Bi7740: Scientific computing

Introductory considerations

Vlad Popovici popovici@iba.muni.cz

Institute of Biostatistics and Analyses Masaryk University, Brno

There is nothing more practical than a good theory. Kurt Lewin (1890–1947)

Sensitivity and conditioning Computer arithmetic

Outline

Introduction

Sensitivity and conditioning

Computer arithmetic

Bibliography:

- HEATH M.T. (2002). Scientific Computing. An introductory survey. McGraw-Hill, 2nd edition. ISBN: 0-07-239910-4 Good accompanying materials at http://www.cs.illinois.edu/~heath/scicomp/, including slides and demos! Used as basis for the first part of the course.
- KEPNER J. (2009). Parallel Matlab for Multicore and Multinode Computers. SIAM Publishing. ISBN: 978-0-898716-73-3
- GENTLE J.E. (2005). Elements of Computational Statistics. Springer. ISBN:978-0387954899
- HŘEBÍČEK, J. et al. Vědecké výpočty v matematické biologii (Scientific computing in mathematical biology). Brno: Akademické nakladatelství CERM, 2012. 117 pp. Neuveden. ISBN 978-80-7204-781-9.

Computing environments for the course:

- MATLAB, http://www.mathworks.com commercial
- GNU Octave, https://www.gnu.org/software/octave/-"quite similar to MatLab"
- R, http://www.r-project.org "environment for statistical computing and graphics"

WARNING: Some pieces of code shown during the course may not represent the optimal implementation in the given language. They are merely a device for demonstrating some principles.

Scientific computing

Wikipedia:

"Computational science (also scientific computing or scientific computation) is concerned with constructing mathematical models and quantitative analysis techniques and using computers to analyze and solve scientific problems."

Scientific computing

Wikipedia:

"Computational science (also scientific computing or scientific computation) is concerned with constructing mathematical models and quantitative analysis techniques and using computers to analyze and solve scientific problems."

Basically: find numerical solutions to mathematically-formulated problems.

- (J. Hadamard) A problem is well posed if its solution
 - exists
 - is unique
 - has a behavior that changes continuously with the initial conditions;

otheriwse, it is ill posed. Inverse problems are often ill posed.

Example: 3D to 2D projection.

- $\bullet~$ continuous domain \rightarrow discrete domain
- well-posed but ill-conditioned problems: small errors in input lead to large variations in the solution
- improve conditioning by regularization

General computational approach

- $\bullet~$ continuous domain \rightarrow discrete domain
- infinite \rightarrow finite
- differential \rightarrow algebraic
- nonlinear \rightarrow (combination of) linear
- accept approximate solutions, but control for the error

Approximations

- Modeling approximations:
 - model = approximation of the nature
 - data inexact measurements or previous results
- Implementation/computational approximations:
 - discretization of the continuous domain; truncation
 - rounding
- errors in input data
- errors propagated by the algorithm
- accuracy of the final result

Example: area of the Earth

- model: sphere
- $A = 4\pi r^2$
- *r* =?
- *π* = 3.14159...
- rounded arithmetic

- Absolute error: approximate value true value
- Relative error:

absolute error

true value

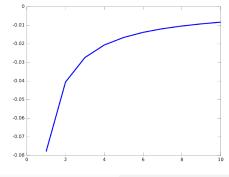
- \rightarrow approximate value = (1 + relative error) × (true value)
- if the relative error is ~ 10^{-d} , it means that \hat{x} has about d exact digits: there exists $\tau = \pm (0.0 \dots 0n_{d+1}n_{d+2} \dots)$ such that $\hat{x} = x + \tau$
- $\bullet\,$ true value is usually not known $\rightarrow\,$ use estimates or bounds on the error
- relative error can be taken relative to the approximate value

Example/exercise - Implement!

Stirling's approximation for factorials:

$$S_n = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \approx n!, \qquad n = 1, 2, \dots$$

where $e = \exp(1)$. Relative error $(S_n - n!)/n!$:



Errors: data and computational

• compute f(x) for $f : \mathbb{R} \to \mathbb{R}$

- $x \in \mathbb{R}$ is the true value
- f(x) true/desired result
- x approximate input
- *f* approximate result
- total error:

$$\hat{f}(\hat{x}) - f(x) = (\hat{f}(\hat{x}) - f(\hat{x})) + (f(\hat{x}) - f(x))$$

= computational error + propagated data error

• the algorithm has no effect on propagated error

Computational error

is sum of:

 truncation error = (true result) - (result of the algorithm using exact arithmetic)
 Example: considering only the first terms of an infinite Taylor series; stopping before convergence

 rounding error = (result of the algorithm using exact arithmetic) - (result of the algorithm using limited precision arithmetic)

Example: $\pi \approx 3.14$ or $\pi \approx 3.141593$

Finite difference approximation

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx \frac{f(x+h) - f(x)}{h}$$
, for some small $h > 0$

- truncation error: $f'(x) \frac{f(x+h)-f(x)}{h} \le Mh/2$ where $|f''(t)| \le M$ for *t* in a small neighborhood of *x* (HOMEWORK, 5p)
- rounding error: $2\epsilon/h$, for ϵ being the precision
- total error is minimized for $h \approx 2 \sqrt{\epsilon/M}$

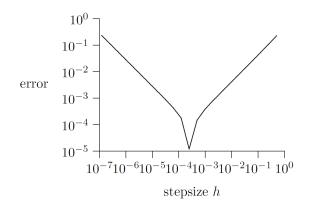
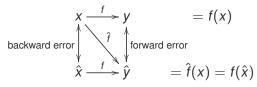


Figure : Total computational error as a tradeoff between truncation and rounding error (from *Heath - Scientific computing*)

Error analysis

For y = f(x), for $f : \mathbb{R} \to \mathbb{R}$ an approximate \hat{y} result is obtained.

- forward error: $\Delta y = \hat{y} y$
- backward error: $\Delta x = \hat{x} x$, for $f(\hat{x}) = \hat{y}$



Compute $f(x) = e^x$ for x = 1. Use the first 4 terms from Taylor expansion:

$$\hat{f}(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$

- take "true" value: f(x) = 2.716262 and compute $\hat{f}(x) = 2.666667$, then
- forward error: $|\Delta y| = 0.051615$, or a relative f. error of about 2%
- backward error: $\hat{x} = \ln \hat{f}(x) = 0.989829 \Rightarrow |\Delta x| = 0.019171$, or a relative b. error of 2%
- these are two perspectives on assessing the accuracy

Consider the general Taylor series with limit e:

$$\sum_{n=0}^{\infty} \frac{1}{n!} = \epsilon$$

How many terms are needed for an approximation of e to three decimal places?

1

Backward error analysis

- idea: approximate result is the exact solution of a modified problem
- how far from the original problem is the modified version?
- how much error in the input data would explain all the error in the result?
- an approximate solution is good if it is an exact solution for a nearby problem
- backward analysis is usually easier

Sensitivity and conditioning

- insensitive (well-conditioned) problem: relative changes in input data causes similar relative change in the result
- large changes in solution for small changes in input data indicate a sensitive (ill-conditioned) problem;
- condition number:

cond =	absolute relative change in solution	$ \Delta y/y $
	absolute relative change in input	$\frac{ \Delta x/x }{ \Delta x/x }$

• if cond >> 1 the problem is sensitive

condition number is a scale factor for the error: relative forward err = cond × relative backward err

 usually, only upper bounds of the cond. number can be estimated, cond ≤ C, hence

relative forward err $\leq C \times$ relative backward err

•
$$\hat{x} = x + \Delta x$$

- forward error: $f(x + \Delta x) f(x) \approx f'(x)\Delta x$, for small enough Δx
- relative forward error: $\approx \frac{f'(x)\Delta x}{f(x)}$

•
$$\Rightarrow$$
 cond $\approx \left| \frac{xf'(x)}{f(x)} \right|$

•
$$\hat{x} = x + \Delta x$$

- forward error: $f(x + \Delta x) f(x) \approx f'(x)\Delta x$, for small enough Δx
- relative forward error: $\approx \frac{f'(x)\Delta x}{f(x)}$

•
$$\Rightarrow$$
 cond $\approx \left| \frac{xf'(x)}{f(x)} \right|$

Example: tangent function is sensitive in neighborhood of $\pi/2$

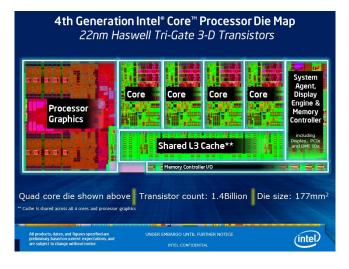
- $tan(1.57079) \approx 1.58058 \times 10^5$; $tan(1.57078) \approx 6.12490 \times 10^4$
- for x = 1.57079, cond $\approx 2.48275 \times 10^5$

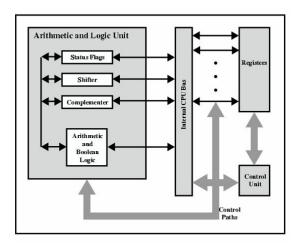
Stability

- an algorithm is stable if is relatively insensitive to perturbations during computation
- stability of algorithms is analogous to conditioning of problems
- backward analysis: an algorithm is stable if the result produced is the exact solution of a nearby problem
- stable algorithm: the effect of computational error is no worse than the effect of small error in input data

- accuracy closeness of the result to the true solution of the problem
- depends on the conditioning of the problem AND on the stability of the algorithm
- stable algorithm + well-conditioned problem = accurate results

CPUs





Number representation

- internally, all data are represented in binary format (each digit can be either 0 or 1, e.g. 1011001...)
- bit, nybble, byte
- word \rightarrow specific to architecture: 1, 2, 4, or 8 bytes
- integers:
 - unsigned (≥ 0): on *n* bits: 0,..., 2^{*n*} 1. The stored representation (for 1 byte) is $b_7b_6b_5b_4b_3b_2b_1b_0$ for a value $x = \sum_{i=0}^{7} b_i 2^i$.
 - signed: 1 bit for sign, rest for the absolute value; $-2^{n-1}, \ldots, 0, \ldots, 2^{n-1} - 1$. The stored representation (for 1 byte) is $b_7b_6b_5b_4b_3b_2b_1b_0$ for a value $x = b_7(-2^7) + \sum_{i=0}^6 b_i 2^i$.

Floating-point numbers

- like in scientific notation: mantissa \times radix^{exponent}, e.g. 2.35×10^3
- formally

$$x = \pm \left(b_0 + \frac{b_1}{\beta} + \frac{b_2}{\beta^2} + \dots + \frac{b_{p-1}}{\beta^{p-1}} \right) \times \beta^E$$

where

 β is the radix (or base)

p is the precision

 $L \leq E \leq U$ are the limits of the exponent

$$0 \leq b_k \leq \beta$$

- mantissa: $m = b_0 b_1 \dots b_{p-1}$; fraction: $b_1 b_2 \dots b_{p-1}$
- the sign, mantissa and exponent are stored in fixed-sized fields (the radix is implicit for a given system, β = 2 usually)

Normalization:

- $b_0 \neq 0$ for all $x \neq 0$
- mantissa *m* satisfies $1 \le m < \beta$

• ensures unique representation, optimal use of available bits Internal representation (on 64 bits - "double precision", binary representation):

$$x =$$
sign | exponent | fraction $= b_{63} | b_{62} \dots b_{52} | b_{51} \dots b_{0}$

Properties:

- only a finite number of discrete values can be represented
- total number of floating point numbers representable in normalized format is

$$2(\beta - 1)\beta^{p-1}(U - L + 1) + 1$$

(Q: can you justify the result?)

- undeflow level (smallest number): $UFL = \beta^L$
- overflow level (largest number): $OFL = \beta^{U+1}(1 \beta^{-p})$
- not all real numbers can be represented exactly:
 - machine numbers
 - rounding \rightarrow rounding error

Example: let $\beta = 2, p = 3, L = -1, U = 1$, there are 25 distinct numbers that can be represented:

- $UFL = 0.5_{10}$; $OFL = 3.5_{10}$
- note the non-uniform coverage
- ∀x ∈ ℝ, fl(x) is the floating point representation; x − fl(x) is the rounding error

Rounding rules

- *chop* = round toward zero: truncate the base $-\beta$ representation after p 1 st digit
- round to nearest: fl(x) is the closest machine number to x

Machine precision

• machine precision, ϵ_{mach}

- with chopping: $\epsilon_{mach} = \beta^{1-p}$
- with rounding to nearest: $\epsilon_{mach} = \frac{1}{2}\beta^{1-p}$
- called also *unit roundoff*: the smallest number ϵ such that $fl(1 + \epsilon) > 1$
- maximum relative error of representation

$$\left|\frac{fl(x)-x}{x}\right| \leq \epsilon_{\rm mach}$$

• usually 0 < UFL < ϵ_{mach} < OFL

Machine precision - example

For
$$\beta = 2, p = 3, L = -1, U = 1$$
,

• $\epsilon_{mach} = (0.01)_2 = (0.25)_{10}$ with chopping

• $\epsilon_{mach} = (0.001)_2 = (0.125)_{10}$ with rounding to nearest

The usual case (IEEE fp systems):

- $\epsilon_{mach} = 2^{-24} \approx 10^{-7}$ in single precision
- $\epsilon_{mach} = 2^{-53} \approx 10^{-16}$ in double precision
- $\bullet \rightarrow$ about 7 and 16 decimals of precision, respectively
- (in R: p-value < 2.2*e* 16)

Gradual underflow

- to improve representation of numbers around 0 use subnormal (or denormalized) numbers
- when exponent is at minimum, alow leading digits to be 0
- subnormals are less precise
- $\bullet \ \rightarrow \text{gradual underflow}$

Special values

IEEE standard:

- Inf: infinity; the result of 1/0
- NaN: the result of 0/0 or Inf/Inf
- special representation of the exponent field

Floating-point arithmetic

- addition/subtraction: denormalization might be required: $3.52 \times 10^3 + 1.97 \times 10^5 = 0.0352 \times 10^5 + 1.97 \times 10^5 = 2.0052 \times 10^5 \rightarrow$ might cause loss of some digits
- multiplication/division: the result may not be representable
- overflow is more serious than underflow: how to approximate large numbers?
- for underflow, the result may be approximated by 0
- in FP arithm. addition and multiplication are commutative but *not* associative: if ϵ is slightly smaller than ϵ_{mach} , then $(1 + \epsilon) + \epsilon = 1$, but $1 + (\epsilon + \epsilon) > 1$
- ideally, x flop y = fl(xopy); IEEE standard ensures this for within range results

Example: divergent series

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

- in FP arithm, the sum of the series is finite;
- depending on the system, this is because:
 - after a while, the sum overflows
 - 1/n underflows
 - for all n such that

$$\frac{1}{n} < \epsilon_{\text{mach}} \sum_{k=1}^{n-1} \frac{1}{k}$$

the sum does not change anymore

Cancellation

- subtracting 2 numbers of the same magnitude usually cancels the *most significant* digits: $1.92403 \times 10^2 - 1.92275 \times 10^2 = 1.28000 \times 10^{-1} \rightarrow \text{only 3}$ significant digits
- let ε > 0 be slightly smaller than ε_{mach}, then (1 + ε) − (1 − ε) yields 0 in FP arithmetic, instead of 2ε.

Cancellation - example

For the quadratic equation, $ax^2 + bx + c = 0$, the two solutions are given by

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Problems:

- for very large/small coefficients, the terms b² or 4ac may over-/underflow → rescale coeficients by max{a, b, c}.
- cancellation between -b and $\sqrt{}$ can be avoided by computing one root using $x = \frac{2c}{-b \pm \sqrt{b^2 4ac}}$

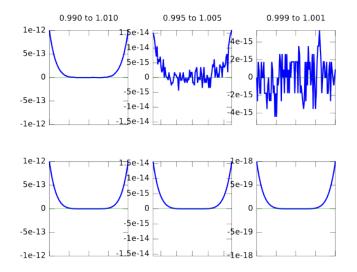
Exercise: let $x_1 = 2000$, $x_2 = 0.05$ be the roots of a quadratic equation. Compute the coefficients and then use the above formulas to retrieve the roots. Try roots() function in MATLAB.

Cancellation - another example

 $P(X) = (X - 1)^6 = X^6 - 6X^5 + 15X^4 - 20X^3 + 15X^2 - 6X + 1.$ What happens around X = 1?

```
1 \text{ epsilon} = [.01, .005, .001];
2 for k=1:3
3
     x = \text{linspace}(1-\text{epsilon}(k), 1+\text{epsilon}(k), 100);
     px = x.^{6} - 6*x.^{5} + 15*x.^{4} - 20*x.^{3} + 15*x.^{2}
4
         - 6 \times x + 1;
     px0 = (x - 1).^{6};
5
     subplot(2, 3, k);
6
     plot(x, px, '-b', x, zeros(1,100), '-r');
7
     axis([1-epsilon(k), 1+epsilon(k), -max(abs(px)), ...
8
         max(abs(px))]);
     subplot(2, 3, k+3);
9
     plot(x, px0, '-b', x, zeros(1, 100), '-r');
10
     axis([1-epsilon(k), 1+epsilon(k), -max(abs(px0)), ...
11
         max(abs(px0))]);
12 end
```

...mathematically equivalent, but numerically different...



HOMEWORK

Let $\mathbf{x} = [a, b] \in \mathbb{R}^2$ and let *p* be its Euclidean norm, $p = \sqrt{a^2 + b^2}$. However, using this formula is prone to under- and over-flow errors.

- show that $\min\{|a|, |b|\} \le p \le \sqrt{2} \max\{|a|, |b|\}$
- implement in MATLAB a procedure that would avoid unnecessary under-/over-flows Hint: $p = c \sqrt{(a/c)^2 + (b/c)^2}$. Find a suitable *c*...

In Matlab...

- you can change the format of FP in output using format option
- ϵ_{mach} is returned by the function <code>eps()</code>:
 - single precision: eps(single(1)) gives $1.1921e 07 = 2^{-23}$
 - double precision: eps(double(1)) gives $2.2204e 16 = 2^{-52}$
- to obtain the smallest or largest single/double precision numbers, use realmin('single'), realmin('double'), realmax('single'), realmax('double')
- you have the special constants Inf and NaN

