4758.14)
Growth Hormone-Releasing Hormone
Tyr-Ala-Asp-Ala-IIe-Phe-Thr-Asn-Ser-Tyr-Arg-Lys-Val-Leu-Gly-Gln-Leu-Ser-Ala-Arg- Lys-Leu-Leu-Gln-Asp-IIe-Met-Ser-Arg-Gln-Gln-Gly-Glu-Ser-Asn-Gln-Glu-Arg-Gly-Ala- Arg-Ala-Arg-Leu-NH ₂ (MW = 5040.4)
Somatostatin
Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys (MW = 1638.12)
Vasoactive Intestinal Peptide
His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln-Met-Ala-Val-Lys- Lys-Tyr-Leu-Asn-Ser-Ile-Leu-Asn-NH ₂ (MW = 3326.26)

Signal integration to regulate endocrine functions and to maintain hoemeostasis

Thyreoliberin (TRH, thyrotropin-releasing hormone)

Characteristics

- Phylogenetically very old peptide (primitive vertebrates)
- Central and peripheral effects

Hypothalamo-hypophyseal axis

- Regulation of TSH and PRL secretion (prolactinemia, galactorea)
- No effect on other AH hormones secretion (exception stimulation of GH secretion during acromegaly, liver diseases, anorexia nervosa, psychotic depression; stimulation of ACTH secretion during Cushing's syndrome)

Other places of TRH synthesis/secretion

- cortex cerebelli
- Circumventricular structures
- Neurohypophysis
- Endocrine pancreatic cells
- GIT
- Heart (positive inotropy and chronotropy)

- Neuromodulator function
- Role in central thermoregulation

- In the past hyperthyroidis diagnosis (hypothalamic X hypophyseal causes)
- Possible role in depression treatment, spinal muscular atrophy and amyotrophic lateral sclerosis
- Treatment of some syndromes
 (West, Lannox-Gastaut, early infantile epileptic encephalopathy)

Thyreoliberin - regulation of secretion

- Neural control
- Circadian rhythm (maximum between 21:00 and 5:00 and between 16:00 and 19:00, peaks in 90–180 min intervals
- Temperature (cold) higher synthesis among people from colder regions in winter – together with autonomic nervous system (catecholamines)
- Stress TRH synthesis and secretion inhibition (indirect negative feedback loop between glucocorticoids and effect on hippocampus)
- Starvation TRH secretion decrease ("saving" energy); effect of leptin
 - Pody mass POM(()) and APCD(+) system

Cortikoliberin (CRH, corticotropin-releasing hormone)

Characteristics

-Important part of CNS stress response modulation

-Group of related peptides (CRH, urocortin, urocortin II, urocortin III, *urotensin, sauvagin*) with different CNA distribution and CRH-R1 and CRH-R2 affinity

-Exclusively CRH-R1 corticotropic cells (AC)

-CRH-1 – neocortex, cerebellar cortex, subcortical structures of limbic system, amygdala, ovaries, endometrium, skin

-CRH-binding protein

Hypothalamo-hypophyseal axis

- Fast ACTH secretion

Other places of CRH synthesis/secretion

- Limbic system
- Amygdala, substantia nigra
- Nucleus tractus solitarius
- Parabrachial nucleus
- Placenta (3rd trimester)
- Lymphocytes, autonomic nerves, GIT
- Cardiovascular system

- Behavior, fear, anxiety regulation
- Anorexigenic factor
- Increased sympathetic tone
 - Blood pr. regulation (decrease)
 - Negative chronotropy
 - Immune system, reproduction

- Potential treatment of obesity
- CRH-R1 antagonists anxiety and depression treatment

Corticoliberin – regulation of secretion

- Neural control various stressors
 - Hypothalamo-hypophyseal axis activation
 - Sympathoadrenal axis activation
 - ADH and oxytocin binding
 - Ensuring requirements in emergency situations
- Inflammation and cytokines
 - IL-1B and hypothalamo-hypophyseal axis activation
- Circadian rhythms diurnal rhythms

Somatoliberin (GHRH, growth hormone-releasing hormone)

Characteristics

- Two types present in hypothalamus
- GHRH receptor (cAMP)
- R homology with R secretin, GLP-1, glucagon, calcitonin, PTH, PTHrP

Hypothalamo-hypophyseal axis

- Fast GH secretion
- GHRH is not the only GR secretion modulator!
- Synergy with estrogens, glucocorticoids and starvation
- Somatostatin, age and obesity decreased secretion

Other functions and places of synthesis

- -Sleep regulation (SCN)
- -Orexigenic factor
- -Wound healing skin

-Ovaries, uterus

-Placenta

- Unknown role
 - Possible alternative splicing

- Nowadays without clinical significance
- GHRP

Somatostatin (GHIH, growth hormone-inhibiting hormone)

Characteristics

- SST-14 (CNS) and SST-28 (GIT)
- Neurotransmitter neuromodulator
- SSTR1-SSTR5 (GP cAMP PLC, PLA, MAPK, ion channels)
- diverse receptor distribution (mainly CNS)
- SSTR5 insulin secretion inhibition
- SSTR2 glucagon secretion inhibition

Hypothalamo-hypophyseal axis

- GH secretion regulation
- TSH inhibition
- PRL and ACTH secretion inhibition

Other functions and places of synthesis

- Myenteric plexus
- Epithelial GIT cells

- neurotransmitter
- paracrine
- Endocrine pancreas autocrine and paracrine
- Cortex, lateral septum, amygdala, thalamic reticular nucleus
- Hippocampus, brain stem nuclei
- Cortistatin with SSTR1-5 affinity neuromodulator (ant. Ach)

- Somatostatin analogues (octreotide, lanreotide, vapreotide, seglitide, pasireotide)
- Therapy of acromegaly, TSH producing or neuroendocrine tumors
- ! Negative GIT side effects
- Imaging methods (¹¹¹In-somatostatin)
- Potential use in tumor treatment

Main effects of somatostatin

Inhibition of hormone secretion	GIT inhibition	Other
Adenohypophysis – TSH, GH, ACTH, PRL	Stomach and duodenal secretion including HCl	Inhibition of activated immune cells
GIT – gastrin, secretin, motilin, GLP-1, GIP, VIP	Stomach emptying	Inhibition of tumor growth (proliferation)
Endocrine pancreas – insulin, glucagon, (somatostatin)	Pancreatic enzymes and bicarbonates secretion	
Kidneys - renin	Bile secretion	
	Decrease of GIT blood flow	
	Stimulation of intestinal water and electrolytes absorption	

Somatoliberin, somatostatin – regulation of secretion

- GHRH secretion stimulation
 - Ghrelin
 - Leptin
 - Galanin
 - GABA
 - $\,\alpha\text{2-adrenergic}$ and dopaminergic input
- GRHR secretion inhibition
 - CRH
 - $-\beta$ 2-adrenergic input
- Somatostatin secretion inhibition
 - Ach
 - 5-HT-1D

Stimulation of GH secretion

Physiological factors	Hormones and neurotransmitters	Pathological factors
Exercise	Arginin, lysin	Acromegaly
Stress (various causes)	Neuropeptides (ghrelin, RHRH, galanin, opioids – μ receptors, melatonin)	TRH, GnRH
Sleep	Neurotransmitters (agonists α 2-AR, antagonists β -AR, M1 agonists, 5-HTD1 agonists, H1 agonists)	Glu, Arg
Decrease in postprandial glycemia	GABA	IL-1, 2, 6
Starvation	Dopamine (D2R)	Protein depletion
Insulin-induced hypoglycemia	Estrogens	Starvation, anorexia nervosa
	Testosterone	Kidney failure
	Glucocorticoids (acute, not chronic)	Liver cirrhosis
		DM 1st type

Inhibition of GH secretion

Physiological factors	Hormones and neurotransmitters	Pathological factors
Postprandial hyperglycemia, glucosis infusion	Somatostatin	Acromegaly
Increased FAA in plasma	Calcitonin	L-DOPA
Increased GH concentration in plasma	Neuropeptide Y	D2R agonists
Increased IGF-1 concentration in plasma	CRH	Phentolamin
REM sleep	Neurotransmitters (α 1,2-AR antagonists, β -AR agonists, H1 antagonists, serotonin receptor antagonists, nicotine cholinergic receptor agonists)	Galanin
Aging	Glucocorticoids (chronic)	Obesity
		Hypothyroidismus
		Hyperthyroidismus

Dopamine (PIH, prolactin-inhibiting hormone)

Characteristics

- D2R (G protein inhibition, AC, cAMP decrease, inhibition of shaker type K⁺ channels, MAPK, PAK – proliferation!)
- D1R (activation)

Hypothalamo-hypophyseal axis

- Inhibition of PRL (D2R) secretion lactotropic cells
- ! Lactotrophs with continual high PRL production
- PRL secretion regulated also on adenohypophysis level (paracrine, autocrine)
- Neuroendocrine regulation of PRL secretion pregnancy, lactation, menstrual cycle, sensoric inputs

Other functions and places of synthesis

- Blood vessels vasodilatation (physiological concentrations)
- Kidneys sodium secretion
- Endocrine pancreas decrease in insulin secretion
- GIT lower motility
- Effect of dompamine on immune system

- Effect of medication on dopamine and PRL secretion
- Cardial shock
- Neurodegenerative diseases (Parkinson)
- Antipsychotics (antag.)

Dopamine – regulation of secretion

PROLACTIN-RELEASING FACTORS (PRF)

- TRH, oxytocin, VIP
- under specific conditions ADH, ATII, NPY, galanin, substance P, GRP, neurotensin
- prolactin-releasing peptide (PrRP) stress, satiety (other parts of CNS)
- Important feedback mechanism (short loop) of PRL secretion regulation
 - Circadian rhythm (maximum in the morning)
 - Nipple stimulation (1-3 min, peak 10 20 min)
- Relevance of studying PRL secretion and its regulation psychopharmaceutics!

Gonadoliberin (GnRH, Gonadotropin-Releasing Hormone)

Characteristics

- Specific origin of GnRH neurons outside of CNS
- GnRH-I, GnRH-II, (GnRH-III) $G_{\alpha/11}$ (PKC, MAPK)
- Important up- and down- regulation (steroid hormones, gonadotropic hormones)
- Downregulation malnutrition, lactation, seasonal effects, aging, continual GnRH
- Upregulation effect of GnRH on gonadotrophs (menstrual cycle)
- GNRH1 hypothalamus; GNRH2 other parts of CNS

Hypothalamo-hypophyseal axis

- FSH, LH
- Importance of GnRH pulses frequency (glycosylation)
- Menstrual cycle, puberty and its onset

Other functions and places of synthesis

- CNS neurotransmitter (preoptic region)
- Placenta
- Gonads
- Tumor tissue (prostate, endometrium)

- Continually distributed analogues of GnRH – treatment of estrogen/steroiddependent tumors of reproductive system
- Premature puberty treatment (leuprorelin – agonist!)

Gonadoliberin – regulation of secretion

- Inputs from various CNS regions (brain stem, limbic system)
- Predominant inhibitory effect of sex-hormones with exception of estradiol (negative/positive feedback)
- Importance of kisspeptin for females
- Inhibitory effect of PRL
- Effect of circulating substrates (FA, Glu)
- Leptin (NPY, kisspeptin)
- Stress (various causes)
 - Acute disruption of MC without effect on fertility
 - Chronic disruption of fertility, lowering of circulating sex-hormones levels

Neurohypophysis

Synthesis - magnocellular neurons (SON, PVN)

Precursor protein (signal peptide, hormone, neurophysin 2, glycopeptide copeptin)

Posttranslational modification – ADH/OT + neurophysins + copeptin

Neurophysins – importance – ADH transport and secretion

Termination (neurohypophysis, eminentia mediana) Secretion – voltage-gated Ca²⁺ channels Circulation – free, elimination – kidneys, liver

Oxytocin

Characteristics

- Mechanoreceptors/tactile receptors
- Magnocellular neurons (PVN, SON)
 - inhibition by endogenous opioids, NO, GABA
 - Autocrine (+ ZV)
 - Prolactin, relaxin (-), Estrogens (+)
- OXT receptors $(G_{q/11})$ effect of up/down regulation
- Works together with prolactin and sex hormones

Functions

- Lactation (under 1 min)
- Childbirth
 - rhythmical contractions of smooth muscles (gapjunction, stimulation of prostaglandin synthesis – extracellular matrix)
 - postpartum bleeding
 - uterus involution
- Ejaculation (males)
- Behavior

Other functions and places of synthesis

- CNS
 - Stimulation of ACTH secretion through CRH
 - Stimulation of ADH/induced vasoconstriction
 - Stimulation of prolactin secretion
 - Memory traces recollection inhibition
 - Maternal behavior

OT receptors

- OXT receptors (G_{q/11})
 - Myoepithelial cells
 - Myometrium
 - Endometrium
 - CNS
- PLC, IP₃, Ca²⁺
- Target molecule MLCK (myosin light chain kinase)

Antidiuretic hormone (ADH, vasopresin, AVP)

Characteristics

- Magnocellular neurons (PVN, SON)
- AVP receptors (G protein)
 - $V_1R V_{1a}(G_{q/11})$ liver, smooth muscles, CNS, adrenal glands only ligand ADH
 - V₂R (G_s) kidneys
 - V₃R V_{1b} (G_{q/11}) corticotropic cells (CNS), kidneys, thymus, heart, lungs, pancreas, uterus

Function

- Water reabsorption (distal tubule, collecting tubule) tubular system with different water permeability in different parts
 - AQP1 proximal tubule, HL descending limb HK 90 % of water reabsorption
 - AQP2 collecting tubule (only ADH; acute X chronic effect)
 - AQP3, AQP4
- Vasoconstriction (hemorrhagic shock, sepsis)
- Other functions and places of synthesis
- CNS increased recollection of memory traces
- Periphery stimulation production of factor VIII and von Willebrand factor

ADH - regulation of secretion

- Osmotic regulation
- Regulation volume-pressure
- Predominantly inhibitory effect of R on magnocellular N

ADH is the main hormone regulating water homeostasis and osmolality, RAAS is the main regulatory system of blood volume and pressure.

_

Vasoconstrictive effect of ADH

AVP vasculature effects

ADH – clinical aspects

Diabetes insipidus (DI)

- Primary polydipsia
- Decreased ADH synthesis/secretion (ADH gene) (neurogenic)
- Decreased kidney sensitivity (nephrogenic)

SIADH – Syndrome of Inappropriate Antidiuretic Hormone Secretion

- Increased ADH synthesis/secretion
- Absence of physiological ADH secretion stimuli

Absence of thirst after osmotic stimulation

Ethanol lowers ADH secretion

Adenohypophysis

- ACTH	_	adrenocorticotropic hormone
- TSH	-	thyreotropic hormone
- GH	—	growth (somatotropic) hormone
- PRL	-	prolactin
- LH	-	luteinizing hormone
- FSH	_	follicle-stimulating hormone

Adenohypophyseal cells	Represent ation	Hypothalamic hormone(s)	Adenohypophyseal hormones	Localization
Lactotropic	Up to 25 %	Dopamine	prolactin	whole AH
Cortikotropic	Ca 20 %	CRH	POMC – ACTH, β - LPH, α -MSH, β -end.	Anteromedial region
Thyreotropic	Ca 5 %	TRH	TSH	Anteromedial region
Gonadotropic	Up to 15 %	GnRH	LH/FSH	Posterolateral region
Somatotropic	Ca 40 %	GHRH/GHIH	GH	Posterolateral region

HORMONE PRODUCTION UNDER DIRECT HYPOTHALAMIC CONTROL

Adenohypophyseal hormones

Adenohypophyseal hormones

Glycoproteins - TSH

Characteristics

- Heterodimer
- $-\beta$ subunit transcriptional factors GATA2 and Pit1
- Negative feedback T3 inhibition of α subunit transcription; dopamine (α and β)
- Positive feedback TRH
- Co-translational glycosylation and folding (- T3, + TRH)

Secretion regulation

- 2-3 h pulse + tonic non-pulsatile secretion
- Peak between 23:00 and 5:00
- Stable for 24 hrs. Secretion without other factors (gender, BMI, etc)
- TRH (paracrine), transporters OATP and MCT
- T3 deiodinases 2 (+T3) and 3 (-T3) with different expression
- Catecholamines increased of setpoint for TRH inhibition
- Somatostatin (-), glucocorticoids (-), NSA (-)
- Dopamine (-)

Function

- Stimulation of thyroid hormones synthesis
- Growth hormone for thyroid gland

- TSH deficiency (mutation in genes coding TRH and TSH receptors)
- Analogues of somatostatin
- ! (+) cortisol metabolism

Glycoproteins – FSH a LH

Characteristics

- Heterodimer, different expression of subunits, glycosylation
- Structurally close to hCG (placenta)

Regulation of secretion

- sex hormones, local factors paracrine (activins, inhibins, follistatin)
- (+) glutamate, noradrenaline, leptin
- (-) GABA, opioids
- Key role of kisspeptins, neurokinin B and substance P in GnRH secretion – FSH/LH
- Estrogens, progesterone, androgens direct influence on gonadotrophs, indirect influence through GnRH
 - Estrogens (-) inhibition of transcription (α), kisspeptin – NEG
 - Estrogens (+) shift
 - Progesterone (-) influences pulsatile secretion of GnRH
 - Testosterone, estradiol (-) males, kisspeptin neurons and AR
- GnRHR Ca²⁺ mobilization
- Different half-life for circulating LH and FSH

Activins and inhibins

Inhibins

- dimeric peptides ($\alpha+1$ or two $~\beta_{\text{A}}$ or β_{B})
- circulating hormones produced by gonads
- inhibin A dominant follicle, corpus luteum
- inhibin B testes, luteal and early follicular phase of MC

Activins

- dimeric peptides dimers of β subunits
- -FSH stimulation
- autocrine/paracrine factors
- other tissues growth and differentiation

Folllistatin

- monomeric polypeptide
- FSH inhibition
- "supplementary" regulation of FSH and LH secretion
- activins = regulation of transcription, follistatin and inhibins = inhibition of activins through appropriate activin-receptor binding

FSH and LH functions

FEMALES

- FSH
 - Growth and development of follicular cell (maturation)
 - Biosynthesis of estradiol
 - Regulation of inhibin synthesis during follicular phase
 - Upregulation of LH receptors (preovulatory follicles)
 - Selection of dominant follicle
 - Recruitment of follicles for next cycle
- LH
 - Stimulation of estrogen synthesis on various levels (theca)
 - Oocyte maturation (preovulatory follicle)
 - Rupture of ovulatory follicle, ovulation
 - Conversion of follicle wall to corpus luteum

MALES

- LH
 - Intratesticular synthesis of testosterone (Leydig cells)
- FSH
 - Spermatogenesis (Sertoli cells)

- Possible deficiency of gonadotropins
- Hypogonadotropic hypogonadism
- Kallmann syndrome
- Syndrome Prader-Willi
- Reproductive dysfunction

Proopiomelanocortin - POMC

Stimulation of expression -CRH, cytokines, ADH, catecholamines, VIP

Posttranslational modification - Role of prohormone convertases (PCs)

Functions of POMC-derived peptides

Adrenal glands - ACTH

- the only POMC hormone with effect on adrenal glands
- MC2R receptor for melanocortin)
- Glucocorticoids, androgens, (mineralocorticoids)
- Mitogennic effect on adrenal glands (N terminal peptide)

Skin pigmentation – ACTH, β -LPH, γ -LPH

- MC1R
- Paracrine regulation (melanocytes, keratinocytes)

Regulation of appetite – $\alpha\text{-MSH}$

- Inhibition of inhibitory effect of leptin
- Activation of MC3R and MC4R (hypothalamus)

Immune functions – α -MSH

- Inhibition of leukocyte migration
- Inhibition of macrophage functions
 - Modulation of antigen-presenting and T cells

Analgesia – β -endorphin

- Circulating probably without effect on CNS

Placental POMC

- 2nd trimester
- Decrease 3 days after birth
- No correlation to ACTH/cortisol of mother
- Unknown physiological function

Ectopic synthesis of POMC/ACTH

- Mainly tumors with ability of posttranslational changes

ACTH

Secretion

- -Circadian and ultradian rhythms
- -Rise from 16:00 with peak before 19:00
- -Lowest levels between 23:00 and 3:00
- -pulsatile secretion (ca 40/day, higher in males)

Secretion regulation

- Very complex neuroendocrine control of stress response and homeostasis
- Regulatory molecules CNS, hypothalamus (CRH, ADH, dopamine) corticotropic cells
- Cytokines (IL-6, LIF), growth factors adenohypophysis local control (paracrine)
- Glucocorticoids
 - Negative feedback mechanism inhibition of CRH secretion, decrease of basal
 ACTH secretion
 - Modulation of somatostatin inhibitory effect (downregulation of R)
- Dopamine
- Physiological regulation of secretion exercise (athletes hypercortisolism)

ACTH and stress

- Complex peripherial and central stress adaptors
- Vasovagal and sympathetic activation (catecholamines), cytokine secretion
- Pain, infection, inflammation, bleeding, hypovolemia, trauma, hypoglycemia, psychological stress
- Higher amplitude of ACTH pluses

Function

- Adrenal glands size, structure and function
- Steroidogenesis stimulation

- Deficiency ACTH
- Hypersecretion of ACTH
- Testing insulin

Prolactin - PRL

Characteristics

- Lactotropic cells (only PRL)
- Mammosomatotropic cells (PRL and GH)
- Hyperplasia pregnancy and lactation
- Expression regulated by estrogens, dopamine, TRH, thyroid hormones
- Polypeptide circulating in three forms (mono-, di-, polymer)
- Monomeric PRL with highest biological activity
- Monomeric prolactin further spliced (8/16 kDA)
- 16 kDA PRL antiangiogenic function
- PRLR mammary gl., adenohypophysis, adrenal gl., liver, prostate, ovaries, testicles, small intestine, lungs, myocardium, SNS, lymphocytes

Regulation of secretion

- pulsatile secretion 4 14 pulses/day
- Highest levels during sleep (REM, nonREM)
- Lowest between 10:00 and 12:00
- Lower secretion with aging
- TIDA cells dopamine (-, D2R)
- Paracrine endothelin-1, TGF- β 1, calcitonin, histamine (-)
- FGF, EGF (+)
- TRH, estrogens, VIP, serotonin, GHRH in higher concentrations (+)
- Cholecystokinin ?

Prolactin - functions

Production of breast milk during pregnancy and lactation = function necessary for survival

Other functions – metabolic, melanin synthesis, maternal behavior

Development of mammary gland and lactation

- Puberty development of mammary gland due to GH and IGF-1
- Effect of estrogens and progesterone
- At age 8 13
- During pregnancy proliferation of alveoli and production of breast milk proteins and colostrum
- During third trimester colostrum production (PRL, estrogens, progesterone, GH, IGF-1, placental hormones)
- Lactation increase of PRL after birth, without breastfeeding decrease after ca 7 days
- Accumulation of breast milk stops further productionRole of OT

Reproductive function of PRL

- Lactation = amenorrhea and secondary infertility
- Inhibition of GnRH secretion
- Role of kisspeptin neurons (PRLR)
- Possible role of metabolic factors

Immune function of PRL

- Antiinflammatory effect ?

- hyperprolactinemia drugs including some antihypertensives, chronic kidney failure
- Macroprolactinemia
- Galactorrhea role of GH (acromegaly)
- PRL deficiency

Growth hormone (GH)

Characteristics

- -hGH genome 5 products including human chorionic somatomammotropin
- -hGH-N somatotrophs 20/22 kDA
- -hGH-V placenta feedback regulation -Circulating GH:
 - 20 (25 %) and 22 kDA (75 %) monomers
 - Acetylated 22 kDA form
 - Deaminated forms

Regulation of secretion

-GHRH, somatostatin, ghrelin, IGH-1, thyroid hormones, glucocorticoids

-Relatively complicated system of regulation:

- Neuropeptides
- Neurotransmitters
- Endogenic opioids

Growth hormone (GH) – regulation of secretion

- GHRH (continual), somatostatin (pulsatile secretion)
- Desensitization of R for GHRH
- IGF-1 somatostatin
- Ghrelin
 - GHS receptors stimulation of GHRH secretion
 - Synthesis stomach and CNS, regulation of food intake
- Diurnal rhythm with maximum during sleep (first episode of slow-wave sleep)
- Very low basal secretion, decrease with age (peak in puberty, then decrease)

Interval	Young Adult	Fasting	Obesity	Middle Age
24-h secretion (μ g/24 h)	540 ± 44	2171 ± 333	77 ± 20	196 ± 65
Secretory bursts (number in 24 h)	12±1	32 ± 2	3±0.5	10±1
GH burst (µg)	45 ± 4	64 ± 9	24 ± 5	10±6

Growth hormone (GH) – regulation of secretion

- Malnutrition (+)
- Obesity (-)
- Glucose (-)
- Arginine, leucine (+)
- FFA (-)
- leptin

- "jet lag"
- exercise
- physical stress including infection, sepsis

GH and interaction with other hormanal axes

ACTH – Glucocorticoids

- Acute (+) effect after ca 3 hours
- Chronic (-)

TRH – TSH – thyroid hormones

- Necessary for GH secretion
- Hypothyroidismus (-)

GnRH – FSH a LH – sex hormones

- Testosterone (+)
- Estrogens (+) only p.o. decreased inhibition of IGF-1 + feedback
- aromatization of androgens affects GH synthesis and secretion (paracrine effect of estrogens in CNS)

TRANSPORT -GHBPs -20 kDA with low affinity -60 kDa with high affinity -Obesity (+) -Pregnancy (+) -p.o. estrogens (+) -Malnutrition (-) -Cirrhosis (-) -Hypothyroidism (-) -Androgens (-) -Glucocorticoids (-)

GH – receptors and cell signaling

- GHR (dimer)
- JAK-STAT
- Liver
- Adipose tissue
- Skeletal muscles
- Mutual integration of signaling pathways?

GH and its effects

METABOLIC

-Energetic metabolism

-Together with insulin (metabolism of sugars, fats, proteins)
-Lipolysis and FA oxidation(+) (hormone-sensitive lipase, + LDL)
-Glucose – direct or indirect effect,

- (+) uptake of Glu
- (-) Glu oxidation
- (+) gluconeogenesis

-Proteins

- (+) anabolism, (-) urea
- (+) AA transport
- (+) incorporation of AA to proteins
- (-) protein oxidation

GROWTH

-Mediated by IGF-1 (auto-/paracrine)

GH – clinical aspects

GH deficiency – gained or congenital – often tumors or inflammation

- nonspecific symptoms (i.e. loss of energy, social isolation, loss of focus)
- myocardium changes (left ventricle)

GHR – mutation

Significance of **markers** (IGF-1, IGFBP3)

Substitution therapy – wide array of side-effects, contraindication – cancer

Experimental indications:

- catabolic states (i.e. extensive burns)
- osteoporosis
- HIV/AIDS
- sport medicine
- aging

MSH – melanotropins

α-MSH:	Ac-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val
β-MSH:	Ala-Glu-Lys-Lys-Asp-Glu-Gly-Pro-Tyr-Arg-Met-Glu-His-Phe-Arg-Trp-Gly-Ser-Pro-Pro-Lys-
Asp	
γ-MSH:	Tyr-Val-Met-Gly-His-Phe-Arg-Trp-Asp-Arg-Phe-Gly

- Pregnancy (+)
- Adrenal glands (hypofunction)
- Clinical significance
- -Synthetic analogues
- -Afamelanotide photoprotection
- -Melanotan II increased libido
- -Bremelanotide aphrodisiac effect (MC3R and MC4R)