

Hepatobiliary, pancreas, diabetes mellitus, endocrine system

Morphology of hepatic injury

hepatocyte degeneration and/or pathologic intracellular accumulation (i. e. fatty liver, pigment, ...)

hepatocyte necrosis, apoptosis

- xinflammation
- *regeneration

×fibrosis

Fatty liver disease - steatosis

<mark>≭</mark> gross:

⇒ enlarged, paler, in extreme cases yellow, softer consistency

✗ micro:

⇒ small or confluent droplets in cytoplasm

causes:

- ➡ alcohol
- ⇒ other toxins (drugs, organic substances)
- ➡ diabetes mellitus + metabolic syndrome
- ➡ excessive fat intake
- ⇒ infection (hepatitis C, ...)
- ➡ hypoxia

Fatty liver - steatosis

= pathological accumulation of lipids in form of intracytoplasmatic vesicles

without inflammatory reaction reversible process
 with inflammation (steatohepatitis) – possible progression to cirrhosis

microvesicular x macrovesicular
 vesicle < or > than hepatocyte nucleus
 variable distribution (diffuse, zonal, focal), may help to the etiological diagnosis

Fatty liver disease - steatosis

Alcoholic fatty liver

Alcoholic hepatitis : steatohepatitis, cholestasis, Mallory hyaline

Cholestasis

✗ Causes:

hepatocellular dysfunction (inborn, acquired)
 biliary obstruction (intra-, extrahepatic)

Signs:

⇒pruritus - itching(↑ serum bile acids)

→ hyperlipidemia → skin xanthomas (focal cholesterol accumulation)

 \Rightarrow malabsorption $\Rightarrow \downarrow fat$ soluble vitamins (A; D; K)

→ ↑ ALP (serum alkaline phophatase)

Cholestasis MORPHOLOGY

×Gross:

➡ green-brown (olive) discoloration

×Micro:

- bile pigment accumulation in hepatocytes / canaliculi ("bile plugs")
- edema, periductal neutrophilic infiltrates in portal spaces
- ⇒ chronic obstruction → portal fibrosis → biliary cirrhosis

Hepatic venous congestion

KGROSS:

enlarged, heavy liver
 dark – reddish brown color
 cardiac fibrosis (induration)
 combination with chronic hypoxemic steatosis – nutmeg liver

Hepatic venous congestion

×MICRO:

central veins and sinusoidal dilatation

centrolobular hepatocytic atrophy, necrosis

"lines" of congestion

- 2 Congestive lines (severe congestion with hepatocyte necrosis)
- --- pseudolobule: confluent remnants of 3 lobules, centrally portal space

×infectious

- ⇒acute, chronic
- *⇒viral*
 - most common
 - primary hepatotropic hepatitis viruses
 - systemic EBV, CMV, HSV, yellow fever, enteroviruses, ...

⇒bacterial

•pyogennic bacteria, TBC, salmonella – typhoid fever, leptospirosis,...

⇒parasitic

•ecchinococcus, schistosoma, ...

⇒protozoal

amebiasis

Hepatitis

Non-infectious

(acute, chronic)

autoimmune (AIH)
 metabolic

 hemochromatosis, NASH
 toxic/drug induced
 cryptogenic

Chronic hepatitis

liver

Asymptomatic / clinical symptoms

Laboratory signs of progressive/relapsing disease (> 6 months, 12 months in HCV)

Etiology:

- ➡ Viruses
 - HBV, HBV+HDV, HCV
- ⇒ AIH

➡ metabolic (inborn, NASH)

toxic/ drug induced (alcoholic)

➡ cryptogenic

Chronic hepatitis pathology

×Gross:

non-charakteristic, commonly enlarged liver of firmer consistency

✗ Micro:

Disease activity: grade of necroinflammatory changes in portal spaces and lobules (interface activity; type, grade and localisation of necrosis; grade of inflammatory infiltrate)

Chronic hepatitis pathology

Disease stage:

⇒ <u>stage</u> of fibrosis and architectural changes (portal fibrotic expansion, bridging fibrosis, nodularity → cirrhosis)

NASH: non-alcoholic steatohepatitis

x Spreading silent epidemics: Patients with metabolic syndrome:

"male-type" obesity (intraabdominal fat accumulation – waist size)

hyperlipidemia

DM of II type, hyperglycaemia

Liver fibrosis

Response to inflammation Mostly irreversible \Rightarrow (under favorable conditions reversible to some extent) *Deposition of collagen \Rightarrow \rightarrow effects on hepatic metabolism and blood flow *Begins around portal tracts or central veins \rightarrow spreads \rightarrow links other regions (bridging fibrosis) Second Second

Complete loss of original architecture

- Regenerating groups of hepatocytes surrounded by fibrotic scar tissue
- Reorganisation of vascular architectecture
- Intrahepatic biliary trackt changes, incl. ductular hyperplasia

Due to continued parenchymal injury and fibrosis
 Advanced stage of liver disease, may be partially reversible

Etiology:

- massive acute necrosis
- chronic hepatitis
- ⇒biliary diseases:
 - inborn (atresia)
 - acquired:
 - autoimmune (primary biliary cirrhosis, prim. sclerosing cholangitis), secondary biliary cirrhosis (chronic obstruction)
- cryptogenic cirrhosis

*****Gross: liver usually diminished in size

- ⇒micronodular
- ⇒ macronodular

Cirrhosis - macronodular 🖉

Cirrhosis - micronodular

CT scan with contrast of the abdomen in transverse view demonstrates a small liver with cirrhosis. The spleen is enlarged from portal hypertension

Cirrhosis – fibrotic septa (Van Gieson staining)

Cirrhosis - ductules

Nodulus
 Ductular hyperplasia
 Portal tract with lymphocytes

Complications of cirrhosis

Insufficiency of liver functions:

- $\Rightarrow \downarrow$ synthesis (proteins incl. clotting factors etc.)
- ⇒ ↓ detoxication hepatic coma
- ➡ ↓ Kupffer cells function

Portal hypertension:

- splenomegaly, intestinal venous congestion (! infarsation, inflammation)
- ➡ ascites (! peritonitis)
- portocaval anastomoses (oesophageal varices)

Carcinoma

mostly hepatocellular

Focal lesions and tumors

Tumor-like lesions

Focal nodular hyperplasia
Nodular regeneratory hyperplasia (lack of fibrosis)
Cysts
Biliary hamartoma (von Meyenburg complex)

Focal nodular hyperplasia

 Localized benign hepatocellular nodules with central stellate fibrous scar
 Single or multiple
 More common in females, oral contraceptives – estrogenes
 Diff. dg. x tumors

FNH – fibrotic scar

Benign tumors

Adenoma

- hepatocellular
 - Iack of portal tracts, regular trabeculae
- ×cholangiocellular
 - biliary , accumulation of regular ducts, lack of bile production, less than 1cm, subcapsular
- ×cystadenoma
 - ⇒mucinous, rare

Haemangioma ×cavernous

Cavernous haemangioma

- hamartoma, commonly multiple
- × 2 mm 15 cm
- risk of rupture + bleeding, consumption coagulopathy
- common regressive changes atypical US, CT, dif. dg. x malignancy
- dark spongiotic demarcated focus
- fibrous septa + vascular spaces

Cavernous haemangioma (in micronodular liver cirrhosis)

3

1 Liver nodules 2 Dilated vascular spaces filled with red blood cells 3 Chronic inflammatory infiltrate

Cavernous haemangioma 🚑

Dilated vascular spaces filled with red blood cells
 Fibrous septa with endothelial cells

Malignant tumors

Ż

×Primary

- ⇒Hepatocellular carcinoma (90%)
- Cholangiocarcinoma
- Hepatoblastoma
 - children
- Angiosarcoma
 - associated with vinyl chloride, arsenic, or Thorotrast exposure

Malignant tumors

*****Secondary

- Metastatic carcinomas
 - most common liver malignancy (GIT, lung, breast, kidney,...)
- Direct spread of adjacent malignant tumors
 - •gall bladder, pancreas
- Other metastasing tumors
 - melanoma, sarcomas etc.
- Haemopoetic neoplasms
 - leukemia infiltrates, lymphomas

Preneoplastic changes

Liver cell dysplasia

Iow grade, high grade

⇒usually in cirrhosis

small foci or nodules, microcellular – smaller cells with less cytoplasm + bigger nuclei

Diff. dg. x well diff. HCC

Hepatocellular carcinoma

World-wide 5th most common malignancy in males, 8th in females

- Possible primary prevention
- Different incidence due to geography / cause

High-income countries: now lower incidence, usually in cirrhosis (alcohol), 个 (NASH, HCV) Eastern Asia (HBV) + Africa (aflatoxin) – 80% of cases

Hepatocellular carcinoma

Single or more nodules different from adjacent tissue

multifocal start or intrahepatic metastases

× Micro

trabecular, acinar +/- pseudoglandular, solid

Possible steatosis, bile production

Hepatocellular carcinoma

angioinvasion ⇒ mostly venous metastases ⇒ lung, bones, LN ***** small solitary (\rightarrow 3) focus excision, transplantation Iarge, multiple ⇒ ablation, bad prognosis secondary prevention regular check-up of cirrhotic patients

Cholangiocarcinoma

From intrahepatic biliary ducts ×↑ risk in PSC, HCV cirrhosis, … *mucin secterion, no bilirubin pigment ×irregular ducts, strands of cells ×diff. dg. x metastatic or direct spread – gallbladder, pancreas, colorectal ca xmostly bad prognosis

Cholangiocarcinoma

2 Liver parenchyma

Cholangiocarcinoma (Інс ск7)

CK7 positive ductal cells (brown)

Colorectal ca metastasis

1 Tubular formations of colorectal adenocarcinoma2 Liver parenchyma

Cholecystolithiasis

Cholecystitis

***Acute calculous**

Obstruction of GB neck or cystic duct
 Local pain radiating to right shoulder
 Fever, nausea, leukocytosis
 Potential surgical emergency
 empyema of gallbladder
 gangrenous cholecystitis

Cholecystitis

***Acute acalculous**

⇒ less common, ischemic (postoperative, trauma, burns, sepsis,...)
 × Chronic

 ⇒ Recurrent attacks of pain
 ⇒ Nausea and vomiting
 ⇒ Associated with fatty meals

1 1 Inflammatory infiltrate ➡Mucosa

Gangrenous cholecystitis 🚔

Chronic cholecystitis

Fibroproduction thickening of the wall, adhesion, diff. dg. x ca Chronic inflammation Reactive epithelial atypias and metaplasia Possible dysplasia Dystrophic calcification Gallbladder hydrops

Gallbladder carcinoma

Seventh decade **×**F>M Discovered at late stage, usually accidental **x**Adenocarcinoma, other types Local extension into liver, cystic duct, portal LN Mean 5 yrs survival 1% better prognosis if accidental finding in CHCE in incipient stage

Gallbladder carcinoma

© Elsevier Inc 2004 Rosai and Ackerman's Surgical Pathology 9e

© Elsevier Inc 2004 Rosai and Ackerman's Surgical Pathology 9e

Pathology of pancreas

ExocrineEndocrine

* etiological factors:

⇒ Metabolic

- Alcohol
- Hyperlipoproteinemia (type I and V)
- Hypercalcemia (hyperparatyreoidismus)
- Drugs
- Genetics

⇒ Mechanic

- Obstruction (lithiasis), spasms
- latrogenic damage (ERCP, perioperative)

⇒ VasCular, ischemic

- Shock, trombosis, embolia
- Vasculitis polyarteriitis nodosa

⇒ Infections

- mumps
- Coxsackieviruses
- Mycoplasma pneumoniae

clinical features:

severe abdominal (epigastric) pain, nausea and vomitting – acute abdomen

⇒ DIC

⇒ shock, multiorgan failure, ARDS, renal failure

elevation of serum amylases, lipases, hypocalcaemia

⇒ infective complications

K Morphology:

serous and haemorrhagic exsudate in the peritoneal cavity

⇒ swollen pancreas

→ necroses, colliquation, haemorrhages

➡ Balzer´s fat necroses

1. Fatty necroses with haemorrhagic rim

2. Adjacent pancreatic parenchyma

Balzer´s fat necroses

- 1. Balzer's fat necrosis in the omentum
- 2. Surrounding fatty tissue

1. Necrosis

- 2. Demarcation/leucocytes
- 3. Adjacent pancreatic tissue

2. Demarcation/leucocytes

Chronic pancreatitis

× TIGAR-O classification (2001):

➡ Toxic/metabolic (alcohol, uremia, drugs)

⇒ Idiopathic

➡ Genetic (hereditary)

⇒ Autoimmune

⇒ Recurrent acute

⇒ Obstructive

Alcoholic pancreatitis

histologic features:

- chronic calcifying pancreatitis
- ⇒ fibrotisation of pancreas, mostly perilobular
- ⇒ autodigestive necroses and postmalatic pseudocysts
- ⇒ dilated and irregular ducts
- ⇒ protein plugs in ducts, calcifications
- ⇒ hyperplasia and metaplasia of ductal epithelium
- ⇒ increased risk of pancreatic cancer in chronic pancreatitis

Alcoholic pancreatitis

- 1. Dilated ducts, protein plugs in ducts
- 2. Perilobular fibrotisation
- 3. Lobular architecture of pancreas

- 1. Perilobular fibrotisation
- 2. lympho-plasmocellular inflammatory infiltration
- 3. Lobular architecture of the pancreas

Autoimmune pancreatitis

adults affected

⇒ rare in 2nd and 3rd decade

× M>F

clinical and radiological features mimic pancreatic cancer

* associated with other autoimmune disorders

Obstructive pancreatitis

- Obstructive pancreatitis histological features:
 diffuse perilobular and intralobular fibrosis
 - dilated ducts without obstruction, irregularities or signs of destruction of ductal epithelium
 - no protein plugs or calcifications in ducts
 - hyperplasia of ductal epithelium
 - necroses and pseudocysts absent

Tumours of the pancreas

» epithelial

non-epithelial

secondary - metastatic

Epithelial tumours

classified according to biological behavior:

- ⇒ benign:
 - serous cystadenoma
 - acinar cell cystadenoma

⇒ Premalignant lesion:

- pancreatic intraepithelial neoplasia grade 3 (PanIN-3)
- mucinous cystic neoplasm with low- or intermediate grade dysplasia
- mucinous cystic neoplasm with high grade dysplasia
- intraductal papillary mucinous neoplasm with low- or intermediate grade dysplasia
- intraductal papillary mucinous neoplasm with high grade dysplasia
- intraductal tubulopapillary neoplasm

➡ malignant:

Ductal adenocarcinoma II (PDAC)

- mucinous cystic neoplasm associated with invasive carcinoma
- intraductal papillary mucinous neoplasm associated with invasive carcinoma
- acinar cell carcinoma
- acinar cell cystadenocarcinoma
- serous cystadenocarcinoma
- pancreatoblastoma
- solid-pseudopapillary neoplasm
- mixed acinar-ductal carcinoma
- mixed acinar-neuroendocrine carcinoma
- mixed acinar-neuroendocrine-ductal carcinoma
- mixed neuroendocrine-ductal carcinoma

➤ Pancreatic intraepithelial neoplasia (PanIN)
→ microscopic precursor of PDAC

Mucinous cystic neoplasm (MCN)

Intraductal papillary mucinous neoplasm (IPMN)
gross cystic precursor lesions

Pancreatic intraepithelial neoplasia (PanIN)

- *× ductal adenocarcinoma* 85-90% of all pancreatic neoplasias
- Sth most frequent cancer-related death ⇒ in GIT 2nd after colorectal cancer
- risk factors:
 - ➡ higher age
 - ➡ genetic factors
 - ⇒ environemntal factors:
 - smoking, high fat diet, obesity and low physical activity, chemicals
 - chronic pancreatitis (both hereditary and sporadic); (CP)
 - ➡ diabetes mellitus
 - ➡ alcohol (indirectly, induces CP)

Clinical features:

⇒ 60-70 % in the pancreatic head

⇒ abdominal and back pain

⇒ weight loss

⇒ icterus, pruritus, diabetes mellitus

migratory thrombophlebitis

symptoms related to liver metastasis and/or invasion of adjacent organs

biologiccal behavior

⇒ lymphogennous metastasis (regional lymph nodes)

⇒ haematogennous metastasis (liver, lungs, bones)

carcinomatosis of peritoneum

➡ perineural spreading

K Gross:

⇒ usually solid mass in the pancreatic head

⇒ mean diameter 2-3 cm

common bile duct and/or main pancreatic duct stenosis

➡ necrosis rare

absence of calcifications and pseudocysts

× Micro:

- ⇒ grade of differentiation:
 - grade 1: well differentiated
 - ductal and tubular formation in desmoplastic stroma, columnar mucin producing cell, distinct small nucleoli, low mitotic activity, low degree of pleomorphism/atypia

grade 2: moderately differentiated

 ductal, tubular, microglandular, cribriform formation, desmoplasia, irregular mucin production, prominent nucleoli, higher pleomorhism

grade 3: poorly differentiated

 irregular glandular structure, solid aggregates, squamoid foci, spindle cells, anaplastic, pleomorphic structures, mitotic activity

Ductal adenocarcinoma in the head of pancrea

- 1. Neoplastic ductal formations
- 2. Focal duct ruptures with macrophages and detritus intraluminally

Ductal adenocarcinoma – well differentiated (G1)

2. Stromal desmoplasia

Ductal adenocarcinoma– poorly differentiated (G3)

Differential diagnosis of ductal adenocarcinoma and chronic pancreatitis – clinical features

× Adenocarcinoma:

➡ older patients

rare under 40

no pancreatitis and alcoholism in medical history

➡ sudden painless icterus

Chronic pancreatitis:
 often in younger patiens

➡ medical history:

- Iong term
 - recurrent acute pancreatitis
- alcohol abuse

→ icterus after long term duration of disease Differential diagnosis of ductal adenocarcinoma and chronic pancreatitis – gross features

x Adenocarcinoma:

⇒ solid mass in the pancreatic head, mean diameter 2-3 cm

common bile duct stenosis

usually without necrosis, calcifications, pseudocysts

- ★ Chronic pancreatitis: → more diffuse
 - Alternation of lobular parenchyma and areas of fibrosis

protein plugs and calcifications in ducts

extrapancreatic pseudocysts

Differential diagnosis of ductal adenocarcinoma and chronic pancreatitis – microscopic features

Adenocarcinoma:

- haphazard distribution of irregular ductal structures
- ducts perineurally, in extrapancreatic fatty tissue
- hypercellular condensation of stroma around neoplastic ducts, stromal desmoplasia
- enlarged nuclei, pleomorphism, hyperchromasia, mitoses, prominent nucleoli, loss of nuclear polarity
- dense acidophilic cytoplasm, apical condensation of cytoplasm

Chronic pancreatitis

- → (organoid) lobular arrangement
- ➡ ducts intrapancreatically
- Smooth contours of the ducts, roud/oval lumens
- ➡ dense hyalinized stroma
- uniform nuclei, inconspicious nucleoli, no mitoses
- cytoplasm normochromophilic, absence of apical condensation

Differential diagnosis of ductal adenocarcinoma and chronic pancreatitis – microscopic features

1. Haphazard distribution of irregular ducts

2. Stromal desmoplasia

- 1. Lobular arrangement
- 2. Dense hyalinized stroma

- synonyms: pancreatic NETs, islet cell tumor, APUDoma
- ✗ 1 − 2 % of all pancreatic tumors
- × 3rd-6th decade
- classification:
 - ⇒ neuroendocrine tumour (NET)
 - nonfunctional NET (NET G1, G2)
 - NET G1
 - NET G2

➡ neuroendocrine carcinoma (NEC)

- large cell NEC
- small cell NEC

Functional (hormonally active)

- ⇒ insulinoma
- ➡ glucagonoma
- ➡ somatostatinoma
- 🗢 gastrinoma
- ➡ VIPoma
- ⇒ serotonin producing NET
- others with ectopic hormone production (ACTH, calcitonin,...)
- Nonfunctional (with no association with hormonal syndrome)
- Pancreatic neuroendocrine microadenomas
 - <0,5 cm
 - ➡ usually clinically silent

×Gross:

⇒ partially or totally circumscribed/encapsulated; usually solitary

white, yellow or pink-brown
 haemorrhages, necrosis can occur; cystic tumors rare

Micro:

nesting, trabecular, glandular, acinar, tubuloacinar, pseudorosette,...arrangements of their cells

cells uniform, round, finely granular amphophilic to eosinophilic cytoplasm, coarsely clump chromatin ("salt and pepper")

⇒Variable amount of stroma

⇒ IHC:

- CEA, synaptophysin, chromogranin, NSE, CD56
- peptide hormones:
 - insulin, glucagon, serotonin, somatostatin, gastrin

2. Dense fibrotic stroma

1.

Diabetes mellitus

- Group of complex metabolic lesions
- Multifactorial etiology
- **×** Common sign:
 - ⇒ glucose metabolism dysregulation → glucose intolerance hyperglycaemia
- Causes:
 - insulin secretion disorders
 - disorders of insulin action / response to insulin
 - combination of both

Diabetes mellitus

- Solution Control Co
 - ➡ lipolysis
 - hyperlipidaemia (loss of weight), ketoacidosis
 - ⇒ hyperglycaemia
 - osmotic diuresis (polyuria, dehydratation, thirst)
 - diminished protein synthesis

Diabetes mellitus classification

× Primary DM:

- ➡ DM type 1
 - insulin-dependent
 - destruction of β-cells, autoimunne, idiopathic
- DM type 2
 non-insulin dependent

Genetic defects of 6-cells function
 MODY – maturity-onset diabetes of the young, etc.
 Xow possible 5 DM types

Diabetes mellitus classification

× Secondary DM:

Exocrine pancreas defects

(chron. pancreatitis, cystic fibrosis, hemochromatosis, tumor)

Endocrinopathies

(Cushing sy, hyperthyreosis, acromegaly, etc.)

⇒ Infections

• (CMV, coxsackie B, congenital rubella)

➡ Drugs

• (glucocorticoids, proteases inhibitors, ...)

× Gestational DM

Diabetes mellitus

Atypical glucose bond on proteins

➡ glycation → change of normal characteristics/functions, i.e. in vessels BM; monitoring - glycosylated hemoglobin HbA1c

Polyol pathways

⇒ atypical metabolisation of glucose by reductases to sorbitol + fructose i.e. in kidneys, nerves, eye lens → oedema and cell damage

Free radicals formation
• oxidative stress

Diabetes mellitus complications

Long-term consequences similar in all types:

- microangiopathy (neuropathy, retinopathy)
- diabetic glomerulosclerosis
- accelerated atherosclerosis
- immune defect, mostly nonspecific (bacterias, fungi)
- diabetic ketoacidosis, hyperosmolar coma
- hypoglycaemia/coma due to insulin overdose

Diabetes mellitus – morphology

Pancreas

- » DM type1
 - more specific changes
 - insulinitis with lymfocytic infiltration of islets + \$\sqrt{u}\$
 of their size and number
- DM type 2
 - possible amyloid deposition or islet fibrotisation

Large vessels

- AS, changes non-specific
- AS complications (MI, gangrene) sooner and more often
- ★ accelerated hyaline arteriolosclerosis and hypertension → intracerebral haemorrhage, nephrosclerosis

- Small vessels
- Microangiopathy
 - diffuse thickening of BM, but BM more leaky for proteins
- Nephropathy
- Retinopathy
- Neuropathy

Diabetic nephropathy

Diabetic glomerulosclerosis
 diffuse x nodular
 Renal vascular lesions
 arteriolosclerosis
 Pyelonephritis incl. papillary necrosis

Common progression to renal insufficiency

Glomerulosclerosis + arteriolosclerosis

Papillary necrosis

Acute necrotizing papillitis in the setting of focal ischaemia

Cular lesions:

- retinopathy (neovascularization)
- cataract formation (opaque lens)
- glaucoma (intra-ocular hypertension)

- Neuropathy
- segmental demyelinization
 - distal polyneuropathy
 - mostly motoric + sensitive in lower extremities incl. \downarrow pain perception (\rightarrow ulceration)
 - autonomic neuropathy
 - functional disorders of intestines, bladder, sexual

× Skin

- increased susceptibility to infections incl. protracted mycotic i., gangrene
- granuloma annulare (foci of collagen degeneration + inflammatory infiltrate)
 necrobiosis lipoidica

Pregnancy

- ⇒ pre-eclampsia
- ➡ large babies (already in utero)
- neonatal hypoglycaemia

Metabolic syndrome

- abdominal obesity ("male type")
- insulin resistance
- hyperlipidemia + abnormal lipid spectrum

- Consequences
- cardiovascular lesions
- non-alcoholic steatohepatitis

Pathology of other endocrine organs (selected)

Hyperfunction
 Hypofunction
 Neoplasia (+ event. functional changes)

Pituitary adenoma

HYPERTHYROIDISM - thyrotoxicosis

- verproduction, ↑ release into the blood, extrathyroidal secretion
- hyperplasia
 - Graves-Basedow disease, nodular goitre
- hyperfunctional tumor
 - Þ adenoma, ca
- incipient autoimmune thyroiditis
- endocrine axis dysregulation

Thyrotoxicosis

hypermetabolic state + overactivity of sympathetic nervous system

Exophthalmos

Weight loss, diarrhoea, tremor, anxiety, insomnia

- ▲ Tachycardia, palpitations, arrhytmia atrial fibrillation → thyrotoxic cardiomyopathy, hypertension
- Sweating, heat intolerance
- Steoporosis
- Possible thyroid storm, heart failure

HYPOTHYROIDISM ***** congenital (cretinism),

geographic iodine deficiency (endemic cretinism), individual factors (hypoplasia, ectopy, genetic /metabolic defects)

thyroid hormones necessary to fetal brain development
 severe neurologic defects incl. mental retardation

coarse facial features + hypomimia, protruding tongue, disorders of dentition + growth, sexual retardation

MYXEDEMA

- hypothyroidism developing in older child/adult
 M:F 1:10
- slowing of physical/mental activity
- accumulation of mucoid matrix substances in dermis, myocardium, vessels, …), hypercholesterolemia, AS acceleration
- cool skin, cold intolerance, constipation + overweight, fatigue, dyspnoea, decreased exercise capacity
- secondary oligo- amenorrhoea
- cardiovascular insufficiency

Thyroid gland - scintigraphy 🧟

radioactive iodine uptake

 norm
 diffuse hyperplasia
 "hot" nodule – usually adenoma
 " cold" nodule - ca

Thyroiditis

× Acute inflammations uncommon purulent bacterial (abscess), tbc Subacute granulomatous – giant cell thyroiditis (de Quervain's) ?viral ⇒ painful enlargement, micro mixed inflammatory infiltrate + giant cell reaction Chronic sclerosing t. (Riedel's) ⇒dense fibrotisatin, diff. dg. x ca

Chronic thyroiditis

- x organ-specific autoimmune inflammation
- variable auto-antibodies
 - ⇒ x peroxidase, thyroglobulin, etc.
- * early stage enlargement + hyperfunction
- Iater hypofunction
- risk of other autoimmune diseases (DM, SLE,..)
- risk of malignancies
 - MALT lymphomas, papillary thyroid carcinoma

× Gross:

- ⇒ non-homogennous, firm, small paler foci
- ✗ Micro:
 - dense lymphoplasmocellular infiltrate, incl. germinal centres
 - thyroid follicles atrophy, onkocytic transformation of follicular epithelium (Hürtle cells)

eosinophilic cytoplasm, enlarged nucleus, distinctive nucleolus

variable grade of fibrosis

- 2 Lymphocytes + plasma cell infiltrate
- . .

Thyroid gland hyperplasia

Autoimmune Graves-Basedow disease

Diffuse parenchymatous thyrotoxic goiter (> 60g) + exophthalmos

IgG auto-antibody to the TSH receptor – LATS (long-acting thyroid stimulator)

*Adenomatoid nodules

in the setting of nodular goiter, unencapsulated, diff. dg. x true adenoma may be difficult

Thyroid gland hyperplasia

× Gross:

symmetric diffuse enlargement, red-brown, "fleshy"

Micro:

tall hyperplastic follicular cells, papillary formations, \$\sqrtheta\$ amount of colloid, numerous resorptive vacuoles, focal lymphocytic infiltration

Thyroid hyperplasia

2

Thyroid hyperplasia

- 1 Follicles depleted of colloid
- 2 Lymphocytic infiltrate
- Papillary formations

Thyroid hyperplasia

Papillary formations

Nontoxic goitre

Iodine defficiency, goitrogenes etc. → impaired synthesis of thyroid hormones → activation of hypothalamus-pituitary-thyroidal axis - ↑TSH

Irregular activation, hyperplastic phase, colloid involution, reactive and regressive changes

Nodular transformation – multinodular goitre

Mostly euthyroid or low-level of hypothyroidism

Multinodular goitre

K Gross:

- irregular nodules, granular, yellow-brown (colloid goitre)
- common regressive changes haemorrhage, cysts, fibrosis, calcification

✗ Micro:

dilated follicles filled with colloid, sparse resorptive vacuoles, flat epithelial cells

Multinodular goitre

Multinodular goitre

- Follicles 1
- **Fibrous septa**

Thyroid tumors

 Adenomas with variable structure
 follicular, oncocytic, etc.
 Carcinomas
 papillary, follicular, medullary – parafollicular C-cells, anaplastic

Malignant lymphomas, secondary tu, etc.

Follicular adenoma

- Mostly solitary
- Encapsulated
- Pressure atrophy of adjacent parenchyma
- » Diff. dg. x follicular carcinoma
 - similar histologic structure, transcapsular invasion into surrounding thyroid tissue and/or angioinvasion necessary for ca diagnosis
- Diagnosis possible only with complete biopsy
 Cytology well differentiated follicular neoplasia

Follicular adenoma

• Fibrotic capsule (adenoma demarcation)

Follicular adenoma

microfollicular adenoma

- Most common thyroid malignancy
- F 25-50 yrs, M less common, possible in children, adolescent
- incidence (better diagnostics)
- Solitary / multifocal
- Subtypes according histological structure
 - papillary, follicular, diffuse sclerosing, etc.
- Diagnosis based on cytologic morphology

✗ Gross:
⇒ pale focus

× Micro:

⇒ ground-glass nuclei

 clear nuclei, grooved nuclei, excentric nucleolus ("Orphan Annie"), nuclear superposition

papillary formations with disp. microcalcification

- Microcarcinoma
 - ➡ incidental finding, <1 cm, very good prognosis</p>
- Worse prognosis in males, older people, ca with extrathyroidal extension
- Metastases into regional LN, lungs

- fibrotic capsule 1
- normal thyroid parenchyma 2
- adenocarcinoma 3
- papillary formations

Pathology of adrenals

- Adrenal medulla pathology
 - ➡ Hyperplasia (MEN sy)
 - **⇒**Tumors
 - Neuroblastoma
 - Ganglioneuroma
 - Pheochromocytoma

Pheochromocytoma

- Chromaffin cells of adrenal medulla (paraganglioma), extraadrenal site possible
- Catecholamines synthesis
- Hypertension (incl. paroxysmal), tachycardia, sweating, tremor, headache
- Risk of brain haemorrhage
- More common 4.-5. decade, possible in children
- 90% benign behaviour

Pheochromocytoma

× Gross:

demarcated paler lesion of variable size (g-kg), regressive changes (haemorrhage, necrosis)

possible

×Micro:

- ➡ fine capillarized stroma
- 🗢 trabeculae, solid alveoli
- Iarge cells, granulated cytoplasm,

neurosecretory granules

➡ nuclear atypias are not a sign of malignancy

Definitive diagnosis of malignancy based exclusively on finding of metastases

- capillarized stroma

Pheochromocytoma

➡ large cells with granulated cytoplasm