Bi7740: Scientific computing Root finding

Vlad Popovici popovici@iba.muni.cz

Institute of Biostatistics and Analyses Masaryk University, Brno

Outline

Systems of nonlinear equations

Nonlinear equations

- *scalar problem*: $f : \mathbb{R} \to \mathbb{R}$, find $x \in \mathbb{R}$ such that f(x) = 0
- vectorial problem: $f : \mathbb{R}^n \to \mathbb{R}^n$, fing $\mathbf{x} \in \mathbb{R}^n$ such that $f(\mathbf{x}) = \mathbf{0}$
- in any case, here we consider *f* to be continuously differentiable everywhere in the neighborhood of the solution
- an interval [a, b] is a bracket for the function f if f(a)f(b) < 0
- f continuous $\rightarrow f([a, b])$ is an interval
- Bolzano's thm.: if [a, b] is a bracket for *f* than there exists at least one x^{*} ∈ [a, b] s.t. f(x^{*}) = 0
- if $f(x^*) = f'(x^*) = \cdots = f^{(m-1)}(x^*) = 0$ but $f^{(m)} \neq 0$ then x^* has multiplicity m
- note: in \mathbb{R}^n things are much more complicated

Conditioning

- absolute condition number is for a scalar problem $1/|f'(x^*)|$
- a multiple is ill-conditioned
- absolute condition number for a vectorial problem is $\|\mathbf{J}_{f}^{-1}(\mathbf{x}^{*})\|$, where \mathbf{J}_{f} is the Jacobian matrix of f,

$$[\mathbf{J}_f(\mathbf{x})]_{ij} = \frac{\partial f_i(\mathbf{x})}{\partial x_j}$$

• if the Jacobian is nearly singular, the problem is ill-conditioned

Sensitivity and conditioning

- possible interpretations of the approximate solution:
 - $||f(\hat{\mathbf{x}}) f(\mathbf{x}^*)|| \le \epsilon$: small residual
 - $\|\hat{\mathbf{x}} \mathbf{x}^*\| \le \epsilon$ closeness to the true solution
- the two criteria might not be satistfied simultaneously
- if the problem is well-conditioned: small residual implies accurate solution

Convergence rate

- usually, the solution is find iteratively
- let e_k = x_k x^{*} be the error at the *k*-th iteration, where x_k is the approximation and x^{*} is the true solution
- the method converges with rate r if

$$\lim_{k \to \infty} \frac{\|\mathbf{e}_{k+1}\|}{\|\mathbf{e}_k\|^r} = C, \quad \text{for } C > 0 \text{ finite}$$

- if the method is based on improving the bracketing, then
 e_k = b_k a_k
 if
 - *r* = 1 and *C* < 1, the convergence is linear and a constant number of digits are "gained" per iteration
 - *r* = 2 the convergence is quadratic, the number of exact digits doubles at each iteration
 - *r* > 1 the converges is superlinear, increasing number of digits are gained (depends on *r*)

Outline

Numerical methods in $\ensuremath{\mathbb{R}}$

Systems of nonlinear equations

Bisection method

Idea: refine the bracketing of the solution until the length of the interval is small enough. Assumption: there is only one solution in the interval.

Algorithm 1: Bisection

while
$$(b - a) > \epsilon$$
 do
 $m \leftarrow a + \frac{b-a}{2}$
if sign $(f(a)) = sign(f(m))$
then
 $a \leftarrow m$
else
 $b \leftarrow m$
 $f(a)$

HOMEWORK Implement the above procedure in MATLAB.

Bisection, cont'd

- convergence is certain, but slow
- convergence rate is linear (r = 1 and C = 1/2)
- after k iterations, the length of the interval is $(b a)/2^k$, so achieving a tolerance ϵ requires

$$\left\lceil \log_2 \frac{b-a}{\epsilon} \right\rceil$$

iterations, idependently of f.

• the value of the function is not used, just the sign

Fixed-point methods

- a fixed point for a function g : ℝ → ℝ is a value x ∈ ℝ such that f(x) = x
- the fixed-point iteration

$$x_{k+1} = g(x_k)$$

is used to build a series of successive approximations to the solution

• for a given equation f(x) there might be several equivalent fixed-point problems x = g(x)

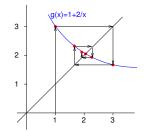
The solutions of the equation

$$x^2 - x - 2 = 0$$

are the fixed points of each of the following functions:

•
$$g(x) = x^2 - 2$$

• $g(x) = \sqrt{x+2}$
• $g(x) = 1 + 2/x$
• $g(x) = \frac{x^2+2}{2x-1}$



Conditions for convergence

- a function $g : S \subset \mathbb{R} \to \mathbb{R}$ is called Lipschitz-bounded if $\exists \alpha \in [0, 1]$ so that $|f(x_1) f(x_0)| \le \alpha |x_1 x_0|, \forall x_0, x_1 \in S$
- in other words, if $|g'(x^*)| < 1$, then g is Lipschitz-bounded
- for such functions, there exists an interval containing *x** s.t. iteration

$$x_{k+1} = g(x_k)$$

converges to x^* if started within that interval

- if $|g'(x^*)| > 1$ the iterations diverge
- in general, convergence is linear
- smoothed iterations:

$$x_{k+1} = \lambda_k x_k + (1 - \lambda_k) f(x_k)$$

with $\lambda_k \in [0, 1]$ and $\lim_{k \to \infty} \lambda_k = 0$

Stopping criteria

If either

- $|x_{k+1} x_k| \le \epsilon_1 |x_{k+1}|$ (relative error)
- ② $|x_{k+1} x_k| ≤ \epsilon_2$ (absolute iteration error)
- ◎ $|f(x_{k+1}) f(x_k)| \le \epsilon_3$ (absolute functional error)

stop the iterations.

Newton-Raphson method

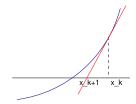
• from Taylor series:

 $f(x+h)\approx f(x)+f'(x)h$

so in a small neighborhood around x f(x) can be approximated by a linear function of h with the root -f(x)/f'(x)

Newton iteration:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$



Implement the Newton-Raphson procedure in MATLAB.

Newton-Raphson method, cont'd

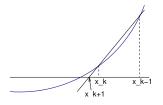
- convergence for a simple root is quadratic
- to converge, the procedure needs to start close enough to the solution, where the function *f* is monotonic

Secant method (lat.: Regula falsi)

 secant method approximates the derivative by finite differences:

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$

- convergence is normally superlinear, with $r \approx 1.618$
- it must be started in a properly chosen neighborhood
- implement in MATLAB [r,xk] = secant(f, x0, x1,...)



Interpolation methods and other approaches

- secant method uses linear interpolation
- one can use higher-degree polynomial interpolation (e.g. quadratic) and find the roots of the interpolating polynomial
- inverse interpolation: $x_{k+1} = p^{-1}(y_k)$ where *p* is an interpolating polynomial
- fractional interpolation
- special methods for finding roots of the polynomials

Fractional interpolation

- previous methods have difficulties with functions having horizontal or vertical asymptotes
- linear fractional interpolation uses

$$\phi(x) = \frac{x - u}{vx - w}$$

function, which has a vertical asymptote at x = w/v, a horizontal asymptote at y = 1/v and a zero at x = u

Fractional interpolation, cont'd

- let x₀, x₁, x₂ be three points where the function is estimates, yielding f₀, f₁, f₂
- find u, v, w for ϕ by solving

$$\begin{bmatrix} 1 & x_0 f_0 & -f_0 \\ 1 & x_1 f_1 & -f_1 \\ 1 & x_2 f_2 & -f_2 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}$$

- the iteration step swaps the values: $x_0 \leftarrow x_1$ and $x_1 \leftarrow x_2$
- the new approximate solution is the zero of the linear fraction, $x_2 = u$. This can be implemented as

$$x_2 \leftarrow x_2 + \frac{(x_0 - x_2)(x_1 - x_2)(f_0 - f_1)f_2}{(x_0 - x_2)(f_2 - f_1)f_0 - (x_1 - x_2)(f_2 - f_0)f_1}$$

Outline

Systems of nonlinear equations

Systems of nonlinear equations

- much more difficult than the scalar case
- no simple way to ensure convergence
- computational overhead increases rapidly with the dimension
- difficult to determine the number of solutions
- difficult to find a good starting approximation

Fixed-point methods in \mathbb{R}^n

- $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n, \mathbf{x} = \mathbf{g}(\mathbf{x}) = [g_1(\mathbf{x}), \dots, g_n(\mathbf{x})]$
- fixed-point iteration: $\mathbf{x}_{k+1} = \mathbf{g}(\mathbf{x}_k)$
- denote ρ(J_g(x)) the spectral radius (maximum absolute eigenvalue) of the Jacobian matrix of g evaluated at x
- if ρ(J_g(x*)) < 1, the fixed point iteration converges if started close enough to the solution
- the convergence is linear with $C = \rho(\mathbf{J}_g(\mathbf{x}^*))$

Newton-Raphson method in \mathbb{R}^n

•
$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{J}_f^{-1}(\mathbf{x}_k)\mathbf{f}(x_k)$$

• no need for inversion; solve the system

$$\mathbf{J}_f(\mathbf{x}_k)\mathbf{s}_k = -\mathbf{f}(\mathbf{x}_k)$$

for Newton step \mathbf{s}_k and iterate

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}_k$$

HOMEWORK: Implement in MATLAB the above procedure

Broyden's method

- uses approximations of the Jacobian
- the initial approximation of J can be the actual Jacobian (if available) or even I

Algorithm 2: Broyden's method

```
for k = 0, 1, 2, ... do
        solve \mathbf{B}_k \mathbf{s}_k = -\mathbf{f}(\mathbf{x}_k) for \mathbf{s}_k
        \mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}_k
        \mathbf{y}_k = \mathbf{f}(\mathbf{x}_{k+1}) - \mathbf{f}(\mathbf{x}_k)
        \mathbf{B}_{k+1} = \mathbf{B}_k + ((\mathbf{y}_k - \mathbf{B}_k \mathbf{s}_k) \mathbf{s}_k^T) / (\mathbf{s}_k^T \mathbf{s}_k)
        if \|\mathbf{x}_{k+1} - \mathbf{x}_{k}\| \ge \epsilon_1 (1 + \|\mathbf{x}_{k+1}\|) then
                continue
        if \|\mathbf{f}(\mathbf{x}_{k+1})\| < \epsilon_2 then
                X^* = X_{k+1}
                 break
        else
                algorithm failed
```


Further topics

- secant method is also extended to \mathbb{R}^n (see Boryden's method)
- robust Newton-like methods: enlarge the region of convergence, introduce a scalar parameter to ensure progression toward solution
- in MATLAB: roots() for roots of a polynomial; fzero() for scalar case; fsolve() for the ℝⁿ case.

MATLAB exercise

- help fsolve
- try the examples from the documentation
- solve the system:

$$\begin{cases} x^2 + 2y^2 - 5x + 7y = 40\\ 3x^2 - y^2 + 4x + 2y = 28 \end{cases}$$

with initial approximation [2, 3]

