

Neuroophthalmology

for medical students

last upgrade 4/2021

Marek Michalec, MD PhD

Department of ophthalmology, Faculty Hospital Brno

Faculty of medicine, Masaryk University

Head: Oldřich Chrapek, Assoc. Prof., MD PhD

Content of neuroophthalmology

Visual pathways affections

- disorders and affections of optic nerve chiasmatic lesions, postchiasmatic lesions
- typical manifestation decrease of visual acuity and visual field defect

Disorders of oculomotor balance

- neurogenic ofi myogenic etiology
- typical manifestation binocular diplopia and paralytic strabismus

Disorders of pupillary reactions

- any disorder in any part of pupilomotoric pathway
- typical manifestation anisocoria or abnormality in reaction of pupils

Note: all disorders mentioned above can be present at same time in various combinations

Neuroophthalmological examination I.

Medical history

• crucial – complete medical history = nearly an half of diagnostic success

- Questions about **subjective signs**:
 - Questions: when troubles started, how long last it, any change during time (intermittent / progressive), presence of troubles on fellow eye, personal history, medical history
 - Common complaints dominant signs from the patient's view (i.e. visual acuity decrease, diplopia)
- Searching for **objective signs**:
 - i.e. pupillary reaction disorders, oculomotor function disorders, ptosis of upper eyelid, red eye
 - Poor complaints pacient itself does not be aware with all the signs / troubles

Neuroophthalmological examination II.

General ophthalmological examination

- Visual acuity assesment (distance) = central visual acuity (VA)
 - natural (with no correction = UCVA) and using the best correction of refractive errors (BCVA), monocular, binocular assessment

• Basic eye examination

- Examination of anterior segment (slit lamp) and posterior segment (direct / indirect ophthtalmoscopy / biomicroscopy)
- Focus to exclude possible ophthalmological causes of VA decrease (i.e. corneal scars or opacities, cataract, hemophthalmus, retinal pathologies)
- Visual field examination (VF) = perimetry
 - Crucial examination in neuroophthalmology
 - Important even with normal VA (good VA does not exclude visual field defects!!!)

Neuroophthalmological examination III.

Accessory (interdisciplinary) examination

Internal

- basic + specific samling
- Neurological
 - to exclude possible intracranial causes (intracranial expansive lesions, thrombosis, stroke)
 - to exclude neurological sign of possible neurological diseases (multiple sclerosis)
- Endocrinnne
 - to exclude thyroid disorders (thyroid associated orbitopathy / ophthalmopathy)
 - to exclude hormonal activity of pituitary gland (pituitary adenoma, chiasmal lesions)

Neuroophthalmological examination IV.

Imaging techniques

Ultrasonography

- Targeted tissues: eye bulb, soft orbital tissues (including extraocular muscles)
- *indications:* examination of orbital tissues, thickness of extraocular muscles
- Advantages: fast, widely available, cheap
- Disadvantages: depth limitation (up to one third of orbit)

• X-ray

- *Targeted tissues:* orbital bones, paranasal sinuses
- Indications: bone fracture exclusions, dislocation of fragmentsexclusion of contrast orbital foreign bodies, exclusion of pathological content in paranasal cavities
- Advantages: fast, widely available, cheap
- Disadvantages: poor reliability of bone fractures without dislocations, poor assessment of soft orbital tissues

Neurooftalmological examination IV.

Imaging techniques

Computerized tomography (CT)

- *Targeted tissues:* brain, orbit (soft tissues, bone part)
- *Indication:* exclusion of cerebral stroke, recent ischemia, intraorbital, intracranial lesion or expansions
- Advantages: available, fast
- **Disadvantages:** more expensive than X-ray, higher level of radiation

- Magnetic resonance imaging (MRI)
 - Targeted tissues: brain, soft orbital tissues
 - Indications: exclusion of small or intracranial / intraorbital lesions with poor contrast
 - *Advantages:* no possible harmfull radiation level, good imaging of soft tissues (better than CT)
 - Disadvantages: worse imaging of bony tissues, incompatibility with older metal implants or metal foreign bodies, more expensive than CT

Optic nerve

characteristics, physiology

Characteristics

- 2nd cranial nerve
- Embryologically part of CNS (together with neural part of retina)
- Anterior part of visual pathway

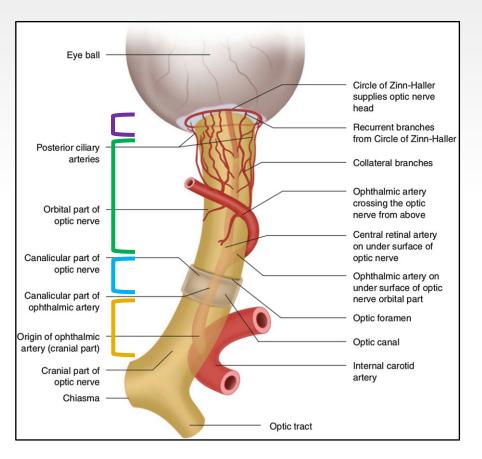
Physiology

- Pure senzoric nerve
- Every optic nerve = 1.2 million of nerve fibers
 - 80% of nerve fibers sensoric visual information
 - 20% of nerve fibers **pupilomotoric information** (major part of afferent pupilomotor pathway)

Optic nerve

anatomy

Composition


- axons of ganglionic cells
- neuroglia
- Optic nerve sheaths = sheats of CNS (pia mater, arachnoidea, dura mater)

Anatomical division

- Intraocular part
- Intraorbital part
- Intracanalicular part
- Intracranial part

Blood support

- Posterior cilliary artery
 - Ophthalmic artery
 - Internal carotid artery

Optic nerve affections:

General characteristics

Typical clinical signs:

- **Decrease of visual acuity** most prominent sign, usually unilateral, represents the amount of lesion of nerve fibers predominantly from central part of retina (macula)
- Visual field defect represents the amount of lesion of nerve fibers in general
- Color vision defect less prominent but almost always present sign; but not specific (acquired disorder)
- Relative afferent pupillary defect (RAPD) typically unilateral, present of size of affection; due to the affection of afferent part of pupillomotoric pathway

Pathologies of optic nerve

division

1) congenital anomalies

hypoplasia, coloboma, Morning glory syndrom, tilted disc, fibrae medullares, optic disc drusen

2) inflammatory affections - neuritis

demyelinisating, infection, paraneoplastic

3) non-inflammatory affecions - neuropathies

ischaemic, toxic, nutritive

4) Bilateral papiledema

elevation of intracranial pressure

Papiledema

clinical picture

- Diminished margins of disc
- Diminished physiological excavation
- Nerve fiber layer oedema
- Hyperemia of disc
- Dilatation of vessels, tortuosity
- Haemorrhagies, cotton wool spots

Physiological appearance

Papilloedema

Papiledema

Clinical picture during time

- Dynamic state during time
- Depends of cause, duration, and therapy

Example: development in intracranial hypertension (young female), treatment by using acetazolamide.

Bilateral papiledema

Etiology

- Increase of intracranial pressure and spreading within sheaths
 - 75% of cases intracranial tumor!!! (frontal lobr or chiasmal area)
 - Rest of cases pseudotumor, meningitis, AV malformation, thrombosis

Clinical pisture

- Subjective signs:
 - Short lasting visual impairment (obnubilations)
 - Headaches (worse in horizonal position)
- Objective signs:
 - Bilateral oedema of optic nerve disc
 - Enlargement of blind spot in visual field testing

Optic neuritis

Clinical picture

- unilateral condition
- fast onset (hours)
- loss of visual acuity
- retrobulbar pain patognomical sign
- color vision defects
- visual field defects

Causes

- demyelinisation most common (multiple sclerosis)
 female/male: 2-3/1
- infection / parainfection
- paraneoplastic •

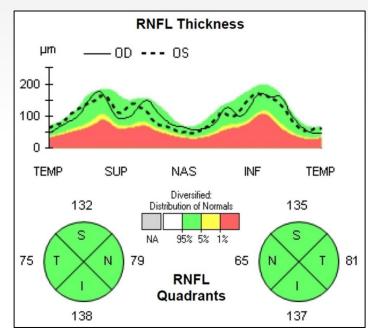
Types

- intraocular
- retrobulbar most common

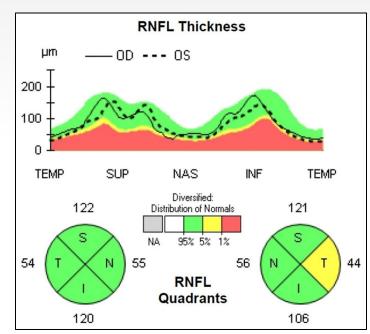
Prognosis

• usually good – regression after intravenous corticoids

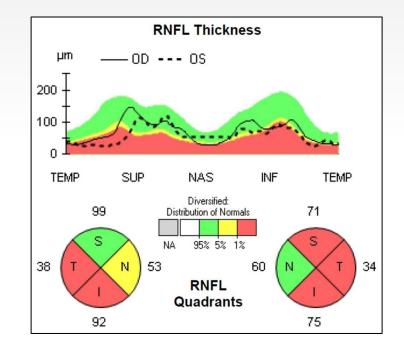
Epidemiology


- 20-40 years of age
- Strong association with MS
 - 20% of cases first sign of MS
 - 50% pacients with MS manifestation of ON during • the disease

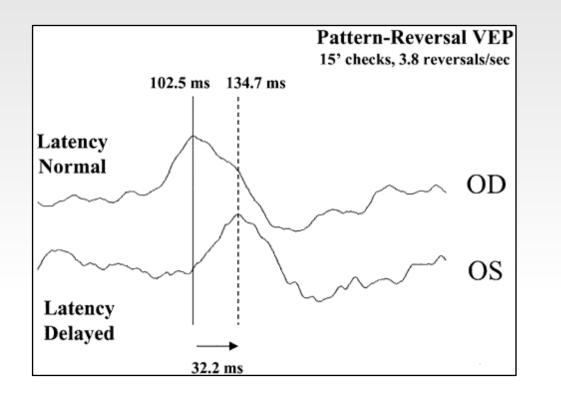
Optic neuritis


diagnostics

Optical coherence tomography


- Accessory examination of MS
- Dynamics of changes of RNFL during time
- Decrease of RNFL is objective proof of postneuritic atrophy of optic nerve

Physiological findings Healthy pacient


Condition after optic neuritis Left eye (clinically isolated syndrome)

Multiple sclerosis

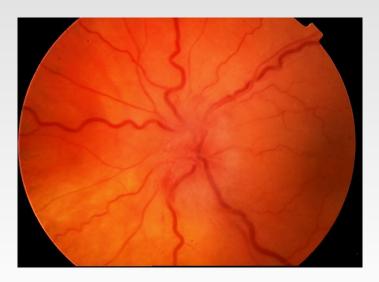
Contition after bilateral optic neuritis

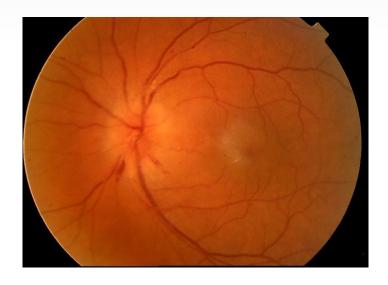
Optic neuritis diagnosis

VEP: delayed latency P100

Anterior ischemic optic neuropathy

- most common optic nerve affection in advanced age
- unilateral condition

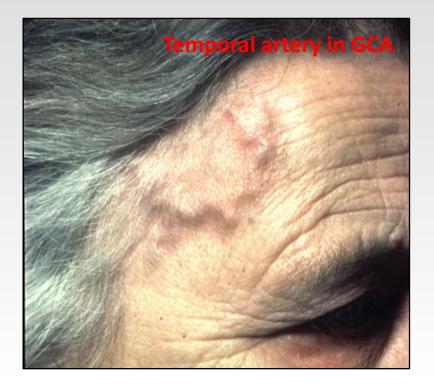

Cause – affection of short ciliary arteries


Epidemiology

• 50 years of age and more

Clinical picture

- loss of visual acuity fast onset, painless (light perception to almost normal values)
- monocular visual field defect altitudinal scotoma
- unilateral ischemic optic disc oedema


Anterior ischemic optic neuropathy

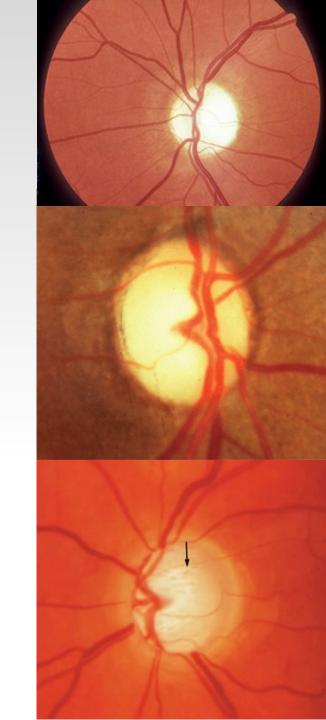
Arteritic form (10 – 15 % of all cases) – less common, more serious

- Risk factors: association with systemic vasculitis (giant-cell arteritis = Horton disease)
- Clinical picture: loss on weight, headache, jaw claudication, tenderness and sensitivity on the scalp)
- very high sedimentation rate over 100 per hour, temporal artery biopsy
- High risk of affection of fellow eye (days, weeks) immediate therapy!!!
- *Therapy:* high dosage of intravenous corticoids

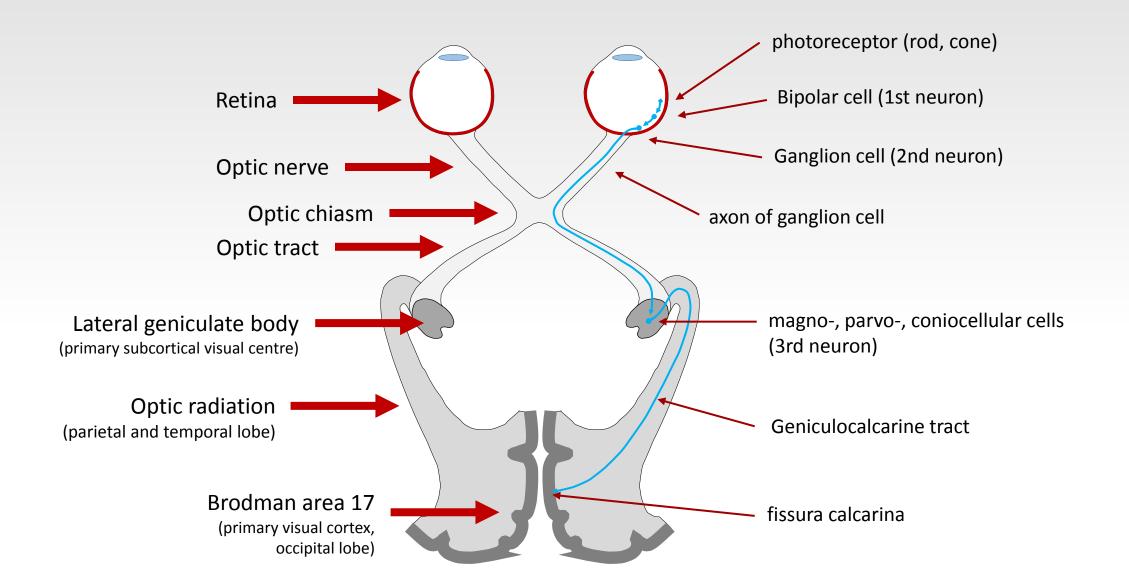
Nonarteritic form (85 – 90 % of all cases)

- Risk factors: hypertension, diabetes, dyslipidemia, smoking, obesity
- Therapy: N/A, compensation of all systemic diseases

Optic nerve atrophy


- Irreversible loss of axons
- After various optic nerve affections

Etiology


- Primary posttraumatic, by direct pressure of tumor
- Secondary affection of optic nerve (ischemia, inflammation)
- *Glaucomatous* due to elevated intraocular pressure

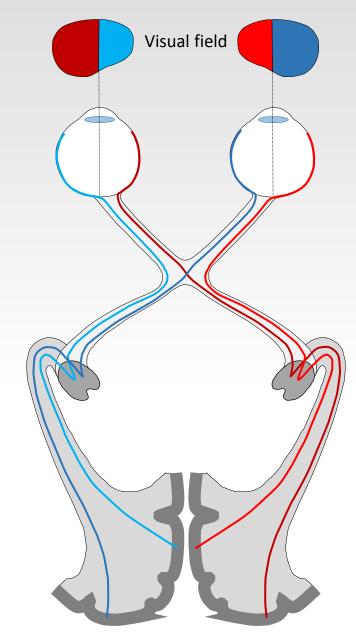
Clinical picture

- Pale optic disc
- Reduction of smaller vessels

Anatomy of visual pathway

Anatomy of visual pathway – clinical notes

Optical apparapart of eye switch the picture, therefore:


- Temporal part of retina process information from nasal part of VF
- Nasal part of retina process information from temporal part of VF

Partial crossing of nerve fibers in optic chiasm:

- Nerve fibers originating from temporal part of retina are <u>not crossing</u> and continue on same size of CNS
- Nerve fibers originating from nasal part of retina are <u>crossing</u> and continue on opposite size of CNS

Size lateralisation of visual information in visual cortex:

- **Right hemisphere** process information from *left part of VF* of both eyes
- Left hemisphere process information from *right part of VF* of both eyes

Visual pathway lesion and visual field defects

2

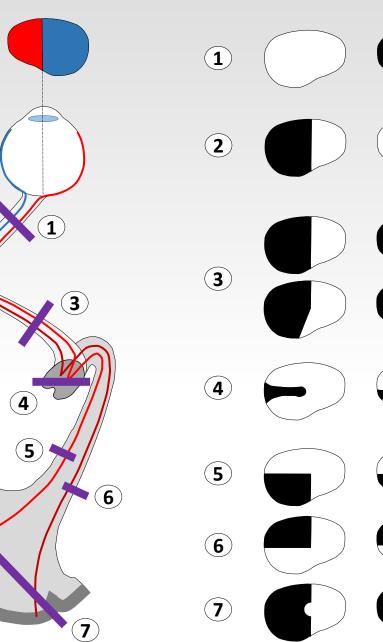
• Monocular defects of VF

Lesions in chiasmal area

• Usually bilateral heteronymn defects of VF

Lesions of optic tract

• Bilateral (incongruent) homonymn defects of VF

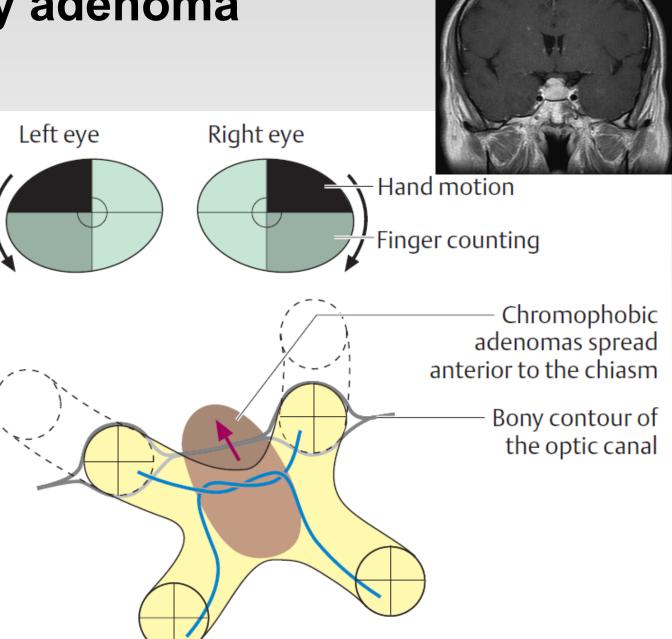

Lesions of lateral geniculate body

• Bilateral homonymn defects along horizontal line

Geniculocalcarine tract lesions

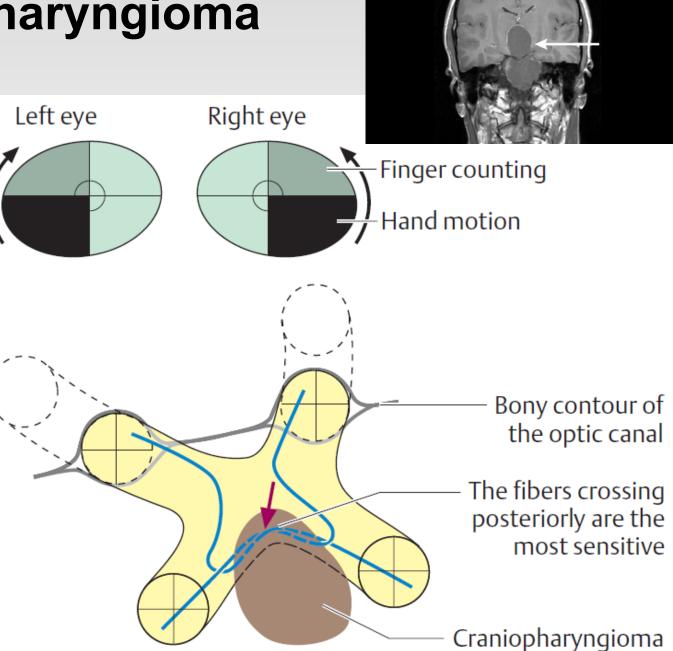
• bilateral congruent* defects of VF

* **Pozn.:** congruence – bilateral symmetry of defects of visual field increasing with closer proximity to occipital cortex

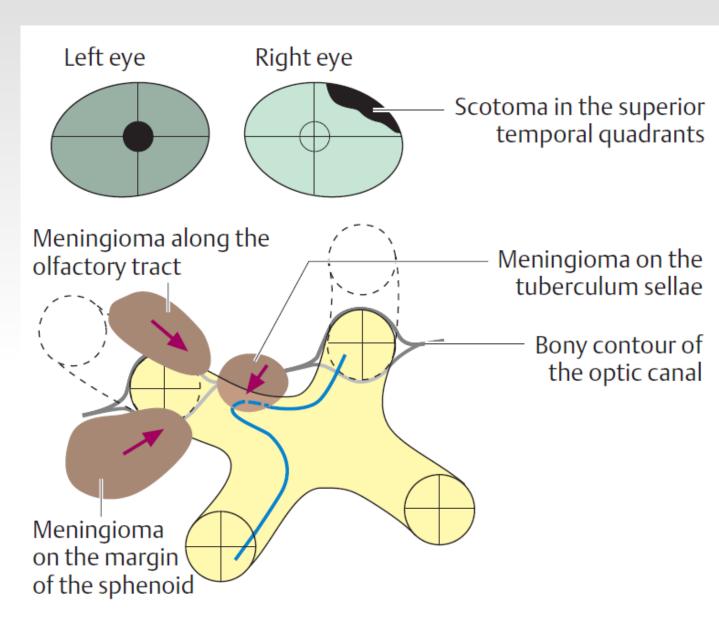

Chiasmal syndrome

- lesions in chiasmal area
- typically compressive, expansive condition
- typical visual field defects use in diagnosis

- causes:
 - Pituitary adenomas
 - Craniopharyngioma
 - Meningioma
 - Aneurysm

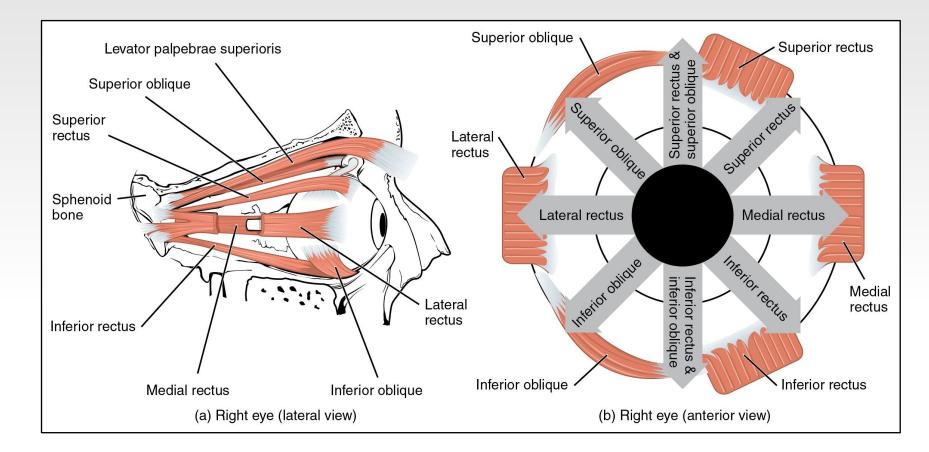

Pituitary adenoma

- benign tumor of pituitary gland
- classification
 - by size microadenoma (up to 10mm), macroadenoma (more than 10mm)
 - biological activity benign adenoma, invasive adenoma, adenocarcinoma
- possibility of metabolical activity (e.g. prolactinom) a
- compression and lesion of optic chiasm by tumor growth – bitemporal hemianopsia – starting as upper kvadrantanopsia
- therapy
 - conservative hormone inhibition (Cabergolin, Octreotid)
 - surgical resection (endonasal, transsphenoidal adenectomy)


Craniopharyngioma

- benign rare type of tumor from pituitary gland embryonal tissue
- pressure on nearby tissue, typical visual field defects – bitemporal hemianopsia – first starting as lower quadrantanopsia
- therapy
 - *surgical* transsphenoidal adenectomy)
 - radiotherapy

Meningiomas


- slow growing tumor from meninges
- tumor growth, pressure on nearby tissue, typical visual field defects depending on location
- therapy
 - surgical
 - radiotherapy

Anatomy of eye movement system

• 4 recti muscles:

- medial rectus m.
- lateral rectus m.
- inferior rectus m.
- superior rectus m.
- 2 oblique muscles:
 - superior oblique m.
 - inferior oblique m.

Eye movement disorders

Isolated palsies

- oculomotor nerve palsy
- trochlear nerve palsy
- abducent nerve palsy

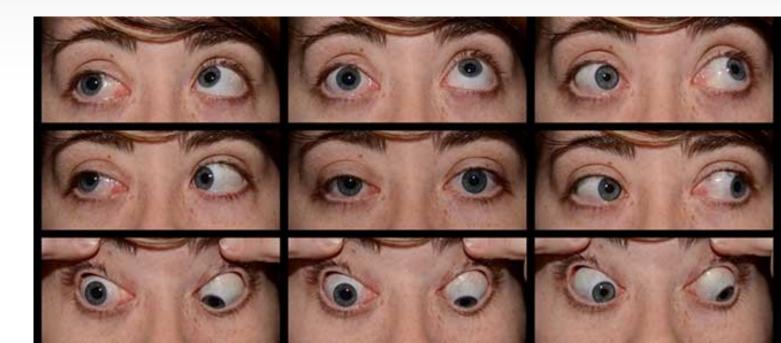
Ophthalmoplegia

- Combination of affection of 2 or 3 nerves
 - cavernous sinus syndrome
 - orbital apex syndrome
 - carotido-cavernous fistula

Isolated palsies - causes

- Oculomotor nerve palsy <u>aneurysm</u> (most common), less common tumor, trauma, ischemia (diabetic neuropathy)
- Trochlear nerve palsy <u>trauma</u> (fall on head; most common sign), ischemia of brainstem, tumor, half of cases idiopathic
- Abducens nerve palsy <u>trauma</u> (most common), ischemia (diabetic neuropathy), intracranial hypertension (sometimes first manifestation), meningitis, tumor in close proximity of brainstem, idiopathic

Oculomotor nerve palsy

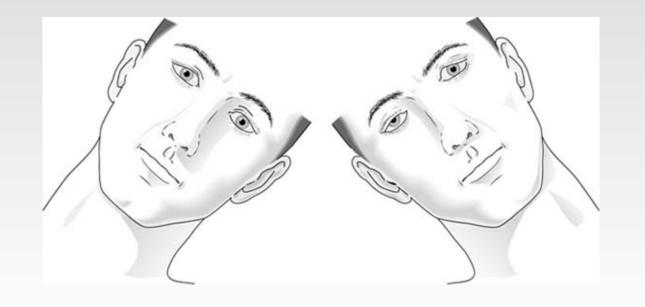

- Upper eyelid ptosis
- Convergence insufficiency
- Eye movement disorder in

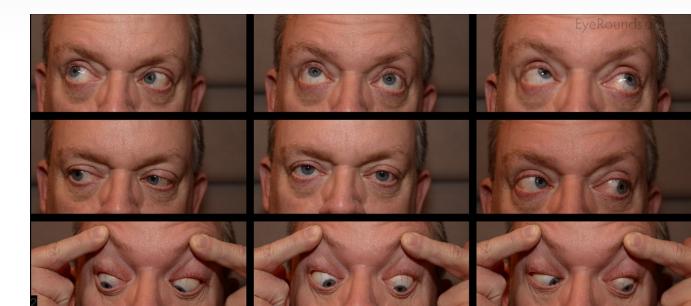
multiple sizes of gaze (nasal, up,

down)

- Diplopia (mixed horizontal and vertical)
- Anisocoria (mydriasis on affected size)

Trochlear nerve palsy


- Diplopia vertical, major manifestation in downgaze or walking downstairs)
- Eye movement disorder -


affected eye with small

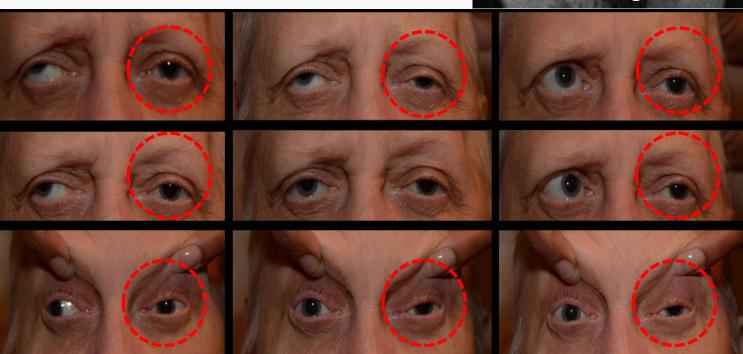
hypertropia, not necessary visible!

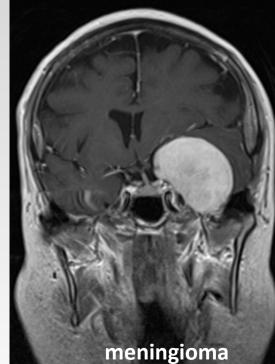
Compensation head posture

(Torticollis) – chin turning down, head posture at non affected size

Abducens nerve palsy

- **Diplopia** typically horizontal, major manifestation in gaze to affected size
- Eye movement disorder insufficiency of movement laterally (insufficiency of abduction)
- Compensation head posture head turned laterally on affected size


Cavernous sinus syndrome


Etiology

- Compressive / infiltrative lesion in cavernous sinus (thrombosis, tumor, metastasis, aneurysm)
- Lesion of multiple oculomotor nerves (oculomotor, trochlear, abducens) and trigeminal
- Absence of optic nerve lesion, therefore the onset of diplopia

Clinical picture

- Upper eyelid ptosis (oculomotor nerve palsy)
- ophthalmoplegia (oculomotor nerves palsy)
- **diplopia** (no affection of optic nerve)
- Mydriasis (oculomotor nerve palsy)
- exophthalmus (oculomotor nerves palsy)
- Trigeminal pain

Orbital apex syndrome

Etiology

- Compressive / infiltrative lesion in the orbital apex (tumor, metastasis, inflammation)
- Lesion of oculomotor, trochlear, abducens nerve and <u>also optic</u> <u>nerve</u>

Clinical picture

- Upper eyelid ptosis (oculomotor nerve palsy)
- **Ophthalmoplegia** (multiple oculomotor nerves palsy)
- **Decrease of visual acuity** (affection of optic nerve)
- Exophthalmus (multiple oculomotor nerves palsy)
- Absence of diplopia (the more severe lesion of optic nerve, the lower presentation of diplopia)
- Trigeminal pain

Pupillary reactions

Physiological appearance of pupils

• Shape

- Always round and regular pupil even in dark or light
- Size
 - **isocoria** equal size of pupils
 - under fotopic conditions miosis
 - Under photopic conditions mydriasis
 - physiological anisocoria inequal size of pupils up to 1mm; cca 20% of population
 - Difference in size is usually preserved even in dark or light
 - Dependence of size of pupils:
 - Autonomous nervous sytem (i.e. anxiety, fear, stress, rest, sexual excitation...)
 - Medication, drugs

Pupillary reactions

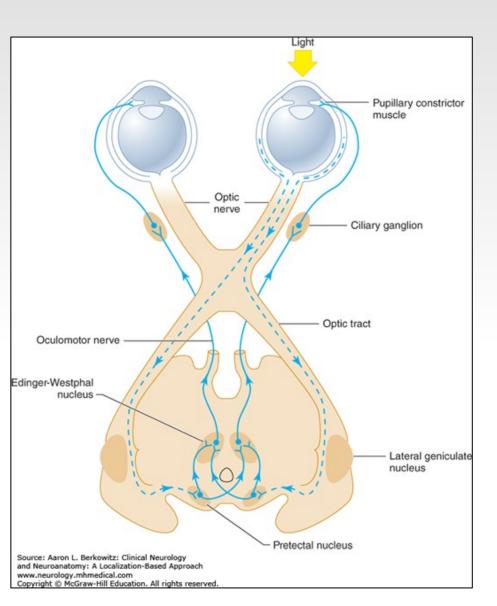
Physiological reactions of pupil

- Mydriasis (wide pupil)
 - Sympathetic part (innervation dilatator muscle)
- miosis (narrow pupil)
 - *Parasympathetic part* (innervation sphincter muscle)
- **Consensual reaction** of both pupil even in the case of enlightenment of one pupil only

Pupillary reaction

diagnostic testing

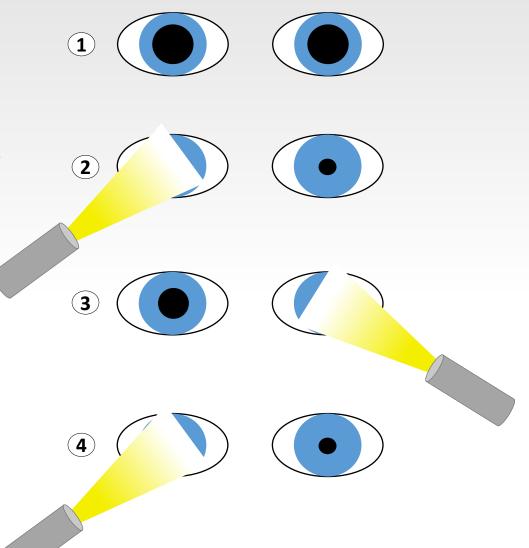
Photoreaction testing


 Reaction to direct and indirect enlightenment – physiological miosis of both pupils at same time

Test near response

- Testing of accomodation-convergence reflex
- Physiological miosis associated with convergence and accomodation (fixation to object moving closer to eyes)

Pharmacological testing


• Diagnosis of anisocoria

Pupillary reactions Diagnostic testing

Test swinging flashlight

- diagnosticic testing for presence of relative afferent pupillary defect (RAPD) – lesion of visual filed is shared with afferent part of pupilomotoric pathway; typical for unilateral lesion of optic nerve
- Principle: change of enlightenment of one pupil, followed by the other pupil with latency (circa 2 seconds) – this is necessary for mydriasis restoration and observation of reactions:
 - 1) both pupils with mydriasis in dark
 - 2) enlightenment of one (presumed normal) pupil only fast miosis of both pupils
 - 3) enlightenment of fellow (presumed pathological) pupil slower / abnormal reaction of both pupils (presence of RAPD)
 - 4) repeated enlightenment of normal pupil normal reaction with fast miosis of both pupils

Reactions of pupil

Atypical size or reactions of pupil

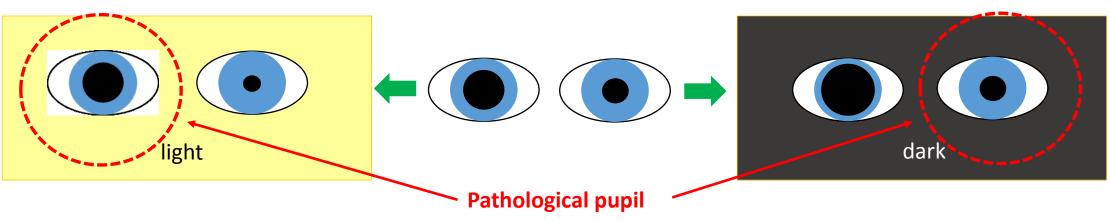
• Pupilotonia (Adie's pupil)

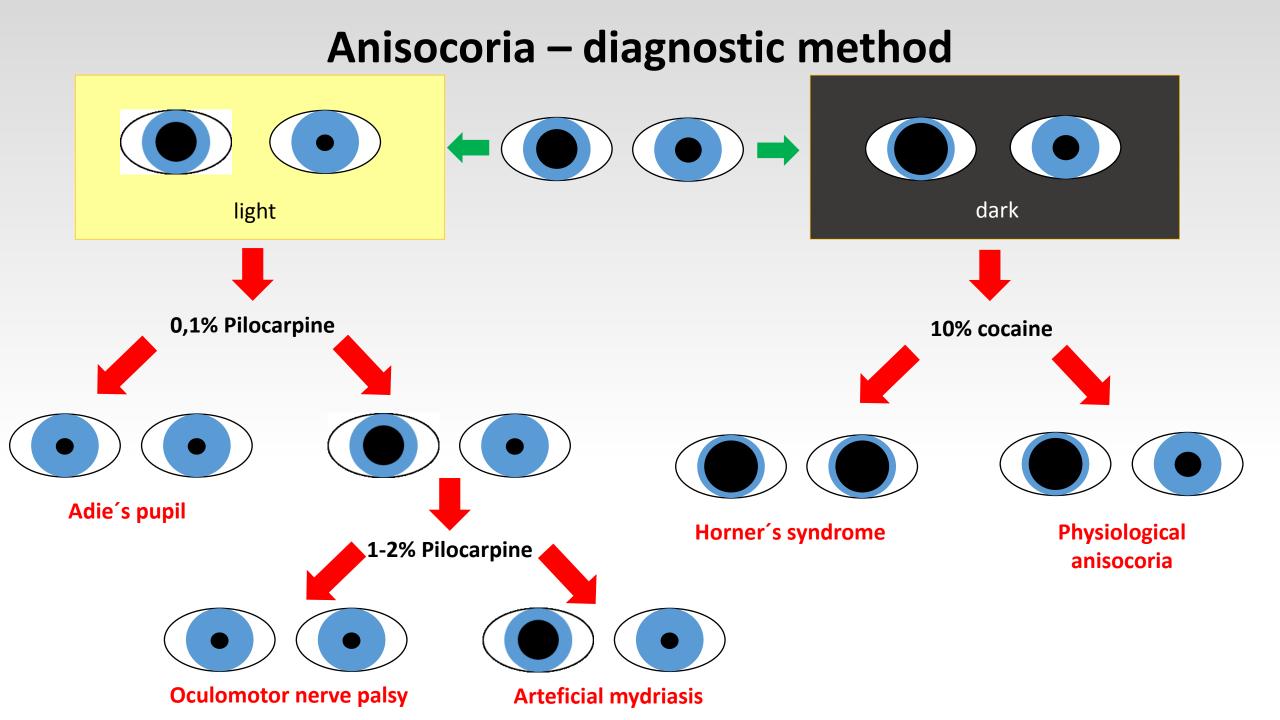
- Wider (mydriasis) pupil with small or no reaction to light
- Worm-like movement of pupillary margin (using slit lamp)
- Accomodation failure (VA decrease to near distance)
- Decreased / diminished tendon reflexes (patellar, Achilles)

Argyll-Robertson pupil

- Narrow pupil with no additional rection to light
- Preservation of accomodation
- Typically for patients with neurosyphillis, neuropathies, diabetic polyneuropathies
- Anisocoria
 - Inequal size of pupils (usually more than 1mm)

Anisocoria


diagnostic method

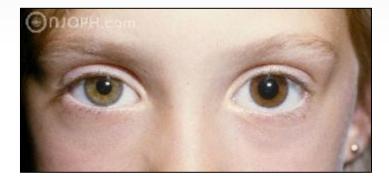

1) Exclusion of various possible ophthalmological causes:

- Plegia of pupil after ocular trauma (contusion, perforating trauma)
- Anomalies of shape (i.e. congenital or acquired coloboma or anomaly, recurrent iridocyclitis posterior synechiae)
- Complications after intraocular surgery (mostly cataract surgery) or intraocular inflammation (endophthalmitis)

2) Assessment of pathological pupil

- Size of pupil in light (wider pupil is pathological)
- Size of pupil in dark (narrowet pupil is pathological)

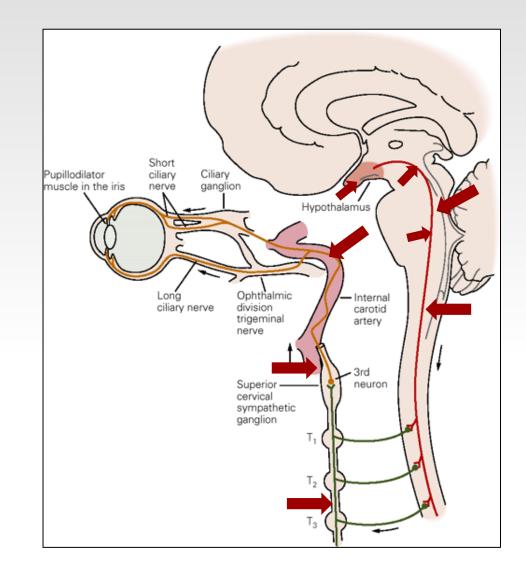
Horner's syndrome


Etiopathogenesis

• Lesion of sympathetic pupilomotorpathway

Signs

- **Miosis of pupil** (no mydriasis in dark) dilatator muscle palsy
- Upper eyelid ptosis (usually mild) and pseudoenophthalmus tarsal muscle palsy
- **anhidrosis** (diminished sweating on affected size / half of face)
- heterochromia (congenital form only) failure of chromatophores creation



Horner's syndrome

Etiology

- 50% idiopathic
- 50% various causes
 - Trauma /surgery in cranial /cervical / upper thoracal area
 - Dissection of internal carotid artery
 - Brainstem ischemia
 - Multiple sclerosis
 - intracranial tumors (various locations)
 - Spinal cord (syringomyelia)
 - Pancoast tumor (lung apex tumor)
 - Thyroid diseases (goiter, carcinoma)

Thank you for your attention!

