1. Průzkumová analýza jednorozměrných dat, diagnostické grafy

1.1. Motivace

Průzkumová analýza dat je odvětví statistiky, které pomocí různých postupů odhaluje zvláštnosti v datech. Při zpracování dat se často používají metody, které jsou založeny na předpokladu, že data pocházejí z nějakého konkrétního rozložení, nejčastěji normálního. Tento předpoklad nemusí být vždy splněn, protože data

- mohou pocházet z jiného rozložení -
- mohou být zatížena hrubými chybami -
- mohou pocházet ze směsi několika rozložení.

Proto je důležité provést průzkumovou analýzu dat, abychom se vyvarovali neadekvátního použití statistických metod.

1.2. Funkcionální charakteristiky datového souboru

1.2.1. Označení

Na množině objektů $\{\epsilon_1,...,\epsilon_n\}$ zjišťujeme hodnoty znaku X. Hodnotu znaku X na objektu ε_i označíme x_i, i = 1, ..., n. Tyto hodnoty zaznamenáme do jednorozměrného datového

souboru $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. Uspořádané hodnoty $x_{(1)} \le x_{(2)} \le ... \le x_{(n)}$ tvoří uspořádaný datový soubor

vektor variant

1.2.2. Bodové rozložení četností

Je-li počet variant malý, přiřazujeme četnosti jednotlivým variantám a hovoříme o bodovém rozložení četností.

 n_i – absolutní četnost varianty $x_{[i]}$

$$\begin{split} p_{j} &= \frac{n_{j}}{n} - \text{relativn}\text{i četnost varianty } x_{[j]} \\ N_{j} &= n_{1} + ... + n_{j} - \text{absolutni kumulativni četnost prvnich j variant} \end{split}$$

 $F_j = \frac{N_j}{n} = p_1 + ... + p_j$ – relativní kumulativní četnost prvních j variant

Absolutní či relativní četnosti znázorňujeme graficky např. pomocí sloupkového diagramu či polygonu četností.

Četnostní funkce: p(x) = $\begin{cases} p_j \text{ pro } x = x_{[j]}, j = 1, ..., r \\ 0 \text{ jinak} \end{cases}$ Empirická distribuční funkce: F(x) = $\begin{cases} 0 \text{ pro } x < x_{[1]} \\ F_j \text{ pro } x_{[j]} \le x < x_{[j+1]}, j = 1, ..., r - 1 \\ 1 \text{ pro } x \ge x_{[r]} \end{cases}$

Příklad 1.: U 30 domácností byl zjišťován počet členů.

Počet členů	1	2	3	4	5	6
Počet domácností	2	6	4	10	5	3

Vytvořte tabulku rozložení četností. Nakreslete grafy četností funkce a empirické distribuční funkce. Dále nakreslete sloupkový diagram a polygon četností počtu členů domácnosti.

Řešení:

Tabulka rozložení četností

x _[j]	nj	pj	Nj	Fj
1	2	2/30	2	2/30
2	6	6/30	8	8/30
3	4	4/30	12	12/30
4	10	10/30	22	22/30
5	5	5/30	27	27/30
6	3	3/30	30	1

Graf četnostní funkce

Graf empirické distribuční funkce

Sloupkový diagram

1.2.3. Intervalové rozložení četností

Je-li počet variant velký, přiřazujeme četnosti nikoli jednotlivým variantám, ale třídicím intervalům (u_1, u_2) , ..., (u_r, u_{r+1}) a hovoříme o intervalovém rozložení četností. Názvy četností jsou podobné jako v bodě 1.2.2., navíc zavádíme četnostní hustotu j-tého třídicího intervalu $f_j = \frac{p_j}{d_j}$, kde $d_j = u_{j+1} - u_j$. Stanovení počtu třídicích intervalů je dosti subjektivní záležitost. Často se doporučuje volit r blízké \sqrt{n} .

Hustota četnosti: $f(x) = \begin{cases} f_j \text{ pro } u_j < x \le u_{j+1}, j=1, \cdots, r \\ 0 \text{ jinak} \end{cases}$ (grafem hustoty četnosti je histogram)

Intervalová empirická distribuční funkce: $F(x) = \int_{-\infty}^{x} f(t)dt$.

Příklad 2.: U 70 domácností byly zjišťovány týdenní výdaje na nealkoholické nápoje (v Kč).

Výdaje	(35,65)	(65,95)	(95,125)	(125,155)	(125,155)	(185,215)
Počet dom.	7	16	27	14	4	2

Sestavte tabulku rozložení četností, nakreslete histogram a graf intervalové empirické distribuční funkce.

Řešení:

Tabulka rozložení četností

$(u_{j}, u_{j+1}]$	n _j	p _j	\mathbf{f}_{j}	Nj	F _j
(35,65)	7	7/70	7/2100	7	7/70
(65,95)	16	16/70	16/2100	23	23/70
(95,125)	27	27/70	27/2100	50	50/70
(125,155)	14	14/70	14/2100	64	64/70
(155,185)	4	4/70	4/2100	68	68/70
(185,215)	2	2/70	2/2100	70	1

Histogram

Graf intervalové empirické distribuční funkce

1.3. Číselné charakteristiky datového souboru

1.3.1. Znaky nominálního typu

Tyto znaky umožňují obsahovou interpretaci pouze u relace rovnosti. Charakteristikou polohy je modus, tj. nejčetnější varianta či střed nejčetnějšího intervalu.

1.3.2. Znaky ordinálního typu

Lze u nich navíc obsahově interpretovat relaci uspořádání. Charakteristikou polohy je α -kvantil. Je-li $\alpha \in (0, 1)$, pak α -kvantil x_{α} je číslo, které rozděluje uspořádaný datový soubor na dolní úsek, obsahující aspoň podíl α všech dat a na horní úsek obsahující aspoň podíl $1 - \alpha$ všech dat. Pro výpočet α -kvantilu slouží algoritmus:

$$n\alpha = \left\langle \text{celé číslo } c \Longrightarrow x_{\alpha} = \frac{x_{(c)} + x_{(c+1)}}{2} \right\rangle$$

Pro speciálně zvolená α užíváme názvů: $x_{0,50}$ – medián, $x_{0,25}$ – dolní kvartil, $x_{0,75}$ – horní kvartil, $x_{0,1}$, ..., $x_{0,9}$ – decily, $x_{0,01}$, ..., $x_{0,99}$ – percentily. Jako charakteristika variability slouží kvartilová odchylka: $q = x_{0,75} - x_{0,25}$.

Příklad 3.: Během semestru se studenti podrobili písemnému testu z matematiky, v němž bylo možno získat 0 až 10 bodů. Výsledky jsou uvedeny v tabulce:

5			5	55		5					
Počet bodů	0	1	2	3	4	5	6	7	8	9	10
Počet studentů	1	4	6	7	11	15	19	17	12	6	3
1	11/ 4	1 11 0			• •		1 1 11			10	

Zjistěte modus, medián, 1.decil, 9. decil a kvartilovou odchylku počtu bodů.

Řešení: Modus je nejčetnější varianta znaku, v tomto případě tedy 6. Pro výpočet kvantilů musíme znát rozsah datového souboru: n = 1 + 4 + ... + 3 = 101. Výpočty uspořádáme do tabulky.

α	nα	с	$x_{\alpha} = x_{(c)}$
0,50	50,5	51	6
0,10	10,1	11	2
0,90	90,9	91	8
0,25	25,25	26	4
0,75	75,75	76	7

q = 7 - 4 = 3

1.3.3. Znaky intervalového a poměrového typu

U těchto znaků lze navíc obsahově interpretovat operaci rozdílu resp. podílu.

Charakteristika polohy: aritmetický průměr m = $\frac{1}{n} \sum_{i=1}^{n} x_i$, u poměrových znaků, které nabývají pouze kladných hodnot, lze použít geometrický průměr $\sqrt[n]{x_1 \cdot \ldots \cdot x_n}$.

Charakteristika variability: rozptyl s² = $\frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2$ či směrodatná odchylka s = $\sqrt{s^2}$. (Rozptyl se zpravidla počítá podle vzorce s² = $\frac{1}{n} \sum_{i=1}^{n} x_i^2 - m^2$.)

U poměrových znaků se jako charakteristika variability používá též koeficient variace $\frac{s}{m}$.

Známe-li absolutní či relativní četnosti variant $x_{[1]}$, ..., $x_{[r]}$, můžeme spočítat vážený průměr $m = \frac{1}{n} \sum_{j=1}^{r} n_{j} x_{[j]}$ či vážený rozptyl : $s^{2} = \frac{1}{n} \sum_{j=1}^{r} n_{j} (x_{[j]} - m)^{2}$. (Vážený rozptyl se zpra-

vidla počítá podle vzorce $s^2 = \frac{1}{n} \sum_{j=1}^{r} n_j x_{[j]}^2 - m^2$.)

Aritmetický průměr a rozptyl jsou speciální případy momentů. Zavedeme

k-tý počáteční moment $\mathbf{m}_{k}^{'} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{k}$, k = 1, 2, ... a k-tý centrální moment

 $m_k = \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^k$, k = 1, 2, ... Pomocí 3. a 4. počátečního momentu se definuje šikmost a špičatost.

Šikmost: $\alpha_3 = \frac{m_3}{s^3}$ - měří nesouměrnost rozložení četností kolem průměru. Špičatost: $\alpha_4 = \frac{m_4}{s^4} - 3$ - měří koncentraci rozložení četností kolem průměru.

Příklad 4.: Pro údaje z příkladu 1 vypočtěte průměr a rozptyl počtu členů.

$$\mathbf{\check{Re}\check{sen}i:} \ \mathbf{m} = \frac{1}{30} \left(1 \cdot 2 + 2 \cdot 6 + 3 \cdot 4 + 4 \cdot 10 + 5 \cdot 5 + 6 \cdot 3 \right) = \frac{109}{30} = 3,6\overline{3}$$
$$\mathbf{s}^{2} = \frac{1}{30} \left(1^{2} \cdot 2 + 2^{2} \cdot 6 + 3^{2} \cdot 4 + 4^{2} \cdot 10 + 5^{2} \cdot 5 + 6^{2} \cdot 3 \right) - \left(\frac{109}{30} \right)^{2} = \frac{1769}{900} = 1,96\overline{5}$$

Příklad 5.: Nechť m₁ je průměr a s₁² rozptyl hodnot x₁, ..., x_n. Nechť a, b jsou reálné konstanty. Položme $y_i = a + bx_i$, i = 1, ..., n. Vypočtěte průměr m₂ a rozptyl s₂² hodnot y₁, ..., y_n.

$$\tilde{\mathbf{K}} \tilde{\mathbf{e}} \tilde{\mathbf{s}} \tilde{\mathbf{e}} \tilde{\mathbf{i}} : \mathbf{m}_{2} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_{i} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{a} + \mathbf{b}\mathbf{x}_{i}) = \mathbf{a} + \mathbf{b} \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} = \mathbf{a} + \mathbf{b}\mathbf{m}_{1}$$

$$\mathbf{s}_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_{i} - \mathbf{m}_{2})^{2} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{a} + \mathbf{b}\mathbf{x}_{i} - \mathbf{a} - \mathbf{b}\mathbf{m}_{1})^{2} = \mathbf{b}^{2} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \mathbf{m}_{1})^{2} = \mathbf{b}^{2} \mathbf{s}_{1}^{2}$$

1.4. Diagnostické grafy

1.4.1. Krabicový diagram

Umožňuje posoudit symetrii a variabilitu datového souboru a existenci odlehlých či extrémních hodnot.

Způsob konstrukce

Odlehlá hodnota leží mezi vnějšími a vnitřními hradbami, tj. v intervalu $(x_{0,75} + 1,5q, x_{0,75} + 3q)$ či v intervalu $(x_{0,25} - 3q, x_{0,25} - 1,5q)$.

Extrémní hodnota leží za vnějšími hradbami, tj. v intervalu $(x_{0,75} + 3q, \infty)$ či v intervalu $(-\infty, x_{0,25} - 3q)$.

Příklad 6.: Pro údaje z příkladu 1 sestrojte krabicový diagram.

Řešení: Rozsah souboru n = 30. Výpočty potřebných kvantilů uspořádáme do tabulky.

α	nα	с		\mathbf{x}_{α}
0,25	7,5	8	$X_{(c)} = X_{(8)}$	2
0,50	15	15	$\frac{x_{(15)} + x_{(16)})}{2}$	4
0,75	22,5	23	$x_{(c)} = x_{(23)}$	5

q = 5 - 2 = 3

Dolní vnitřní hradba: $x_{0,25} - 1,5q = 2 - 1,5.3 = -2,5$ Horní vnitřní hradba: $x_{0,75} + 1,5q = 5 + 1,5.3 = 9,5$

1.4.2. Normal probability plot (NP-plot)

Umožňuje graficky posoudit, zda data pocházejí z normálního rozložení. Způsob konstrukce: na vodorovnou osu vynášíme uspořádané hodnoty $x_{(1)} \leq ... \leq x_{(n)}$ a na svislou osu kvantily u_{α_j} , kde $\alpha_j = \frac{3j-1}{3n+1}$ (jsou-li některé hodnoty stejné, pak za j bereme průměrné pořadí odpovídající takové skupince). Pocházejí-li data z normálního rozložení, pak všechny dvojice $(x_{(j)}, u_{\alpha_j})$ budou ležet na přímce.

1.4.3. Quantile - quantile plot (Q-Q plot)

Umožňuje graficky posoudit, zda data pocházejí z nějakého známého rozložení (např. STATISTICA 6.0 nabízí 8 typů rozložení: beta, exponenciální, Gumbelovo, gamma, log-normální, normální, Rayleighovo a Weibulovo).

Způsob konstrukce: na svislou osu vynášíme uspořádané hodnoty $x_{(1)} \leq ... \leq x_{(n)}$ a na vodo-rovnou osu kvantily $K_{\alpha_j}(X)$ vybraného rozložení, kde $\alpha_j = \frac{j - r_{adj}}{n + n_{adj}}$, přičemž r_{adj} a n_{adj} jsou

korigující faktory $\leq 0,5$, implicitně $r_{adj} = 0,375$ a $n_{adj} = 0,25$. (Jsou-li některé hodnoty $x_{(1)} \leq ... \leq x_{(n)}$ stejné, pak za j bereme průměrné pořadí odpovídající takové skupince.) Pokud vybrané rozložení závisí na nějakých parametrech, pak se tyto parametry odhadnou z dat nebo je může zadat uživatel. Body $(K_{\alpha_i}(X), x_{(j)})$ se metodou nejmenších čtverců proloží přímka. Čím méně

se body odchylují od této přímky, tím je lepší soulad mezi empirickým a teoretickým rozložením.

Příklad 7.: Desetkrát nezávisle na sobě byla změřena jistá konstanta. Výsledky měření: 2 1,8 2,1 2,4 1,9 2,1 2 1,8 2,3 2,2. Pomocí N-P plot a P-P plot ověřte, zda se tato data řídí normálním rozložením.

Řešení:

usp.hodnoty	1,8	1,8	1,9	2	2	2,1	2,1	2,2	2,3	2,4
pořadí	1	2	3	4	5	6	7	8	9	10
průměrné pořadí	1,5	1,5	3	4,5	4,5	6,5	6,5	8	9	10

a) N-P plot

j = (1,5,3,4,5,6,5,8,9,10) $\alpha_{j} = \frac{3j-1}{3n+1} = (0,1129;0,2581;0,4032;0,5968;0,7419;0,8387;0,9355)$ $u_{\alpha_{j}} = (-1,2112;-0,6493;-0,245;0,245;0,6493;0,9892;1,5179)$

b) Q-Q plot

 $j = (1,5 \ 3 \ 4,5 \ 6,5 \ 8 \ 9 \ 10)$ $\alpha_{j} = \frac{j - 0,375}{n + 0,25} = (0,1098;0,2561;0,4024;0,5976;0,7439;0,8415;0,939)$ $u_{\alpha_{j}} = (-1,2278;-0,6554;-0,247;0,247;0,6554;1,0005;1,566)$

Vzhled obou grafů nasvědčuje tomu, že data pocházejí z normálního rozložení.

1.4.4. Probability - probability plot (P-P plot)

Používá se ke stejným účelům jako Q-Q plot, ale jinak se konstruuje.

Způsob konstrukce: spočtou se standardizované hodnoty $z_{(j)} = \frac{x_{(j)} - m}{s}$, j = 1, ..., n. Na vodo-

rovnou osu se vynesou hodnoty teoretické distribuční funkce $\Phi(z_{(j)})$ a na svislou osu hodnoty empirické distribuční funkce $F(z_{(j)}) = j/n$. (Jsou-li některé hodnoty $x_{(1)} \leq ... \leq x_{(n)}$ stejné, pak za j bereme průměrné pořadí odpovídající takové skupince.)Pokud se body ($\Phi(z_{(j)})$, $F(z_{(j)})$) řadí kolem hlavní diagonály čtverce [0,1] x [0,1], lze usuzovat na dobrou shodu empirického a teoretického rozložení.

1.4.5. Histogram

Umožňuje porovnat tvar hustoty četnosti s tvarem hustoty pravděpodobnosti vybraného teoretického rozložení. (Ve STATISTICE je pojem histogramu širší, skrývá se za ním i sloupkový diagram.)

Způsob konstrukce ve STATISTICE: na vodorovnou osu se vynášejí třídicí intervaly (implicitně 10, jejich počet lze změnit, stejně tak i meze třídicích intervalů) či varianty znaku a na svislou osu absolutní nebo relativní četnosti třídicích intervalů či variant. Do histogramu se zakreslí tvar hustoty (či pravděpodobnostní funkce) vybraného teoretického rozložení. Kromě 8 typů rozložení uvedených u Q-Q plotu umožňuje STATISTICA použít ještě další 4 rozložení: Laplaceovo, logistické, geometrické, Poissonovo.

Příklady k 1. kapitole

Příklad 1. : U 20 studentů 1. ročníku byla zjišťována známka z matematiky na prvním zkušebním termínu.

Známka	1	2	3	4
Počet studentů	7	3	2	8

Vytvořte tabulku rozložení četností. Nakreslete grafy četností funkce a empirické distribuční funkce. Dále nakreslete sloupkový diagram a polygon četností počtu členů domácnosti.

Příklad 2. : U 60 vzorků oceli byl zjišťována mez plasticity.

Mez plas- ticity	(30,50)	(50, 70)	(70,90)	(90,110)	(110,130)	(130,150)	(150,170
Počet vzorků	8	4	13	15	9	7	4

Sestavte tabulku rozložení četností, nakreslete histogram a graf intervalové empirické distribuční funkce.

Příklad 3. : Pro údaje z příkladu 2 vypočtěte průměr a rozptyl meze plasticity. (m = 96,67, $s^2 = 1148,89$)

Příklad 4. : V datovém souboru, z něhož byl vypočten průměr 110 a rozptyl 800, byly zjištěny 2 chyby: místo 85 má být 95 a místo 120 má být 150. Ostatních 18 údajů je správných. Opravte průměr a rozptyl. $(m = 112, s^2 = 851)$

(m = 112, s = 851)

Příklad 5. :Pro údaje z příkladu 1 sestrojte krabicový diagram. (Pomocné výpočty: $x_{0,50} = 2,5$, $x_{0,25} = 1$, $x_{0,75} = 4$, q = 3, dolní vnitřní hradba = -3,5, horní vnitřní hradba = 8,5)

Práce se systémem STATISTICA

Téma: Grafické a tabulkové zpracování četností, výpočet číselných charakteristik, diagnostické grafy

Vedení pojišťovny (zaměřené na pojištění automobilů) požádalo manažera oddělení marketingového výzkumu o provedení průzkumu, který by ukázal názory zákazníků na uvažovaný nový systém pojištění aut.

Náhodně bylo vybráno 110 současných zákazníků pojišťovny a ti byli telefonicky seznámeni s následujícím textem:

"Naše pojišťovna nabízí nový systém pojištění aut výhradně pro cesty nad 300 km. Za roční poplatek 12 tisíc Kč budete pojištěni pro případ libovolných potíží s autem při všech cestách nad 300 km. V případě nehody pojišťovna uhradí opravu, cestovní náklady a popř. i některé další výlohy, jako je ubytování a stravování v hotelu, telefon atd.

Stupnicí od 1 (jednoznačný nezájem) do 5 (jednoznačný zájem) laskavě vyjádřete svůj postoj k nabízenému novému typu pojištění. Dále uveď te svůj věk, počet cest nad 300 km v loňském roce, stáří vašeho auta a váš rodinný stav. Děkujeme."

Získané odpovědi byly zaznamenány do datového souboru a zakódovány takto: POSTOJ ... postoj k novému typu pojištění (ne = 1, asi ne = 2, nevím = 3, asi ano = 4, ano = 5).

RODSTAV ... rodinný stav (svobodný = 1, rozvedený, ovdovělý = 2, ženatý = 3).

VEK ... věk v dokončených letech.

STARIAUT ... stáří auta v letech.

CESTY ... počet cest nad 300 km v předešlém roce.

Úkoly:

- Datový soubor pojist.sta načtěte do systému STATISTICA. Všem proměnným vytvořte návěští a popište význam jednotlivých variant proměnných POSTOJ a RODSTAV.
 Návod: File – Open – Soubory typu Data Files – pojist.sta – Otevřít.
 Názvy a vlastnosti proměnných se upravují v okně, do něhož vstoupíte, když 2x kliknete myší na název proměnné. Návěští se píše do Long Name, význam variant do Text labels.
- Zjistěte absolutní a relativní četnosti a absolutní a relativní kumulativní četnosti proměnných POSTOJ a RODSTAV.
 Návod: Statistics Basic Statistics/Tables Frequency Tables OK Variables PO-STOJ, RODSTAV OK Summary Frequency tables. Tabulky se uloží do workbooku, listovat v nich můžete pomocí stromové struktury v levém okně.
- Proměnnou VEK zakódujte do 6 třídicích intervalů <23,29>, (29,35>, (35,41>, (41,47>, (47,53>, (53,59> a zjistěte jejich četnosti.
 Návod: Za VEK vložte novou proměnnou RVEK (Insert Add Variables –After VEK, Name RVEK, Type Integer, Long Name zakódovaný věk, OK). Nastavte se kurzorem na RVEK. Data Recode Category 1 Include If VEK >=23 and VEK <=29, New Value1, value1 atd. až Category 7 Include If VEK > 53 and VEK <=59, New Value 7, OK. Četnosti zjistíte analogicky jako v bodě 2.
- Vypočtěte následující číselné charakteristiky: POSTOJ (ordinální proměnná) modus, medián, dolní a horní kvartil, kvartilová odchylka. RODSTAV (nominální proměnná) – modus. VEK, STARIAUT, CESTY (poměrové proměnné) – modus, medián, průměr, minimum, maximum, směrodatná odchylka, rozptyl, šikmost, špičatost.
 Návod: Statistics – Basic Statistics/Tables - Descriptive Statistics – OK, Variables – název proměnné, Advanced – vyberte příslušné charakteristiky (modus – Mode, medián – Median, průměr – Mean, směrodatná odchylka – Standard Deviation, rozptyl – Variance,

šikmost – Skewness, špičatost – Kurtosis, dolní a horní kvartil – Lower&upper quartiles, kvartilová odchylka – Quartile range).

5. Vytvořte sloupkový diagram, výsečový graf a polygon četností proměnných POSTOJ a RODSTAV.

Návod: Sloupkový diagram: Graphs – Histograms – Variables POSTOJ, OK, Advanced – Fit type Off, zaškrtneme Breaks between Columns, Y Axis %&N, OK.

Výsečový graf: Graphs – 2D Graphs – Pie Charts – Variables POSTOJ, OK, Advanced - Pie legend Text and Percent, OK.

Polygon četností: ve workbooku vstupte do tabulky rozložení četností proměnné PO-STOJ. Pomocí Edit – Delete - Cases vymažte řádek označený Missing. Nastavte se kurzorem na Count a kliknutím pravého tlačítka vstupte do menu Line Plot: Entire Columns. Vytvoří se polygon četností.

Vytvořte histogram proměnné VEK se šesti třídicími intervaly <23,29>, (29,35>, (35,41>, (41,47>, (47,53>, (53,59>.
 Návod: Graphs – Histograms – Variables VEK, OK, Advanced – zaškrtněte Boundaries –

Návod: Graphs – Histograms – Variables VEK, OK, Advanced – zaškrtněte Boundaries – Specify Boundaries – Enter Upper Boundaries 29 35 41 47 53 59, OK.

- Vytvořte kategorizovaný histogram proměnné VEK podle proměnné RODSTAV. Návod: Postupujte stejně jako v předešlém případě a zvolte Categorized – X-categoried ON – Change Variable RODSTAV, OK, Codes – Specify Codes All, OK, OK.
- 8. Zjistěte, jaký je průměrný počet cest nad 300 km pro svobodné, rozvedené , ženaté zákazníky pojišťovny.

Návod: Postupujte stejně jako v úkolu č. 4, ale klikněte na SELECT CASES – zaškrtněte Enable Selection Conditions – Include cases – zaškrtněte Specific, selected by, By Expression RODSTAV = 1, OK. Pro rozvedené či ženaté zákazníky použijete RODSTAV = 2 či RODSTAV = 3,

 Sestrojte krabicový diagram proměnné CESTY. S jeho pomocí zjistěte, zda proměnná CESTY obsahuje odlehlé či extrémní hodnoty.
 Návod: Graphs – 2D Graphs – Box Plots – Variables – Dependent variable CESTY – OK

Návod: Graphs – 2D Graphs – Box Plots – Variables – Dependent variable CESTY – OK – OK.

Interpretace: Medián je posunut k dolnímu kvartilu, což svědčí o kladně zešikmeném rozložení. Vyskytují se odlehlé i extrémní hodnoty, jedná se tedy o špičaté rozložení.

10. Pro proměnnou STARIAUT sestrojte NP plot a s jeho pomocí posuďte normalitu této proměnné.

Návod: Graphs – 2D Graphs – Normal Probability Plots – Variables STARIAUT – OK. Interpretace: Vzhled NP plot svědčí o kladně zešikmeném rozložení, nejedná se tedy o normální rozložení.

11. Pro proměnnou STARIAUT nakreslete histogram s proloženou hustotou normálního rozložení. Ponechejte implicitní počet třídicích intervalů.

Návod: Graphs – Histograms – Variables STARIAUT – OK.

Interpretace: Tvar histogramu svědčí o kladně zešikmeném rozložení, jehož hustota neodpovídá hustotě normálního rozložení.