Kidneys in Regulation of Homeostasis

Assoc. Prof. MUDr. Markéta Bébarová, Ph.D.

Department of Physiology Faculty of Medicine, Masaryk University

A42. Kidney in regulation of homeostasis

A3. Compartmentalization of body fluidsA4. Differences between intra- and extracellular fluids

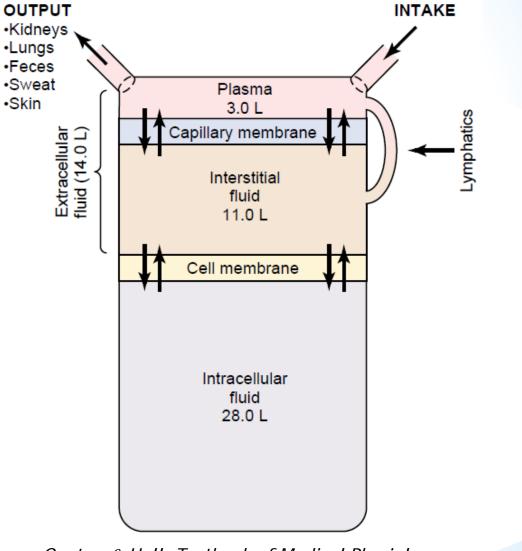
B70. Regulation of body fluid volumeB71. Regulation of constant osmotic pressure

B53. Formation and secretion of posterior pituitary hormonesB58. Adrenal cortex. Functions, malfunctions.B62. Natriuretic peptides

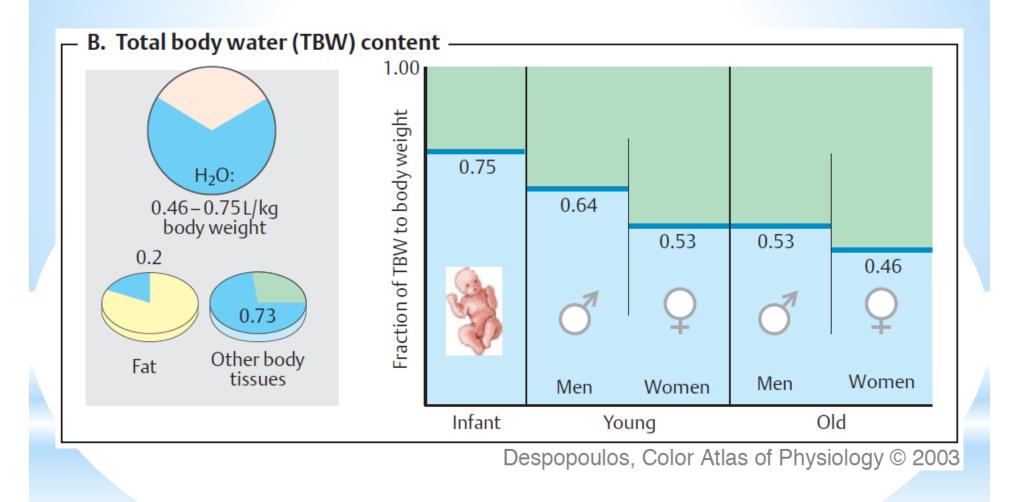
B61. Bone formation and resorption. Regulation of calcaemia.A30. Homeostasis (acid-base balance)

Homeostasis

= maintainance of stable conditions in the internal body environment


Maintainance of Constant Volume and Composition of Body Fluids Maintainance of Acid-Base Balance

Constant Volume and Composition of Body Fluids - Regulation by Kidneys -

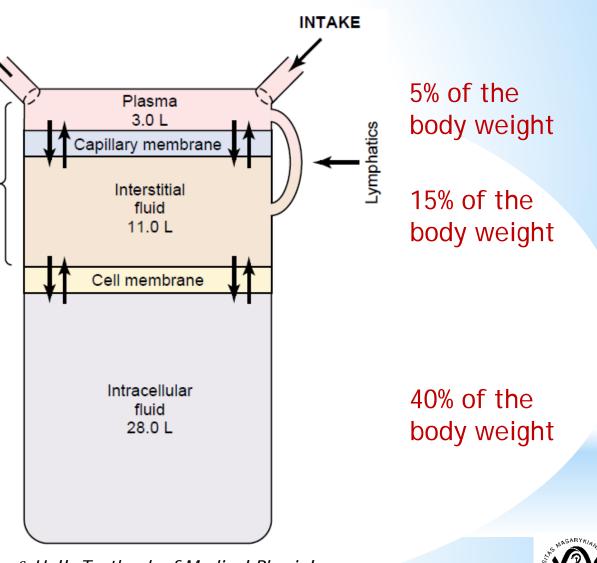


Body fluids occupy ~60% of the body weight.

Guyton & Hall. Textbook of Medical Physiology

Body fluids occupy ~60% of the body weight. OUTPUT

Kidneys


•Lungs •Feces

Sweat

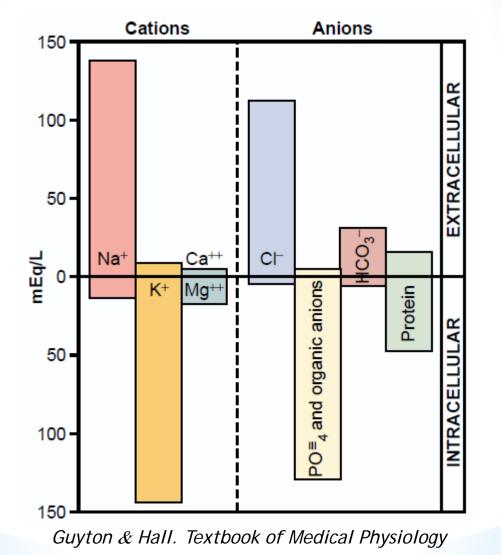
Extracellular fluid (14.0 L)

Skin

Transcellular fluid (1-2 l) special type of ECF. (peritoneal, pericardial, synovial, cerebrospinal and intraocular fluid)

Guyton & Hall. Textbook of Medical Physiology

Balance between Input and Output of Fluid


Daily Intake and Output of Water (ml/day)

	Normal	Prolonged, Heavy Exercise
Intake		
Fluids ingested	2100	?
From metabolism	200	200
Total intake	2300	?
Output		
Insensible—skin	350	350
Insensible—lungs	350	650
Sweat	100	5000
Feces	100	100
Urine	1400	500
Total output	2300	6600

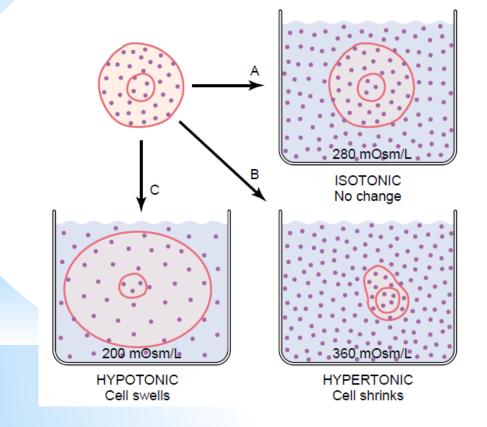
Guyton & Hall. Textbook of Medical Physiology

ECF vs. ICF

plasma vs. ISF

	Plasma (m0sm/L H ₂ 0)	Interstitial (m0sm/L H ₂ 0)
Na ⁺	142	139
$ \begin{array}{c} Na^+ \\ K^+ \\ Ca^{++} \\ Mg^+ \\ Cl^- \end{array} $	4.2	4.0
Ca ⁺⁺	1.3	1.2
Mg ⁺	0.8	0.7
Cl	108	108
HCO ₃	24	28.3
$HPO_4^-, H_2PO_4^-$	2	2
SO_4^-	0.5	0.5
Phosphocreatine		
Carnosine		
Amino acids	2	2
Creatine	0.2	0.2
Lactate	1.2	1.2
Adenosine triphosphate		
Hexose monophosphate		
Glucose	5.6	5.6
Protein	1.2	0.2
Urea	4	4
Others	4.8	3.9

Guyton & Hall. Textbook of Medical Physiology



osmolality

285 mosm/kg H₂O

↑ NaCl intake, loss of water \rightarrow water leaves cells (shrinking of cells)

↓ NaCl intake, \uparrow water input → water sucked into cells by osmosis (cell edema)

Guyton & Hall. Textbook of Medical Physiology.

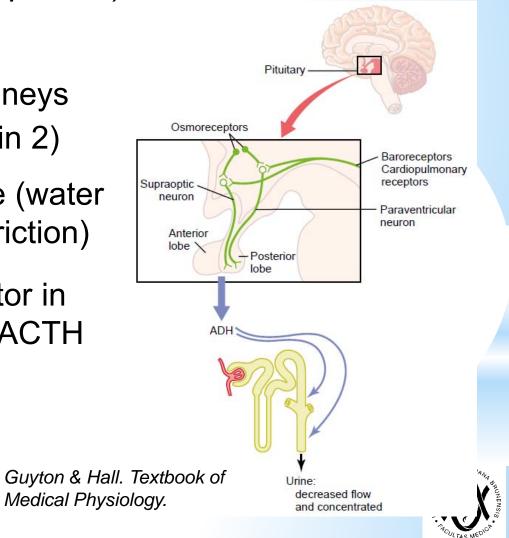
osmolality

285 mosm/kg H_2O

 \uparrow NaCl intake, loss of water \rightarrow water leaves cells (shrinking of cells)

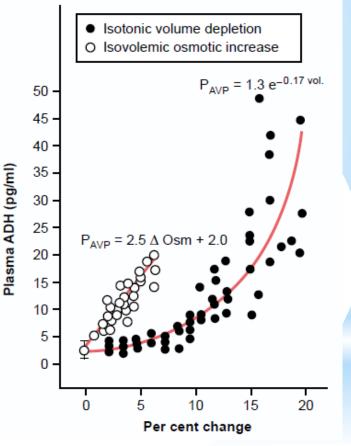
↓ NaCl intake, \uparrow water input → water sucked into cells by osmosis (cell edema)

Precise regulation of osmolality of ESF is necessary!


- osmoreceptors
- kidneys (target organ for the action of hormones below)
- antidiuretic hormone
- aldosteron
- natriuretic peptides

Antidiuretic Hormone

(vasopressin)


- effects:
 - → water reabsorption in kidneys (collecting duct, aquaporin 2)
 - → control of blood pressure (water reabsorption, vasoconstriction)
 - →↑ glycogenolysis, mediator in the brain, ↑ secretion of ACTH in adenohypophysis

Antidiuretic Hormone

(vasopressin)

- regulation of secretion:
 - ↑ osmolality
 - \downarrow volume of ECF
 - pain, emotions, stress (surgical), physical exertion; standing
 - nausea, vomitting
 - angiotensine II
 - morphin, nicotine, barbiturates, ...
 - \downarrow osmolality, \uparrow volume of ECF
 - alcohol; antagonists of opioids

Guyton & Hall. Textbook of Medical Physiology.

Aldosteron

- the most important steroid with the mineralocorticoid effect

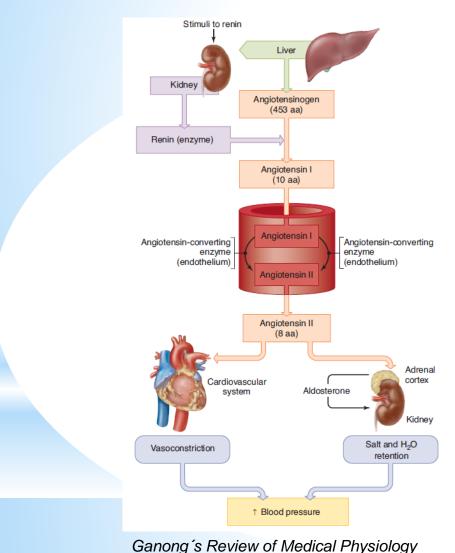
- mechanism of action:

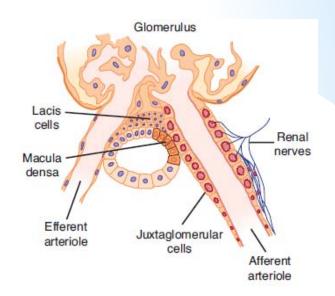
binding to the mineralocorticoid receptor \rightarrow binding of the hormone-receptor complex to DNA \rightarrow mRNA \rightarrow synthesis of proteins:

- namely Na⁺/K⁺-ATPase
- 1 number of amiloride-inhibited Na⁺-channels in the membrane of target cells
- 1 activity of H⁺-pump in collecting ducts of the renal cortex
- Activity of Na⁺/H⁺-antiport in both distal and proximal parts of nephrons

Start of the effect even 10 – 30 min after release of the hormone!

Humoral Regulation of Body Fluids Aldosteron


- the most important steroid with the mineralocorticoid effect
- effects:


→ \uparrow Na⁺ reabsorption from urine, sweat, saliva, gastric juice → \uparrow K⁺ urine excretion, \uparrow acidity of urine (exchange for Na⁺) → \uparrow K⁺ content and \downarrow Na⁺ content in muscle and brain cells

- regulation of its secretion:
 - ACTH from the adenohypophysis (a transient effect)
 - direct stimulatory effect of ↑ plasmatic concentration of K⁺ (even a small change even after a meal rich for K⁺
 fruit, vegetable) and ↓ Na⁺ (only a big change)
 - renin-angiotensine-aldosteron system

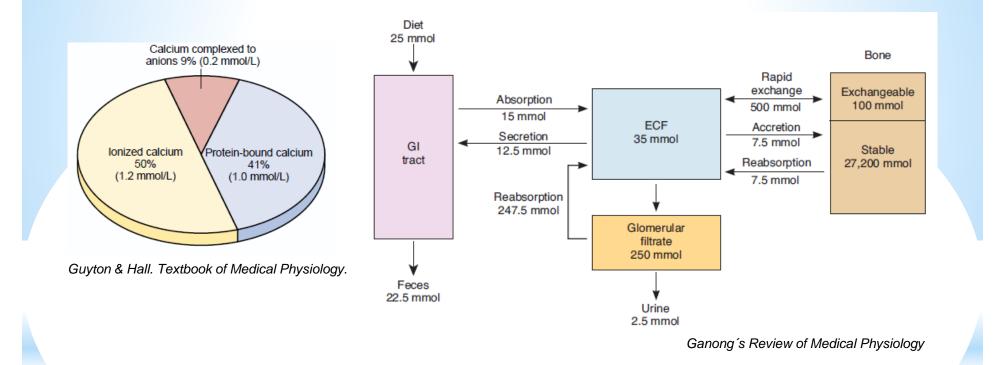
Renin-Angiotensine-Aldosteron System

Humoral Regulation of Body Fluids Aldosteron

- the most important steroid with the mineralocorticoid effect
- regulation of its secretion:
 - ACTH from the adenohypophysis (a transient effect)
 - direct stimulatory effect of ↑ plasmatic concentration of
 K⁺ (even a small change even after a meal rich for K⁺
 fruit, vegetable) and ↓ Na⁺ (only a big change)
 - renin-angiotensine-aldosteron system
 - atrial natriuretic peptide (inhibition of renin secretion, ↓ reactivity of *zona glomerulosa* to angiotensine II)
 - other hormones od adenohypophysis (besides ACTH; maintenance of reactivity of *zona glomerulosa*)

Atrial Natriuretic Peptide

- one of natriuretic peptides (BNP cardiac ventricles, CNP brain)
- secreted by atrial cardiomyocytes, found also in the brain
- receptors (ANPR-A the highest affinity to ANP, ANPR-B CNP, ANPR-C all NP)
- short half-life

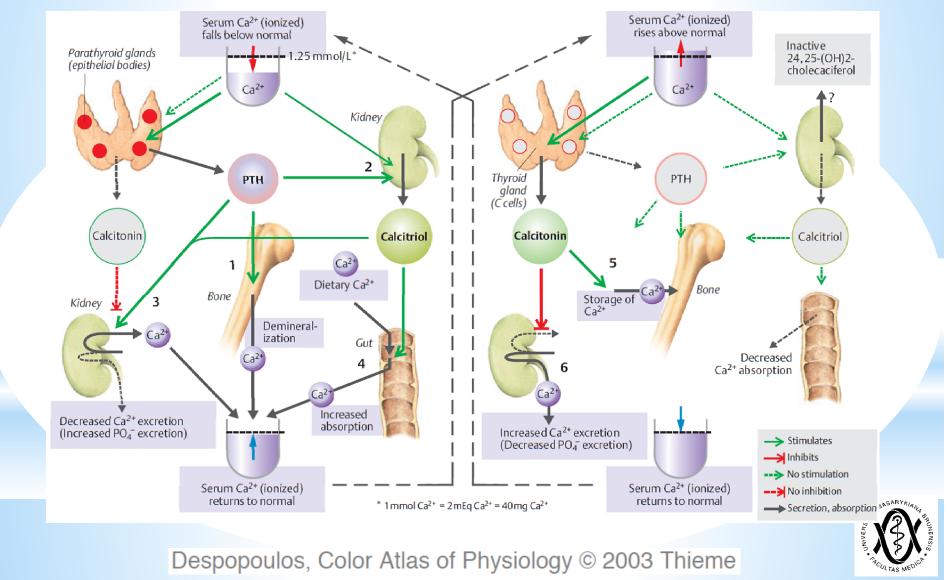


Atrial Natriuretic Peptide

- one of natriuretic peptides (BNP cardiac ventricles, CNP brain)
- effects (through \uparrow cGMP): $\rightarrow \downarrow$ BP (also through the brain stem)
 - → natriuresis (1. ↑ GFR increased area for the filtration through relaxation of mesangial cells, 2. ↑ Na⁺ excretion – decrease tubular Na⁺ reabsorption)
 - $\rightarrow \downarrow$ reactivity of vascular smooth muscles for vasocontrictive substances
 - \rightarrow inhibition of renin secretion, \downarrow reactivity of *zona glomerulosa* for stimuli \uparrow aldosteron secretion
 - \rightarrow inhibition of ADH secretion $\rightarrow \uparrow$ water excretion
- regulation of its secretion:
 - ↑ ↑ ECF volume (atrial cells' stretch at higher atrial filling)
 - \downarrow \downarrow CVP at orthostasis

Calcium in the Body

hypocalcemia hypercalcemia



Hormonal Regulation of Calcemia

Parathormone Vitamin D Calcitonin

Hormonal Regulation of Calcemia

Acid-Base Balance - Regulation by Kidneys -

Acid-base balance is regulated by:

1) Buffers

- fast regulation (seconds)
- pH changes attenuated by binding and release of H⁺:

buffer + $H^+ \iff H$ - buffer

 (H^+) direction to the right favoured till free buffer is available (H^+) direction to the left favoured, H⁺ released

2) Lungs

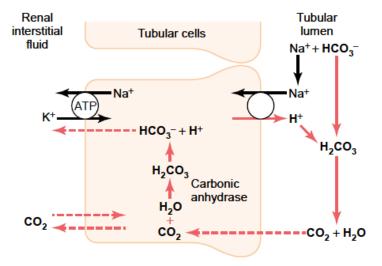
- fast regulation (minutes even hours)
- elimination of CO_2 from the body $(H_2CO_3 \rightarrow H_2O + CO_2)$

3) Kidneys

- slower regulation (hours even days) but the most powerful
- elimination of acids and bases from the body

Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Kidneys

- by excretion of acid or alkalic urine
- a high amount of HCO_3^- still filtered in the glomerulus GFR 180 I/day, $[HCO_3^-]_{plasma}$ 24 mEq/I \rightarrow 4320 mEq $HCO_3^$ filtered per day – almost all ordinarily reabsorbed
- a high amount of H⁺ still secreted in renal tubules about 80 mEq of non-volatile acids are formed in the course of metabolic processes per day - have to be excreted by kidneys
- filtered HCO₃⁻ / secreted H⁺



Regulation of Acid-Base Balance by Kidneys

1) Secretion of H⁺

2) Reabsorption of HCO₃⁻

 in the proximal tubule, thick loop of Henle and at the beginning of the distal tubule

Na⁺/H⁺-antiport

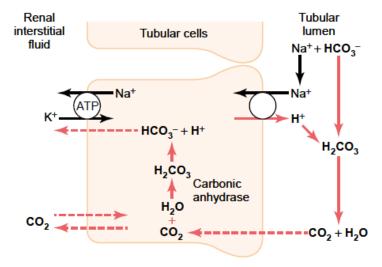
>90% HCO₃⁻ reabsorbed - only a slight acidification of the urine!

Reabsorption of HCO_3^- across the basolateral membrane facilitated by:

 Na⁺-HCO₃⁻ co-transport (the proximal tubule)

CI⁻-HCO₃⁻ exchanger

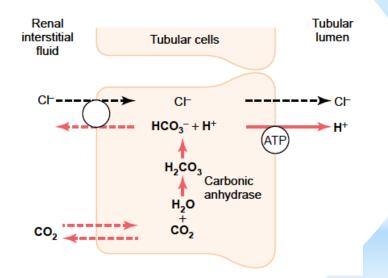
(the end of proximal tubule and the following parts of tubulus except for the thin loop of Henle)



Regulation of Acid-Base Balance by Kidneys

1) Secretion of H⁺

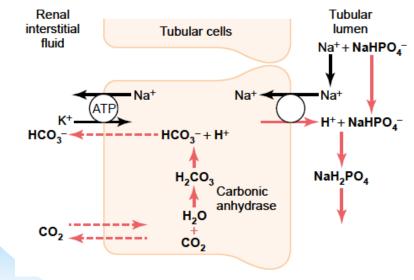
2) Reabsorption of HCO₃-

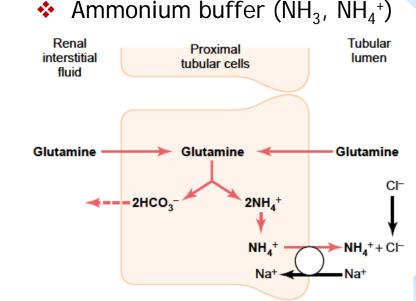

 in the proximal tubule, thick loop of Henle and at the beginning of the distal tubule

Na+/H+-antiport

>90% HCO₃⁻ reabsorbed - only a slight acidification of the urine!

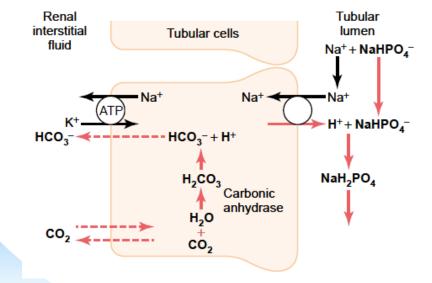
 in the final part of distal tubule and in the collecting duct

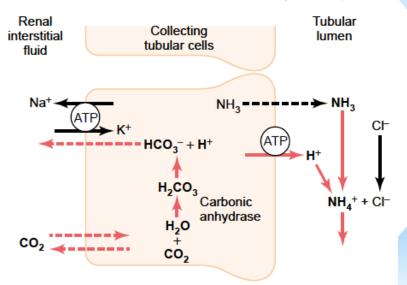



primary active transport of H⁺ (intercalated cells) *acidification of urine*

Regulation of Acid-Base Balance by Kidneys

- 1) Secretion of H⁺
- 2) Reabsorption of HCO₃⁻
- 3) Production of HCO₃⁻ *de novo*
 - Phosphate buffer $(HPO_4^{2-}, H_2PO_4^{-})$

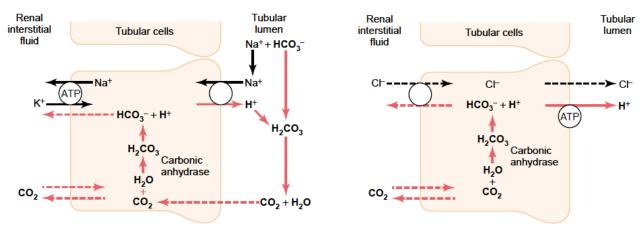



 HPO_4^{2-} and $H_2PO_4^{-}$ are reabsorbed less than water \Rightarrow their concentration in the tubular fluid gradually rises NH₄⁺ originates from glutamine – the proximal tubule, thick ascending loop of Henle and distal tubule

Regulation of Acid-Base Balance by Kidneys

- 1) Secretion of H⁺
- 2) Reabsorption of HCO_3^{-1}
- 3) Produkce nového HCO₃-
 - Phosphate buffer (HPO₄²⁻, H₂PO₄⁻)

 HPO_4^{2-} and $H_2PO_4^{-}$ are reabsorbed less than water \Rightarrow their concentration in the tubular fluid gradually rises


Ammonium buffer (NH₃, NH₄⁺)

the collecting duct (permeable for NH_3 but far less for NH_4^+ - excreted by urine) 50% of H⁺ secretion and HCO_3^- formed *de novo*!

Regulation of Acid-Base Balance by Kidneys

Regulation of H⁺ secretion

 ↑ ↑ pCO₂ in ECF (respiratory acidosis; direct stimulation due to ↑ formation of H⁺ in tubular cells)

- \downarrow pH in ECF (respiratory or metabolic acidosis)
- 1 secretion of aldosteron (stimulates H⁺ secretion in intercalated cells of collecting ducts; Conn´s syndrome alkalosis)

Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Kidneys

Acidosis - correction by kidneys

$$pH = 6.1 + log \frac{HCO_3^{-1}}{0.03 \times P_{CO2}}$$

- metabolic acidosis: due to \downarrow HCO₃⁻ renal correction : \downarrow HCO₃⁻ in ECF $\rightarrow \downarrow$ filtered HCO₃⁻ \rightarrow complete reabsorption of HCO₃⁻ + its formation *de novo* (HCO₃⁻ not excreted) + \uparrow H⁺ excretion \rightarrow pH normalization
- respiratory acidosis: due to $\uparrow P_{CO2}$ (hypoventilation) renal correction: $\uparrow P_{CO2}$ in ECF $\rightarrow \uparrow P_{CO2}$ in tubular cells \rightarrow \uparrow formation of H⁺ and HCO₃⁻ in tubular cells $\rightarrow \uparrow$ H⁺ secretion + \uparrow HCO₃⁻ reabsorption \rightarrow pH normalization

Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Kidneys

Alkalosis - correction by kidneys

$$\uparrow \text{ pH} = 6.1 + \log \frac{\text{HCO}_3^-}{0.03 \times P_{\text{CO2}}}$$

- metabolic alkalosis: due to \uparrow HCO₃⁻ renal correction: \uparrow HCO₃⁻ in ECF \rightarrow \uparrow filtered HCO₃⁻ \rightarrow incomplete HCO₃⁻ reabsorption (lack of H+) \rightarrow \uparrow HCO₃⁻ excretion by urine \rightarrow pH normalization
- respiratory alkalosis : due to $\downarrow P_{CO2}$ (hyperventilation) renal correction: $\downarrow P_{CO2}$ in ECF $\rightarrow \downarrow P_{CO2}$ in tubular cells $\rightarrow \downarrow$ formation of H⁺ and HCO₃⁻ in tubular cells $\rightarrow \downarrow H^+$ secretion + $\downarrow HCO_3^-$ reabsorption \rightarrow pH normalization