Bi7740: Scientific computing

Non-square linear systems

Vlad Popovici
popovici@iba.muni.cz

Institute of Biostatistics and Analyses
Masaryk University, Brno

Outline

(1) Non-square systems

- The underdetermined case
- The overdetermined case

2. Numerical methods for LS problem

- Orthogonal transformations
- Singular Value Decomposition
- Total least squares
(3) Comparison of various decompositions

Outline

(1) Non-square systems

- The underdetermined case
- The overdetermined case

2 Numerical methods for LS problem

- Orthogonal transformations
- Singular Value Decomposition
- Total least squares
(3) Comparison of various decompositions

The systems of linear equations

General form:

$$
\begin{gathered}
\mathbf{A x}=\mathbf{b} \\
{\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
& \ddots & \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right]}
\end{gathered}
$$

- if $m<n$: underdetermined case; find a minimum-norm solution
- if $m>n$: overdetermined case; minimize the squared error
- if $m=n$: determined case; already discussed

Reminder

- two vectors \mathbf{y}, \mathbf{z} are orthogonal if $\mathbf{y}^{\top} \mathbf{z}=0$
- the span of a set of n independent vectors is $\operatorname{span}\left(\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}\right)=\left\{\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i} \mid \alpha_{i} \in \mathbb{R}\right\}$
- the row (column) space of a matrix \mathbf{A} is the linear subspace generated (or spanned) by the rows (colums) of \mathbf{A}. Its dimension is equal to $\operatorname{rank}(\mathbf{A}) \leq \min (m, n)$.
- by definition, $\operatorname{span}(\mathbf{A})$ is the column space of \mathbf{A} and can be written as

$$
C(\mathbf{A})=\left\{\mathbf{v} \in \mathbb{R}^{m}: \mathbf{v}=\mathbf{A} \mathbf{x}, \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

so it is the space of transformed vectors by the action of multiplication by the matrix.

Outline

Non-square systems

- The underdetermined case
- The overdetermined case

Numerical methods for LS problem

- Orthogonal transformations
- Singular Value Decomposition
- Total least squares

3 Comparison of various decompositions

Underdetermined case

- $m<n$ there are more variables than equations, hence the solution is not unique
- consider the rows to be linearly independent
- then, any n-dimensional vector $\mathbf{x} \in \mathbb{R}^{n}$ can be decomposed into

$$
\mathbf{x}=\mathbf{x}^{+}+\mathbf{x}^{-}
$$

where \mathbf{x}^{+}is in the row space of \mathbf{A} and \mathbf{x}^{-}is in the null space of \mathbf{A} (orthogonal to the previous space):

$$
\mathbf{x}^{+}=\mathbf{A}^{T} \alpha \quad \mathbf{A x}^{-}=0
$$

- this leads to

$$
\mathbf{A}\left(\mathbf{x}^{+}+\mathbf{x}^{-}\right)=\mathbf{A A}^{T} \alpha+\mathbf{A} \mathbf{x}^{-}=\mathbf{A} \mathbf{A}^{T} \alpha=\mathbf{b}
$$

- $\mathbf{A} \mathbf{A}^{T}$ is a $m \times m$ nonsingular matrix, so $\mathbf{A} \mathbf{A}^{T} \alpha=\mathbf{b}$ has a unique solution $\alpha_{0}=\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1} \mathbf{b}$
- the corresponding minimal norm solution to original system is

$$
\mathbf{x}_{0}^{+}=\mathbf{A}^{T}\left(\mathbf{A A}^{T}\right)^{-1} \mathbf{b}
$$

- note, however, that the orthogonal component \mathbf{x}^{-}remains unspecified
- the matrix $\mathbf{A}^{T}\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1}$ is called the right pseudo-inverse of \mathbf{A} (right: $\mathbf{A} \cdot \mathbf{A}^{\top}\left(\mathbf{A A}^{T}\right)^{-1}=\mathbf{I}$)
- Matlab: pinv ()

Example: let $\mathbf{A}=\left[\begin{array}{ll}1 & 2\end{array}\right]$ and $\mathbf{b}=[3]$ (hence $m=1$).

- solution space:

$$
x_{2}=-\frac{1}{2} x_{1}+\frac{3}{2}
$$

is a solution, for any $x_{1} \in \mathbb{R}$.

- $\mathbf{x}^{+}=\mathbf{A}^{T} \alpha=\left[\begin{array}{l}1 \\ 2\end{array}\right] \alpha$ (row space)
- $\mathbf{A x}^{-}=0 \Rightarrow\left[\begin{array}{ll}12\end{array}\right]\left[\begin{array}{ll}x_{1}^{-} & x_{2}^{-}\end{array}\right]^{T}=0$.
$\Rightarrow x_{2}^{-}=-\frac{1}{2} x_{1}^{-}$(null space)
The minimal norm solution is the intersection of solution space with the row space and is the closest vector to the origin, among all vectors in the solution space:

$$
\mathbf{x}_{0}^{+}=\left[\begin{array}{ll}
0.6 & 1.2
\end{array}\right]^{T}
$$

Outline

(1) Non-square systems

- The underdetermined case
- The overdetermined case
(2) Numerical methods for LS problem
- Orthogonal transformations
- Singular Value Decomposition
- Total least squares
(3) Comparison of various decompositions

Overdetermined case

- if the rows of \mathbf{A} are independent, there is no perfect solution to the system (b $\notin \operatorname{span}(\mathbf{A})$)
- one needs some other criterion to call a solution acceptable
- least squares solution \mathbf{x}_{0} minimizes the square Euclidean norm of the residual vector:

$$
\mathbf{x}_{0}=\arg \min _{\mathbf{x}}\|\mathbf{r}\|_{2}^{2}=\arg \min _{\mathbf{x}}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}
$$

Solution to the LS problem

From a linear system problem, we arrived at solving an optimization problem with objective function

$$
J=\frac{1}{2}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}=\frac{1}{2}(\mathbf{b}-\mathbf{A} \mathbf{x})^{T}(\mathbf{b}-\mathbf{A} \mathbf{x})
$$

Set the derivative wrt \mathbf{x} to zero:

$$
\frac{\partial}{\partial \mathbf{x}} J=\mathbf{A}^{T} \mathbf{b}-\mathbf{A}^{T} \mathbf{A} \mathbf{x}=0
$$

which leads to normal equations $\mathbf{A}^{\top} \mathbf{A} \mathbf{x}=\mathbf{A}^{\top} \mathbf{b}$, with the solution

$$
\mathbf{x}_{0}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \mathbf{b}
$$

$\mathbf{A}^{\dagger}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top}$ is the left pseudo-inverse of \mathbf{A}.

Solution to the LS problem - geometric interpretation

- let $\mathbf{y}=\mathbf{A x}$, where \mathbf{x} is the LS solution
- the residual $\mathbf{r}=\mathbf{b}-\mathbf{y}$ is orthogonal to $\operatorname{span}(\mathbf{A})$,

LS data approximation

Model: $y=c_{3} x^{2}-c_{2} x+c_{1}$. Problem: $c_{i}=$? when $\left(x_{i}, y_{i}\right)$ are given.

```
1 x = linspace (-2, 2, 100);
2 y = 2 * x.^2 - x + 3; % known model
3yn=y + 2* (rand (1, 100) - 0.5); % add some noise
4
5 A = [ones (100,1), x', x'.^2]; % Vandermonde matrix
6 coef = pinv(A) * y'; % solution, no noise in y
7 coefn = pinv(A) * yn'; % solution, uniform noise in y
8
9 hold on;
10 plot(x, yn, 'b.');
11 plot(x, coef(1) + coef(2) . * x + coef(3) .* x.^2, 'k-');
12 plot(x, coefn(1) + coefn(2) . * x + coefn(3) .* x.^2, ...
        'r-');
13 hold off;
```


Condition number

- if $\operatorname{rank}(\mathbf{A})=n$ (columns are independent), the condition number is

$$
\operatorname{cond}(\mathbf{A})=\|\mathbf{A}\|_{2}\left\|\mathbf{A}^{\dagger}\right\|_{2}
$$

- by convention, if $\operatorname{rank}(\mathbf{A})<n, \operatorname{cond}(\mathbf{A})=\infty$
- for non-square matrices, the condition number measures the closeness to rank deficiency

Outline

(1) Non-square systems

- The underdetermined case
- The overdetermined case

2 Numerical methods for LS problem

- Orthogonal transformations
- Singular Value Decomposition
- Total least squares
(3) Comparison of various decompositions

Numerical methods for LS problem

- the LS solution can be obtained using the pseudo-inverse $\mathbf{A}^{\dagger}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top}$ or by solving the normal equations

$$
\mathbf{A}^{T} \mathbf{A} \mathbf{x}=\mathbf{A}^{T} \mathbf{b}
$$

which is a system of n equations

- $\mathbf{A}^{T} \mathbf{A}$ is symmetric positive definite, so it admits a Cholesky decomposition,

$$
\mathbf{A}^{T} \mathbf{A}=\mathbf{L L}^{T}
$$

Issues with normal equations method

- floating-point computations in $\mathbf{A}^{T} \mathbf{A}$ and $\mathbf{A}^{T} \mathbf{b}$ may lead to information loss
- sensitivity of the solution is worsen, since $\operatorname{cond}\left(\mathbf{A}^{\top} \mathbf{A}\right)=[\operatorname{cond}(\mathbf{A})]^{2}$

Example:
Let $\mathbf{A}=\left[\begin{array}{ll}1 & 1 \\ \epsilon & 0 \\ 0 & \epsilon\end{array}\right]$ with $\epsilon \in \mathbb{R}_{+}$and $\epsilon<\sqrt{\epsilon_{\text {mach }}}$. Then, in floating-point
arithmetic, $\mathbf{A}^{T} \mathbf{A}=\left[\begin{array}{cc}1+\epsilon^{2} & 1 \\ 1 & 1+\epsilon^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ which is singular!

Augmented systems

- idea: find the solution and the residual as a solution of an extended system, under the orthogonality requirement
- the new system is

$$
\left[\begin{array}{cc}
\mathbf{1} & \mathbf{A} \\
\mathbf{A}^{T} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{r} \\
\mathbf{x}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{b} \\
\mathbf{0}
\end{array}\right]
$$

- despite requiring more storage and not being positive definite, it allows more freedom in choosing pivots for LU decomposition
- in some cases it is useful, but not much used in practice

Outline

Non-square systems
 - The underdetermined case
 - The overdetermined case

(2) Numerical methods for LS problem

- Orthogonal transformations
- Singular Value Decomposition
- Total least squares

(3) Comparison of various decompositions

Orthogonal transformations

- a matrix \mathbf{Q} is orthogonal if $\mathbf{Q}^{\top} \mathbf{Q}=\mathbf{I}$
- multiplication of a vector by an orthogonal matrix does not change its Euclidean norm:

$$
\|\mathbf{Q} \mathbf{v}\|_{2}^{2}=(\mathbf{Q} \mathbf{v})^{\top} \mathbf{Q} \mathbf{v}=\mathbf{v}^{\top} \mathbf{Q}^{\top} \mathbf{Q} \mathbf{v}=\mathbf{v}^{\top} \mathbf{v}=\|\mathbf{v}\|_{2}^{2}
$$

- so, multiplying the two sides of the system by \mathbf{Q} does not change the solution
- again: try to transform the system so it's easy to solve e.g. triangular system
- an upper triangular overdetermined $(m>n)$ LS problem has the form

$$
\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{0}
\end{array}\right] \mathbf{x} \approx\left[\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2}
\end{array}\right]
$$

where \mathbf{R} is an $n \times n$ upper triangular matrix and \mathbf{b} is partitioned accordingly

- the residual becomes

$$
\|\mathbf{r}\|_{2}^{2}=\left\|\mathbf{b}_{1}-\mathbf{R x}\right\|_{2}^{2}+\left\|\mathbf{b}_{2}\right\|_{2}^{2}
$$

- to minimize the residual, one has to minimize $\left\|\mathbf{b}_{1}-\mathbf{R x}\right\|_{2}^{2}$ (since $\left\|\mathbf{b}_{2}\right\|_{2}^{2}$ is fixed) and this leads to the system

$$
\mathbf{R x}=\mathbf{b}_{1}
$$

which can be solved by back-substitution

- the residual becomes $\|\mathbf{r}\|_{2}^{2}=\left\|\mathbf{b}_{2}\right\|_{2}^{2}$ and \mathbf{x} is the LS solution

QR factorization

- problem: find an $m \times m$ orthogonal matrix \mathbf{Q} such that an $m \times n$ matrix \mathbf{A} can be written as

$$
\mathbf{A}=\mathbf{Q}\left[\begin{array}{c}
R \\
0
\end{array}\right]
$$

where \mathbf{R} is $n \times n$ upper triangular

- the new problem to solve is

$$
\mathbf{Q}^{T} \mathbf{A} \mathbf{x}=\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{0}
\end{array}\right] \mathbf{x} \approx\left[\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2}
\end{array}\right]=\mathbf{Q}^{T} \mathbf{b}
$$

- if \mathbf{Q} is partitioned as $\mathbf{Q}=\left[\mathbf{Q}_{1} \mathbf{Q}_{2}\right]$ with \mathbf{Q}_{1} having n columns, then

$$
\mathbf{A}=\mathbf{Q}\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{0}
\end{array}\right]=\mathbf{Q}_{1} \mathbf{R}
$$

is called reduced QR factorization of \mathbf{A} (Matlab:

$$
[Q, R]=\operatorname{qr}(A, 0))
$$

- columns of \mathbf{Q}_{1} form an orthonormal basis of $\operatorname{span}(\mathbf{A})$, and the columns of \mathbf{Q}_{2} forn an orthonormal basis of $\operatorname{span}(\mathbf{A})^{\perp}$
- $\mathbf{Q}_{1} \mathbf{Q}_{1}^{T}$ is orthogonal projector onto $\operatorname{span}(\mathbf{A})$
- the solution to the initial problem is given by the solution to the square system

$$
\mathbf{Q}_{1}^{\top} \mathbf{A} \mathbf{x}=\mathbf{Q}_{1}^{\top} \mathbf{b}
$$

QR factorization - Remember:

In general, for an $m \times n$ matrix A, with $m>n$, the factorization is

$$
\mathbf{A}=\mathbf{Q} \mathbf{R}
$$

and

- \mathbf{Q} is an orthogonal matrix: $\mathbf{Q}^{\top} \mathbf{Q}=\mathbf{I} \Leftrightarrow \mathbf{Q}^{-1}=\mathbf{Q}^{\top}$
- \mathbf{R} is an upper triangular matrix
- solving the normal equations (for LS solution) $\mathbf{A}^{T} \mathbf{A} \mathbf{x}=\mathbf{A}^{T} \mathbf{b}$ comes to solving

$$
\mathbf{R x}=\mathbf{Q}^{\top} \mathbf{b}
$$

HOMEWORK: prove the above statement.

Example

```
\(1 A=[3-6 ; 4-8 ; 01] ;\)
\(2 \mathrm{~b}=\left[\begin{array}{lll}-1 & 7 & 2\end{array}\right]^{\prime}\);
\(3[Q 1, R]=\operatorname{qr}(A, 0)\)
\(4 \mathrm{~d}=\mathrm{Q} 1 * \mathrm{~b}\);
5 bksolve(R, d) \% remember back-subsitution method
6
7 \% equivalent (linear regression!):
8 regress (b, A)
```


A statistical perspective

Changing a bit the notation, the linear model is

$$
E[\mathbf{y}]=\mathbf{x} \beta, \quad \operatorname{Cov}(y)=\sigma^{2} \mid
$$

It can be shown that the best linear unbiased estimator is

$$
\hat{\beta}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}=\mathbf{R}^{-1} \mathbf{Q}^{\top} \mathbf{y}
$$

for a decomposition $\mathbf{X}=\mathbf{Q R}$. Then $\hat{\mathbf{y}}=\mathbf{Q Q}^{\top} \mathbf{y}$. (Gauss-Markov thm.: LS estimator has the lowest variance among all unbiased linear estimators.) Also,

$$
\operatorname{Var}(\hat{\beta})=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \sigma^{2}=\left(\mathbf{R}^{T} \mathbf{R}\right)^{-1} \sigma^{2}
$$

where $\sigma^{2}=\|\mathbf{y}-\hat{\mathbf{y}}\|^{2} /(m-n-1)$.

Computing the QR factorization

- similarly to LU factorization, we nullify entries under the diagonal, column by column
- now, use orthogonal transformations:
- Householder transformations
- Givens rotations
- Gram-Schmidt orthogonalization
- Matlab:qr ()

Householder transformations

$$
\mathbf{H}=\mathbf{I}-2 \frac{\mathbf{v} \mathbf{v}^{\top}}{\mathbf{v}^{\top} \mathbf{v}}, \quad \mathbf{v} \neq 0
$$

- \mathbf{H} is orthogonal and symmetric: $\mathbf{H}=\mathbf{H}^{T}=\mathbf{H}^{-1}$
- \mathbf{v} are chosen such that for a vector \mathbf{a} :

$$
\mathbf{H a}=\left[\begin{array}{c}
\alpha \\
0 \\
\vdots \\
0
\end{array}\right]=\alpha\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]=\alpha \mathbf{e}_{1}
$$

- this leads to $\mathbf{v}=\mathbf{a}-\alpha \mathbf{e}_{1}$ with $\alpha= \pm\|\mathbf{a}\|_{2}$, where the sign is chosen to avoid cancellation

Householder QR factorization

- apply, the Householder transformation to nuliffy the entries below diagonal
- the process is applied to each column (of the n) and produces a transformation of the form

$$
\mathbf{H}_{n} \ldots \mathbf{H}_{1} \mathbf{A}=\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{0}
\end{array}\right]
$$

where \mathbf{R} is $n \times n$ upper triangular

- then take $\mathbf{Q}=\mathbf{H}_{1} \ldots \mathbf{H}_{n}$
- note that the multiplication of \mathbf{H} with a vector \mathbf{u} is much cheaper than a general matrix-vector multiplication:

$$
\mathbf{H u}=\left(\mathbf{l}-2 \frac{\mathbf{v} \mathbf{v}^{\top}}{\mathbf{v}^{\top} \mathbf{v}}\right) \mathbf{u}=\mathbf{u}-2 \frac{\mathbf{v}^{\top} \mathbf{u}}{\mathbf{v}^{\top} \mathbf{v}} \mathbf{v}
$$

Gram-Schmidt orthogonalization

- idea: given two vectors \mathbf{a}_{1} and \mathbf{a}_{2}, we seek orthonormal vectors \mathbf{q}_{1} and \mathbf{q}_{2} having the same span

- method: subtract from \mathbf{a}_{2} its projection on \mathbf{a}_{1} and normalize the resulting vectors
- apply this method to each column of \mathbf{A} to obtain the classical Gram-Schmidt procedure

Algorithm: Classical Gram-Schmidt

for $k=1$ to n do
$\mathbf{q}_{k} \leftarrow \mathbf{a}_{k} ;$ for $j=1$ to $k-1$ do
$r_{j k} \leftarrow \mathbf{q}_{j}^{\top} \mathbf{a}_{k} ;$
$\mathbf{q}_{k} \leftarrow \mathbf{q}_{k}-r_{j k} \mathbf{q}_{j} ;$
end for
$r_{k k} \leftarrow\left\|\mathbf{q}_{k}\right\|_{2} ;$
$\mathbf{q}_{k} \leftarrow \mathbf{q}_{k} / r_{k k} ;$
end for
The resulting matrices \mathbf{Q} (with \mathbf{q}_{k} as columns) and \mathbf{R} (with elements $r_{j k}$) form the reduced QR factorization of \mathbf{A}.

Modified Gram-Schmidt procedure

- improved orthogonality in finite-precision
- reduced storage requirements
- HOMEWORK: implement the procedure below in Matlab

Algorithm: Modified Gram-Schmidt

$$
\text { for } k=1 \text { to } n \text { do }
$$

$r_{k k} \leftarrow\left\|\mathbf{a}_{k}\right\|_{2} ;$
$\mathbf{q}_{k} \leftarrow \mathbf{a}_{k} / r_{k k} ;$
for $j=k+1$ to n do
$r_{j k} \leftarrow \mathbf{q}_{k}^{T} \mathbf{a}_{j} ;$
$\mathbf{a}_{j} \leftarrow \mathbf{a}_{j}-r_{k j} \mathbf{q}_{k} ;$
end for
end for

Further topics on QR factorization

- if $\operatorname{rank}(\mathbf{A})<n$ then \mathbf{R} is singular and there are multiple solutions \mathbf{x}; choose the \mathbf{x} with the smallest norm
- in limited precision, the rank can be lower than the theoretical one, leading to highly sensitive solutions \rightarrow an alternative could be the SVD method (later)
- there exists a version, QR with pivoting, that chooses everytime the column with largest Euclidean norm for reduction \rightarrow improves stability in rank deficient scenarios
- another method of factorization: Givens rotations - makes one 0 at a time

Outline

Non-square systems

- The underdetermined case
- The overdetermined case

2. Numerical methods for LS problem

- Orthogonal transformations
- Singular Value Decomposition
- Total least squares
(3) Comparison of various decompositions

Singular Value Decomposition - SVD

- SVD of an $m \times n$ matrix \mathbf{A} has the form

$$
\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{T}
$$

where \mathbf{U} is $m \times m$ orthogonal matrix, \mathbf{V} is $n \times n$ orthogonal matrix, and Σ is $m \times n$ diagonal matrix, with

$$
\sigma_{i i}= \begin{cases}0 & \text { if } i \neq j \\ \sigma_{i} \geq 0 & \text { if } i=j\end{cases}
$$

- σ_{i} are usually ordered such that $\sigma_{1} \geq \cdots \geq \sigma_{n}$ and are called singular values of \mathbf{A}
- the columns \mathbf{u}_{i} and \mathbf{v}_{i} are called left and right singular vectors of \mathbf{A}, respectively
- minimum norm solution to $\mathbf{A x} \approx \mathbf{b}$ is

$$
\mathbf{x}=\sum_{\sigma_{i} \neq 0} \frac{\mathbf{u}_{i}^{\top} \mathbf{b}}{\sigma_{i}} \mathbf{v}_{i}
$$

- for ill-conditioned or rank-deficient problems, the sum should be taken over "large enough" σ 's: $\sum_{\sigma_{i} \geq \epsilon} \cdots$
- Euclidean norm: $\|\mathbf{A}\|_{2}=\max _{i}\left\{\sigma_{i}\right\}$
- Euclidean condition number: $\operatorname{cond}(\mathbf{A})=\frac{\max _{i}\left\{\sigma_{i}\right\}}{\min _{i}\left\{\sigma_{i}\right\}}$
- Rank of $\mathbf{A}: \operatorname{rank}(\mathbf{A})=\#\left\{\sigma_{i}>0\right\}$

Pseudoinverse (again)

- the pseudoinverse of an $m \times n$ matrix \mathbf{A} with SVD decomposition $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{T}$ is

$$
\mathbf{A}^{+}=\mathbf{V} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{T}
$$

where

$$
\left[\Sigma^{-1}\right]_{i i}= \begin{cases}1 / \sigma_{i} & \text { for } \sigma_{i}>0 \\ 0 & \text { otherwise }\end{cases}
$$

- pseudoinverse always exists and minimum norm solution to $\mathbf{A x} \approx \mathbf{b}$ is $\mathbf{x}=\mathbf{A}^{+} \mathbf{b}$
- if \mathbf{A} is square and nonsingular, $\mathbf{A}^{-1}=\mathbf{A}^{+}$

SVD and subspaces relevant to A

- \mathbf{u}_{i} for which $\sigma_{i}>0$ form the orthonormal basis of $\operatorname{span}(\mathbf{A})$
- \mathbf{u}_{i} for which $\sigma_{i}=0$ form the orthonormal basis of the orthogonal complement of $\operatorname{span}(\mathbf{A})$
- \mathbf{v}_{i} for which $\sigma_{i}=0$ form the orthonormal basis of the null space of A
- \mathbf{v}_{i} for which $\sigma_{i}>0$ form the orthonormal basis of the orthogonal complement of the null space of \mathbf{A}

SVD and matrix approximation

- A can be re-written as

$$
\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{T}=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\cdots+\sigma_{n} \mathbf{u}_{n} \mathbf{v}_{n}^{T}
$$

- let $\mathbf{E}_{i}=\mathbf{u}_{i} \mathbf{v}_{i}^{T}$; \mathbf{E}_{i} has rank 1 and requires only $m+n$ storage locations
- $\mathbf{E}_{i} \mathbf{x}$ multiplication requires only $m+n$ multiplications
- assuming $\sigma_{1} \geq \sigma_{2} \geq \ldots \sigma_{n}$ then by using the largest k singular values, one obtains the closes approximation of \mathbf{A} of rank k :

$$
\mathbf{A} \approx \sum_{i=1}^{k} \sigma_{i} \mathbf{E}_{i}
$$

- many applications to image processing, data compression, cryptography, etc.

Example - image compression

Matlab: [U, S, V] = svd (X)
Original image and its approximations using 1,2,3,4,5 and 10 terms:

Example - image compression

Matlab: [U, S, V] $=\operatorname{svd}(\mathrm{X})$
Original image and its approximations using 1,2,3,4,5 and 10 terms:

Example - image compression

Matlab: [U, S, V] $=\operatorname{svd}(\mathrm{X})$
Original image and its approximations using 1,2,3,4,5 and 10 terms:

Example - image compression

Matlab: [U, S, V] $=\operatorname{svd}(\mathrm{X})$
Original image and its approximations using 1,2,3,4,5 and 10 terms:

Example - image compression

Matlab: [U, S, V] = svd (X)
Original image and its approximations using 1,2,3,4,5 and 10 terms:

Example - image compression

Matlab: [U, S,V] = svd(X)
Original image and its approximations using 1,2,3,4,5 and 10 terms:

Example - image compression

Matlab: [U, S, V] = svd (X)
Original image and its approximations using 1,2,3,4,5 and 10 terms:


```
\(1 \mathrm{X}=\) imread('face01.png');
\(2 X=\) double (X) . / 255.0;
3
\(4[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{X})\);
5
6 imshow (U(:,1) * \(\left.S(1,1) \star V(:, 1)^{\prime}\right) ;\)
7 imshow(U(:,1:5)* \(S(1: 5,1: 5) * V(:, 1: 5) ') ;\)
8 imshow(U(:,1:10)* S(1:10, 1:10) * V(:,1:10)');
```


Outline

Non-square systems

- The underdeterminec case
- The overdetermined case

2 Numerical methods for LS problem

- Orthogonal transformations
- Singular Value Decomposition
- Total least squares
(3) Comparison of various decompositions

Total least squares

$A x \approx b$

- ordinary least squares applies when the error affects only \mathbf{b}
- what if there is error (uncertainty) in \mathbf{A} as well?
- total least squares minimizes the orthogonal distances, rather than vertical distances, between model and data

- can be computed using SVD of [A, b]

Outline

Non-square systems

- The underdetermined case
- The overdetermined case

Numerical methods for LS problem

- Orthogonal transformations
- Singular Value Decomposition
- Total least squares

3 Comparison of various decompositions

Comparison: work effort

- computing $\mathbf{A}^{T} \mathbf{A}$ requires about $n^{2} m / 2$ multiplications and solving the resulting symmetric system, about $n^{3} / 6$ multiplications
- LS problem solution by Householder QR requires about $m n^{2}-n^{3} / 3$ multiplications
- if $m \gg n$, Householder method requires about twice as much work normal eqs.
- cost of SVD is $\approx(4 \ldots 10) \times\left(m n^{2}+n^{3}\right)$ depending on implementation

Comparison: precision

- relative error for normal eqs. is $\sim[\operatorname{cond}(\mathbf{A})]^{2}$; if $\operatorname{cond}(\mathbf{A}) \approx 1 / \sqrt{\epsilon_{\text {mach }}}$, Cholesky factorization will break
- Householder method has a relative error

$$
\sim \operatorname{cond}(\mathbf{A})+\|\mathbf{r}\|_{2}[\operatorname{cond}(\mathbf{A})]^{2}
$$

which is the best achievable for LS problems

- Householder method breaks (in back-substitution step) for $\operatorname{cond}(\mathbf{A}) \lesssim 1 / \epsilon_{\text {mach }}$
- while Householder method is more general and more accurate than normal equations, it may not always be worth the additional cost

Comparison: precision, cont'd

- for (nearly) rank-deficient problems, the pivoting Householder method produces useful solution, while normal equations method fails
- SVD is more precise and more robust than Householder method, but much more expensive computationally

