
Introduction
Sensitivity and conditioning

Computer arithmetic

Bi7740: Scientific computing
Introductory considerations

Vlad Popovici
popovici@iba.muni.cz

Institute of Biostatistics and Analyses
Masaryk University, Brno

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

There is nothing more practical than a good theory.
Kurt Lewin (1890–1947)

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Outline

1 Introduction

2 Sensitivity and conditioning

3 Computer arithmetic

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Bibliography:
HEATH M.T. (2002). Scientific Computing. An introductory
survey. McGraw-Hill, 2nd edition. ISBN: 0-07-239910-4 Good
accompanying materials at
http://www.cs.illinois.edu/~heath/scicomp/,
including slides and demos! Used as basis for the first part of
the course.
KEPNER J. (2009). Parallel Matlab for Multicore and
Multinode Computers. SIAM Publishing. ISBN:
978-0-898716-73-3
GENTLE J.E. (2005). Elements of Computational Statistics.
Springer. ISBN:978-0387954899
HŘEBÍČEK, J. et al. Vědecké výpočty v matematické biologii
(Scientific computing in mathematical biology). Brno:
Akademické nakladatelství CERM, 2012. 117 pp. Neuveden.
ISBN 978-80-7204-781-9.

Vlad Bi7740: Scientific computing

http://www.cs.illinois.edu/~heath/scicomp/

Introduction
Sensitivity and conditioning

Computer arithmetic

Computing environments for the course:

Matlab, http://www.mathworks.com - commercial

GNU Octave, https://www.gnu.org/software/octave/ -
"quite similar to Matlab"

R, http://www.r-project.org - "environment for statistical
computing and graphics"

WARNING: Some pieces of code shown during the course may
not represent the optimal implementation in the given language.
They are merely a device for demonstrating some principles.

Vlad Bi7740: Scientific computing

http://www.mathworks.com
https://www.gnu.org/software/octave/
http://www.r-project.org

Introduction
Sensitivity and conditioning

Computer arithmetic

Scientific computing

Wikipedia:

"Computational science (also scientific computing or scientific
computation) is concerned with constructing mathematical models
and quantitative analysis techniques and using computers to
analyze and solve scientific problems."

Basically: find numerical solutions to mathematically-formulated
problems.

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Scientific computing

Wikipedia:

"Computational science (also scientific computing or scientific
computation) is concerned with constructing mathematical models
and quantitative analysis techniques and using computers to
analyze and solve scientific problems."

Basically: find numerical solutions to mathematically-formulated
problems.

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

(J. Hadamard) A problem is well posed if its solution

exists

is unique

has a behavior that changes continuously with the initial
conditions;

otheriwse, it is ill posed.
Inverse problems are often ill posed.
Example: 3D to 2D projection.

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

continuous domain→ discrete domain

well-posed but ill-conditioned problems: small errors in input
lead to large variations in the solution

improve conditioning by regularization

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

General computational approach

continuous domain→ discrete domain

infinite→ finite

differential→ algebraic

nonlinear→ (combination of) linear

accept approximate solutions, but control for the error

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Approximations

Modeling approximations:
"model" = approximation of the nature
data - inexact measurements or previous results

Implementation/computational approximations:
discretization of the continuous domain; truncation
rounding

errors in input data

errors propagated by the algorithm

accuracy of the final result

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Example: area of the Earth

model: sphere

A = 4πr2

r =?

π = 3.14159 . . .

rounded arithmetic

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Errors

Absolute error: approximate value - true value

Relative error:
absolute error

true value
→ approximate value = (1 + relative error) × (true value)

if the relative error is ∼ 10−d , it means that x̂ has about d
exact digits: there exists τ = ±(0.0 . . . 0nd+1nd+2 . . .) such
that x̂ = x + τ

true value is usually not known→ use estimates or bounds on
the error

relative error can be taken relative to the approximate value

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Example/exercise - Implement!

Stirling’s approximation for factorials:

Sn =
√

2πn
(n
e

)n
≈ n!, n = 1, 2, . . .

where e = exp(1).
Relative error (Sn − n!)/n!:

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Errors: data and computational

compute f(x) for f : R→ R

x ∈ R is the true value
f(x) true/desired result
x̂ approximate input
f̂ approximate result

total error:

f̂(x̂) − f(x) = (̂f(x̂) − f(x̂)) + (f(x̂) − f(x))

= computational error + propagated data error

the algorithm has no effect on propagated error

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Computational error

is sum of:

truncation error = (true result) - (result of the algorithm using
exact arithmetic)
Example: considering only the first terms of an infinite Taylor
series; stopping before convergence

rounding error = (result of the algorithm using exact
arithmetic) - (result of the algorithm using limited precision
arithmetic)
Example: π ≈ 3.14 or π ≈ 3.141593

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Finite difference approximation

f ′(x) = lim
h→0

f(x + h) − f(x)

h
≈

f(x + h) − f(x)

h
, for some small h > 0

truncation error: f ′(x) −
f(x+h)−f(x)

h ≤ Mh/2 where |f ′′(t)| ≤ M
for t in a small neighborhood of x (HOMEWORK, 5p)

rounding error: 2ε/h, for ε being the precision

total error is minimized for h ≈ 2
√
ε/M

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Figure : Total computational error as a tradeoff between truncation and
rounding error (from Heath - Scientific computing)

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Error analysis

For y = f(x), for f : R→ R an approximate ŷ result is obtained.

forward error: ∆y = ŷ − y

backward error: ∆x = x̂ − x, for f(x̂) = ŷ

x f //
OO

backward error
��

f̂

��

yOO
forward error
��

= f(x)

x̂ f // ŷ = f̂(x) = f(x̂)

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Compute f(x) = ex for x = 1. Use the first 4 terms from Taylor
expansion:

f̂(x) = 1 + x +
x2

2
+

x3

6

take "true" value: f(x) = 2.716262 and compute
f̂(x) = 2.666667, then

forward error: |∆y | = 0.051615, or a relative f. error of about
2%

backward error: x̂ = ln f̂(x) = 0.989829⇒ |∆x | = 0.019171,
or a relative b. error of 2%

these are two perspectives on assessing the accuracy

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Exercise

Consider the general Taylor series with limit e:

∞∑
n=0

1
n!

= e

How many terms are needed for an approximation of e to three
decimal places?

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Backward error analysis

idea: approximate result is the exact solution of a modified
problem

how far from the original problem is the modified version?

how much error in the input data would explain all the error in
the result?

an approximate solution is good if it is an exact solution for a
nearby problem

backward analysis is usually easier

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Sensitivity and conditioning

insensitive (well-conditioned) problem: relative changes in
input data causes similar relative change in the result

large changes in solution for small changes in input data
indicate a sensitive (ill-conditioned) problem;

condition number:

cond =
absolute relative change in solution

absolute relative change in input
=
|∆y/y |
|∆x/x |

if cond >> 1 the problem is sensitive

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

condition number is a scale factor for the error:
relative forward err = cond × relative backward err

usually, only upper bounds of the cond. number can be
estimated, cond ≤ C , hence

relative forward err ≤ C × relative backward err

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

x̂ = x + ∆x

forward error: f(x + ∆x) − f(x) ≈ f ′(x)∆x, for small enough
∆x

relative forward error: ≈ f ′(x)∆x
f(x)

⇒ cond ≈
∣∣∣∣ xf ′(x)

f(x)

∣∣∣∣

Example: tangent function is sensitive in neighborhood of π/2

tan(1.57079) ≈ 1.58058 × 105; tan(1.57078) ≈ 6.12490 × 104

for x = 1.57079, cond ≈ 2.48275 × 105

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

x̂ = x + ∆x

forward error: f(x + ∆x) − f(x) ≈ f ′(x)∆x, for small enough
∆x

relative forward error: ≈ f ′(x)∆x
f(x)

⇒ cond ≈
∣∣∣∣ xf ′(x)

f(x)

∣∣∣∣
Example: tangent function is sensitive in neighborhood of π/2

tan(1.57079) ≈ 1.58058 × 105; tan(1.57078) ≈ 6.12490 × 104

for x = 1.57079, cond ≈ 2.48275 × 105

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Stability

an algorithm is stable if is relatively insensitive to
perturbations during computation

stability of algorithms is analogous to conditioning of problems

backward analysis: an algorithm is stable if the result
produced is the exact solution of a nearby problem

stable algorithm: the effect of computational error is no worse
than the effect of small error in input data

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Accuracy

accuracy closeness of the result to the true solution of the
problem

depends on the conditioning of the problem AND on the
stability of the algorithm

stable algorithm + well-conditioned problem = accurate results

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

CPUs

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Number representation

internally, all data are represented in binary format (each digit
can be either 0 or 1, e.g. 1011001...)

bit, nybble, byte

word→ specific to architecture: 1, 2, 4, or 8 bytes
integers:

unsigned (≥ 0): on n bits: 0, . . . , 2n − 1. The stored
representation (for 1 byte) is b7b6b5b4b3b2b1b0 for a value
x =

∑7
i=0 bi2i .

signed: 1 bit for sign, rest for the absolute value;
−2n−1, . . . , 0, . . . , 2n−1 − 1. The stored representation (for 1
byte) is b7b6b5b4b3b2b1b0 for a value x = b7(−27) +

∑6
i=0 bi2i .

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Floating-point numbers

like in scientific notation: mantissa × radixexponent, e.g.
2.35 × 103

formally

x = ±

(
b0 +

b1

β
+

b2

β2
+ · · ·+

bp−1

βp−1

)
× βE

where
β is the radix (or base)
p is the precision
L ≤ E ≤ U are the limits of the exponent
0 ≤ bk ≤ β

mantissa: m = b0b1 . . . bp−1; fraction: b1b2 . . . bp−1

the sign, mantissa and exponent are stored in fixed-sized
fields (the radix is implicit for a given system, β = 2 usually)

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Normalization:

b0 , 0 for all x , 0

mantissa m satisfies 1 ≤ m < β

ensures unique representation, optimal use of available bits

Internal representation (on 64 bits - "double precision", binary
representation):

x = sign | exponent | fraction = b63 b62 . . . b52 b51 . . . b0

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Properties:

only a finite number of discrete values can be represented

total number of floating point numbers representable in
normalized format is

2(β − 1)βp−1(U − L + 1) + 1

(Q: can you justify the result?)

undeflow level (smallest number): UFL = βL

overflow level (largest number): OFL = βU+1(1 − β−p)

not all real numbers can be represented exactly:
machine numbers
rounding→ rounding error

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Example: let β = 2, p = 3, L = −1,U = 1, there are 25 distinct
numbers that can be represented:

UFL = 0.510; OFL = 3.510

note the non-uniform coverage

∀x ∈ R, fl(x) is the floating point representation; x − fl(x) is
the rounding error

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Rounding rules

chop = round toward zero: truncate the base−β
representation after p − 1st digit

round to nearest: fl(x) is the closest machine number to x

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Machine precision

machine precision, εmach

with chopping: εmach = β1−p

with rounding to nearest: εmach = 1
2β

1−p

called also unit roundoff: the smallest number ε such that
fl(1 + ε) > 1

maximum relative error of representation∣∣∣∣∣∣fl(x) − x
x

∣∣∣∣∣∣ ≤ εmach

usually 0 < UFL < εmach < OFL

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Machine precision - example

For β = 2, p = 3, L = −1,U = 1,

εmach = (0.01)2 = (0.25)10 with chopping

εmach = (0.001)2 = (0.125)10 with rounding to nearest

The usual case (IEEE fp systems):

εmach = 2−24 ≈ 10−7 in single precision

εmach = 2−53 ≈ 10−16 in double precision

→ about 7 and 16 decimals of precision, respectively

(in R: p-value < 2.2e − 16)

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Gradual underflow

to improve representation of numbers around 0 - use
subnormal (or denormalized) numbers

when exponent is at minimum, alow leading digits to be 0

subnormals are less precise

→ gradual underflow

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Special values

IEEE standard:

Inf: infinity; the result of 1/0

NaN: the result of 0/0 or Inf/Inf

special representation of the exponent field

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Floating-point arithmetic

addition/subtraction: denormalization might be required:
3.52 × 103 + 1.97 × 105 = 0.0352 × 105 + 1.97 × 105 =
2.0052 × 105 → might cause loss of some digits

multiplication/division: the result may not be representable

overflow is more serious than underflow: how to approximate
large numbers?

for underflow, the result may be approximated by 0

in FP arithm. addition and multiplication are commutative but
not associative: if ε is slightly smaller than εmach, then
(1 + ε) + ε = 1, but 1 + (ε + ε) > 1

ideally, x flop y = fl(xopy); IEEE standard ensures this for
within range results

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Example: divergent series

∞∑
n=1

1
n

in FP arithm, the sum of the series is finite;
depending on the system, this is because:

after a while, the sum overflows
1/n underflows
for all n such that

1
n
< εmach

n−1∑
k=1

1
k

the sum does not change anymore

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Cancellation

subtracting 2 numbers of the same magnitude usually cancels
the most significant digits:
1.92403 × 102 − 1.92275 × 102 = 1.28000 × 10−1 → only 3
significant digits

let ε > 0 be slightly smaller than εmach, then (1 + ε) − (1 − ε)
yields 0 in FP arithmetic, instead of 2ε.

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Cancellation - example

For the quadratic equation, ax2 + bx + c = 0, the two solutions are
given by

x1,2 =
−b ±

√
b2 − 4ac

2a
Problems:

for very large/small coefficients, the terms b2 or 4ac may
over-/underflow→ rescale coeficients by max{a, b , c}.

cancellation between −b and
√
· can be avoided by computing

one root using x = 2c
−b∓

√
b2−4ac

Exercise: let x1 = 2000, x2 = 0.05 be the roots of a quadratic
equation. Compute the coefficients and then use the above
formulas to retrieve the roots. Try roots() function in Matlab.

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

Cancellation - another example
P(X) = (X − 1)6 = X6 − 6X5 + 15X4 − 20X3 + 15X2 − 6X + 1.
What happens around X = 1?

1 epsilon = [.01, .005, .001];
2 for k=1:3
3 x = linspace(1−epsilon(k), 1+epsilon(k), 100);
4 px = x.^6 − 6*x.^5 + 15*x.^4 − 20*x.^3 + 15*x.^2 ...

− 6*x + 1;
5 px0 = (x − 1).^6;
6 subplot(2, 3, k);
7 plot(x, px, '−b', x, zeros(1,100), '−r');
8 axis([1−epsilon(k), 1+epsilon(k), −max(abs(px)), ...

max(abs(px))]);
9 subplot(2, 3, k+3);

10 plot(x, px0, '−b', x, zeros(1, 100), '−r');
11 axis([1−epsilon(k), 1+epsilon(k), −max(abs(px0)), ...

max(abs(px0))]);
12 end

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

...mathematically equivalent, but numerically different...

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

HOMEWORK
Let x = [a, b] ∈ R2 and let p be its Euclidean norm, p =

√
a2 + b2.

However, using this formula is prone to under- and over-flow errors.

show that min{|a |, |b |} ≤ p ≤
√

2 max{|a |, |b |}

implement in Matlab a procedure that would avoid
unnecessary under-/over-flows Hint: p = c

√
(a/c)2 + (b/c)2.

Find a suitable c...

Vlad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning

Computer arithmetic

In Matlab...

you can change the format of FP in output using format

option
εmach is returned by the function eps():

single precision: eps(single(1)) gives
1.1921e − 07 = 2−23

double precision: eps(double(1)) gives
2.2204e − 16 = 2−52

to obtain the smallest or largest single/double precision
numbers, use realmin('single'), realmin('double'),
realmax('single'), realmax('double')

you have the special constants Inf and NaN

Vlad Bi7740: Scientific computing

	Introduction
	Sensitivity and conditioning
	Computer arithmetic

