
Problem setting
Optimization in R

Optimization in Rn

Important classes of optimization problems

Bi7740: Scientific computing
Optimization: a brief summary

Vlad Popovici
popovici@iba.muni.cz

Institute of Biostatistics and Analyses
Masaryk University, Brno

Vlad Bi7740: Scientific computing



Problem setting
Optimization in R

Optimization in Rn

Important classes of optimization problems

Book:
Venkataraman P., Applied optimization using Matlab, Wiley & Sons,
2002

Vlad Bi7740: Scientific computing



Problem setting
Optimization in R

Optimization in Rn

Important classes of optimization problems

Outline

1 Problem setting

2 Optimization in R

3 Optimization in Rn

Unconstrained optimization in Rn

4 Important classes of optimization problems
Linear programming
Quadratic programming
Constrained nonlinear optimization

Vlad Bi7740: Scientific computing



Problem setting
Optimization in R

Optimization in Rn

Important classes of optimization problems

Problem setting

minimization problem: f : Rn → R, S ⊆ Rn, find x∗ ∈ S:
f(x) ≤ f(y),∀y ∈ S \ {x}

x∗ is called minimizer (minimum, extremum) of f

maximization is equivalent to minimizing −f

f is called objective function and considered, here,
differentiable with continuous second derivative

constraint set S (or feasible region) is defined by a system of
equations and/or inequations

y ∈ S is called a feasible point

if S = Rn the optimization is unconstrained
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Optimization problem

min
x

f(x)

subject to

g(x) = 0

hk (x) ≤ 0

where f : Rn → R, g : Rn → Rm, hk : Rn → R.

If f , g and hk functions are linear: linear programming.
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Some theory

Rolle’s thm: f cont. on [a, b] and differentiable on (a, b) with
f(a) = f(b), then ∃c ∈ (a, b) : f ′(c) = 0

Weierstrass’ thm: f cont. on a compact set with values in a
subset of R attains its extrema

Fermat’s thm: f : (a, b)→ R then in a stationary point
x0 ∈ (a, b), f ′(x0) = 0. Generalization: ∇f(x0) = 0.

convex function: f ′′(x) > 0; concave function: f ′′(x) < 0

if f ′(x0) = 0 and f ′′(x0) < 0 then x0 is a minimizer

if f ′(x0) = 0 and f ′′(x0) > 0 then x0 is a maximizer

if f ′(x0) = f ′′(x0) = 0, then x0 is an inflection point
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Set convexity

Formally: a set S is convex if αx1 + (1 − αx2) ∈ S for all x1, x2 ∈ S
and α ∈ [0, 1].
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Function convexity

Formally: f is said to be convex on a convex set S if
f(αx1 + (1 − α)x2) ≤ αf(x1) + (1 − α)f(x2) for all x1, x2 ∈ S and
α ∈ [0, 1].
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Uniqueness of the solution

any local minimum of a convex function f on a convex set
S ⊆ Rn is global minimum of f on S

any local minimum of a strictly convex function f on a convex
set S ⊆ Rn is unique global minimum of f on S
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Optimality criteria

For x∗ ∈ S to be an extremum of f : S ⊆ Rn → R

first order condition: x∗ must be a critical point:

∇f(x∗) = 0

second order condition: the Hessian matrix Hf (x∗) must be
positive or negative definite

[Hf (x)]ij =
∂f(x)
∂xi∂xj

If the Hessian is
positive definite, then x∗ is a minimum of f
negative definite, then x∗ is a maximum of f
indefinite, then x∗ is a saddle point of f
singular, then different degenerated cases are possible...
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Saddle point

source: Wikipedia

Vlad Bi7740: Scientific computing



Problem setting
Optimization in R

Optimization in Rn

Important classes of optimization problems

Outline

1 Problem setting

2 Optimization in R

3 Optimization in Rn

Unconstrained optimization in Rn

4 Important classes of optimization problems
Linear programming
Quadratic programming
Constrained nonlinear optimization

Vlad Bi7740: Scientific computing



Problem setting
Optimization in R

Optimization in Rn

Important classes of optimization problems

Unimodality

Unimodality allows discarding safely parts of the interval, without
loosing the solution (like in the case of interval bisection).
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Golden section search

evaluate the function at 3 points
and decide which part to discard

ensure that the sampling space
remains proportional:

c
a
=

a
b
⇒

b
a
=

1 +
√

5
2

= 1.618 . . .

convergence is linear, with
C ≈ 0.618
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Successive parabolic interpolations

Convergence is superlinear, with r ≈ 1.32.
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Newton’s method

From Taylor’s series:

f(x + h) ≈ f(x) + f ′(x)h +
f ′′(x)

2
h2

whose minimum is at h = −f ′(x)/f ′′(x). HOMEWORK: prove it!
Iteration scheme:

xk+1 = xk − f ′(x)/f ′′(x)

(That’s Newton’s method for finding the zero of f ′(x) = 0.)
Quadratic convergences, but needs to start close to the solution.
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Hybrid methods

idea: combine "slow-but-sure" methods with "fast-but-risky"

most library routines are using such approach

popular combination: golden search and successive parabolic
interpolation
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Matlab functions for optimization in R

first, check optimset for managing the optimization options

fminbnd: bounded function minimization

you can use functions for multivariate case as well

Try in Matlab:

>> opts = optimset('display','iter'); % what's for?
>> f = ...

@(x)(1./((x−0.3).^2+0.01)+1./((x−0.9).^2+0.04)−6);
>> [x,fx] = fminbnd(f, .2, 1, opts)
>> g = @(x) (cos(x) − 2*log(x));
>> [x, gx] = fminbnd(g, 2, 4, opts); % explain
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Unconstrained optimization in Rn

Nelder-Mead (simplex) method

direct search methods simply compare the function values at
different points in S

Nelder-Mead selects n + 1 points (in Rn) forming a simplex
(i.e. a segment in R, a triangle in R2, a tetrahedron in R3, etc)

along the line from the point with highest function value
through the centroid of the rest, select a new vertex

the new vertex replaces the worst previous point

repeat until convergence

useful procedure for non-smooth functions, but expensive for
large n
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Nelder-Mead in Matlab

Use the function fminsearch.

Example:

>> f = @(x) (sin(norm(x,2)^2));
>> x = fminsearch(f, [.5,.5], ...

opts)
>> x = fminsearch(f, ...

[.25,.25], opts)
>> x = fminsearch(f, [1,1], opts)
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Steepest descent (gradient descent)

f : Rn → R: the negative gradient, −∇f(x) is locally the
steepest descent towards a (local) minimum
xk+1 = xk − αk∇f(xk ) where αk is line search parameter

x0

x1

x2

x3

x4

*

*
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Unconstrained optimization in Rn

αk = arg minα f(xk − ∇f(xk ))

the method always progresses towards minimum, as long as
the gradient is non-zero

the convergence is slow, the search direction may zig-zag

the method is "myopic" in its choices
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Newton’s method

exploit the 1st and 2nd derivative

Newton iteration

xk+1 = xk − H−1
f (xk )∇f(xk )

no need to invert the Hessian; solve the system

Hf (xk )sk = −∇f(xk )

and then
xk+1 = xk + sk

variation: damped Newton method uses a line search along
the direction of sk to make the method more robust
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Newton’s method, cont’d

close to minimum, the Hessian is symmetric positive definite,
so you can use Cholesky decomposition

if initialized far from minimum, the Newton step may not be in
the direction of steepest descent:

(∇f(xk ))
T sk < 0

choose a different direction based on negative gradient,
negative curvature, etc
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Quasi-Newton methods

improve reliability and reduce overhead

general form
xk+1 = xk − αk B−1

k ∇f(xk )

where αk is a line search parameter and Bk is an
approximation to the Hessian
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Unconstrained optimization in Rn

BFGS (Broyden-Fletcher-Goldfarb-Shanno) method

Algorithm 1: BFGS method

x0 = some initial value
B0 = initial approximation of the Hessian
for k = 0, 1, 2, . . . do

solve Bk sk = −∇f(xk ) for sk

xk+1 = xk + sk

yk = ∇f(xk+1) − ∇f(xk )
Bk+1 = Bk + (yk yT

k )/(y
T
k sk ) − (Bk sk sT

k Bk )/(sT
k Bk sk )
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BFGS, cont’d

update only the factorization of Bk rather than factorizing it at
each iteration

no 2nd derivative is needed

can start with B0 = I

Bk does not necessarily converge to true Hessian
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Unconstrained optimization in Rn

Conjugate gradient (CG)

does not need 2nd derivative, does not construct an
approximation of the Hessian

searches on conjugate directions, implicitly accumulating
information about the Hessian

for quadratic problems, it converges in n steps to exact
solution (theoretically)

two vectors x, y are conjugate with respect to a matrix A is
xT Ay = 0

idea: start with an initial guess x0 (could be 0); go along the
negative gradient at the current point; compute the new
direction as a combination of previous and new gradients
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Unconstrained optimization in Rn

Algorithm 2: CG method

x0 = some initial value
g0 = ∇f(x0)
s0 = −g0

for k = 0, 1, 2, . . . do
αk = arg minα f(xk + αsk )
xk+1 = xk + αk sk

gk+1 = ∇f(xk+1)
βk+1 = (gT

k+1gk+1)/(gT
k gk )

sk+1 = −gk+1 + βk+1sk
x0

x

source: Wikipedia
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Unconstrained optimization in Rn

Other methods

we barely scratched the surface!

heuristic methods

genetic algorithms

stochastic methods

hybrid methods

etc etc etc
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Matlab functions

linear and quadratic optimization: linprog, quadprog

linear least squares: lsqlin, lsqnonneg
nonlinear minimization:

fminbnd - scalar bounded problem;
fmincon - multidimensional constrained nonlinear
minimization
fminsearch - Nelder-Mead unconstrained nonlinear
minimization
fminunc - multidimensional unconstrained nonlinear
minimization
fseminf -multidimensional constrained minimization,
semi-infinite constraints
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Linear programming (LP)

General form:

minimize fT x

subject to

Aeqx = beq

Ax ≤ b

lb ≤ x ≤ ub

Matlab:

X = linprog(f,A,b,Aeq,beq,LB,UB,X0)
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LP - Example

Solve the LP:
maximize 2x1 + 3x2

such that

x1 + 2x2 ≤ 8

2x1 + x2 ≤ 10

x2 ≤ 3
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c = [−2,−3]';
A = [1,2;2,1;0,1];
b = [8,10,3]';
x = linprog(c,A,b,[],[],[],[],[])
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Chebyshev data approximation

Let (xi , yi) be a set of points. Find the best approximation with a
d-degree polynomial p(x) = αdxd + αd−1xd−1 + · · ·+ α0:

minimize max
i
|yi − p(xi)|

Solution: let f = maxi |yi − p(xi)|. The problem can be formulated
as a LP problem:

minimize f with respect to αi

such that
−f ≤ yi − p(xi) ≤ f
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...which is equivalent to
minimize f

such that

−p(xi) − f ≤ −yi

p(xi) − f ≤ yi
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Example

Approximate a set of 14 points with a 4-degree polyomial.

% given data: x, y
x = [0,3,7,8,9,10,12,14,16,18,19,20,21,23]';
y = [3,5,5,4,3,6,7,6,6,11,11,10,8,6]';

% ineq. constraints:
A1 = [−x.^4,−x.^3,−x.^2,−x,−ones(14,1),−ones(14,1)];
A2 = [x.^4,x.^3,x.^2,x,ones(14,1),−ones(14,1)];
A = [A1; A2];
b = [−y;y];

f = zeros(6,1); f(6)=1; % objective function

[alpha, fval, exitflag] = linprog(f,A,b);
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Quadratic programming (QP)

General form:
minimize

1
2

xT Hx + fT x

subject to

Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub

with H ∈ Rn×s symmetric. Matlab:

X = quadprog(H,f,A,b,Aeq,beq,LB,UB,X0,OPTIONS)
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QP - Example

Solve:
minimize x2

1 + x1x2 + 2x2
2 + 2x2

3 + 2x2x3 + 4x1 + 6x2 + 12x3

subject to

x1 + x2 + x3 ≥ 6

−x1 − x2 + 2x3 ≥ 2

x1, x2, x3 ≥ 0
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H = [2,1,0;1,4,2;0,2,4];
f = [4,6,12];
A = [−1,−1,−1;1,1,−2]; b = [−6,−2];
lb = [0;0;0]; ub = [inf;inf;inf];
opts=optimoptions('quadprog', 'algorithm', ...

'interior−point−convex');
[x,fval,exitflag,output] = ...

quadprog(H, f, A, b, [], [], lb, ub, [],opts);
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Constrained nonlinear optimization - fmincon

Problem:
minimize f(x)

subject to

c(x) ≤ 0

ceq(x) = 0

Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub

Matlab:

[x,fval,exitflag,output] = fmincon(fun, x0, A, b, ...
Aeq, beq, lb, ub, nonlcon, options)
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Algorithms for fmincon

trust-region reflective: requires the gradient and allows only
bounds or linear equality constraints, but not both. Works on
large sparse and small dense problems efficiently.

active-set can take large steps to converge fast. It is effective
on some small problems with nonsmooth constraints.

sqp satisfies bounds at each iteration. Not for large-scale
problems.

interior-point: for large+sparse or small+dense problems.
Designed for large problems, can recover from NaN or Inf
results. Satisfies bounds at each iteration.

Use the documentation for fmincon and optimoptions functions
for details. You can use optimtool for a graphical user interface
to optimization toolbox!
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Exercise

Design the optimal beer can! It must be:

cylindrical

ecological: uses the minimum amount of materials (i.e.
minimum total surface)

of exact volume V = 333cm3

not higher than twice its diameter

Tasks:
1 identify the variables
2 write the mathematical formulation of the problem
3 write the formula of the gradient of the objective function and

the Jacobian of the nonlinear constraint function
4 implement in Matlab
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