Bi7740: Scientific computing

Introduction to Monte Carlo methods

Vlad Popovici popovici@iba.muni.cz

Institute of Biostatistics and Analyses Masaryk University, Brno

Supplemental bibliography

- Gentle, J.E.: Random number generation and Monte Carlo methods. 2003. Springer. 2nd Ed.
- Jones O., Maillardet R., Robinson, A. *Scientific programming* and simulation using R. 2009., CRC Press.

Outline

Random number generators

2 Non-uniform random variable generation

Monte Carlo methods for inference • Inference about the mean

Numerical experiments: simulations

General approach:

- identify the random variable of interest X
- identify/postulate its distributional properties
- generate one or several large samples identical and independely distributed X₁,..., X_n from the distribution of X
- estimate the quantity of interest (e.g. estimate EX using sample average) and assess its accuracy (e.g. via confidence intervals)

Random number generators (RNGs)

- all random variables can be generated by transforming a uniformly distributed random variable X ∈ U(0, 1)
- there is no algorithmic (deterministic) way of generating infinitely long sequences of true random numbers
- computers generate *pseudorandom numbers*
- there exist devices to generate (believed to be) random sequences: e.g. radioactive decay: the time elapsed between emission of two consecutive particles (α, β, γ). See: http://www.fourmilab.ch/hotbits

RNGs, cont'd

- two aspects:
 - generate good pseudorandom numbers in U(0, 1): independent and uniformly distributed
 - Ind proper trasformations to the desired distribution
- you cannot prove that an RNG is truly random
- there are a batteries of tests that an RNG must pass to be *acceptable*
- for any RNG, one can find a statistical test that will reject it as a good generator

RNGs, cont'd

Formalism:

- an RNG is a structure (S, μ, f, U, g) where
 - S is a finite set of states
 - μ is a probability distribution on S used to select the initial seed (state) s₀
 - *f* : *S* → *S* is a *transition function*. The state of the RNG evolves according to the recurrence *s_i* = *f*(*s_{i-1}*) for *i* ≥ 1
 - *U* is the *output space*. Usually U = (0, 1)
 - g : S → U is the output function. The numbers u_i = g(s_i) are called *random numbers* produced by the RNG

RNGs, cont'd

- *S* is finite $\Rightarrow \exists l \ge 0, j > 0$ finite such that $s_{l+j} = s_l$
- this implies that ∀i ≥ l, u_{i+j} = u_i since both f and g are deterministic
- the smallest positive *j* for which this happens is called *period lenght* of the RNG and is denoted by ρ
- obviously, $\rho \leq |S|$
- ex.: if the state is represented on k bits, then $\rho \leq 2^k$

RNGs, cont'd

Quality criteria:

- $\bullet\,$ extremly long period $\rho\,$
- efficient implementation
- repeatability
- oprtability
- availability of jump-ahead property: quickly compute the s_{i+v} given s_i, so you can partition a long sequence in subsequences to be used in parallel
- randomness

RNGs, cont'd

Coverage:

- let $\Psi_t = \{(u_0, ..., u_t) | s_0 \in S\}$
- is Ψ_t uniformly covering the hypercube $(0, 1)^t$?
- tests of *discrepancy* between the empirical distribution of Ψ_t and the uniform distribution
- figure of merit: a measure of the coverage quality

RNGs, cont'd

Randomness and *i.i.d*:

- statistical tests: try to detect empirical evidence against H₀: "u_i are realizations of i.i.d U(0, 1)". Example: diehard tests (Marsaglia, 1995)
- passing more tests improves the confidence in RNG, but cannot *prove* the RNG is foolproof for all cases
- good RNG passes a set of simple tests
- *polynomial time perfect* RNG: there is no polynomial-time algorithm the can predict any given bit of u_i with a probability of success $\geq 1/2 + 2^{-k\epsilon}$, for some $\epsilon > 0$, after observing u_0, \ldots, u_{i-1}
- the usual RNGs are not polynomial time perfect

RNGs, cont'd

Multiple Recursive Generator has a general recurrence

$$x_i = (a_1 x_{i-1} + \cdots + a_k x_{i-k}) \mod m$$

where *m* (modulus) and *k* (order) are integers carefully selected, and coefficients $a_1, \ldots, a_k \in \mathbb{Z}_m$. The state is $s_i = (x_{i-k+1}, \ldots, x_i)^T$. When *m* is prime, it is possible to select a_i such that the period length $\rho = m^k - 1$.

RNGs, cont'd

Example (historical, not in serious use anymore): MLCG (Lehmer, 1948): multiplicative linear congruential generator:

$$s_{i+1} = (a_1s_i + a_0) \operatorname{mod} m$$

This generates integers that are converted to (0, 1) by division with *m*. Weakness: (Marsaglia, 1968): if (s_i, \ldots, s_{i+d}) represent some points in a *d*-dimensional space, they have a lattice structure: they lie in a number of specific hyperplanes.

Famous multipliers ($a_0 = 0$):

- $a_1 = 23, m = 10^8 + 1$: original version, has higher order correlations
- $a_1 = 65539, m = 2^{29}$: infamous RANDU generator (IBM 360 series, in the 1970s): catastrophic higher order correlations
- $a_1 = 69069, m = 2^{32}$ (Marsaglia, 1972): good properties and converage up to 6 dimensions

RNGs, cont'd

Exercise:

• write a function

rng.mlcg = function(n, a1=20, a0=0, m=53, s0=21)

which implements the procedure MLCG (with some default parameters), and returns a sequence of *n* numbers.

• generate a sequence and plot u_{i+1} vs u_i

```
> u = rng.mlcg(200)
```

> plot(u[2:200],u[1:199])

o discuss!

RNGs, cont'd

Exercise:

• let *n* = 20000

execute

o discuss!

RNGs, cont'd

In R: don't let the RNG to be "randomly" selected!

- for serious work, always set the seed, check the RNG, etc: they might be version-dependent; also you want other to be able to reproduce your results
- read the help for RNG
- uniform random numbers are generated with **runif**() function
- check also {d, p, q}unif() functions
- read the help for .Random.seed()

Outline

2 Non-uniform random variable generation

Non-uniform r.v. generation (NRNG)

Requirements:

- correctness: a good approximation of the theoretical distribution
- robustness: RNG should work well on a large range of parameters
- efficiency

NRNG: inversion method

- best choice, when feasible
- to generate X with distribution function F, starting from a uniform variate U ∈ (0, 1), apply the inverse F⁻¹ to U:

$$X = F^{-1}(U) := \min\{x | F(x) \ge U\}$$

• easy to see that the distribution of *X* is as required:

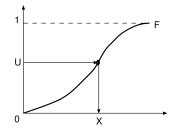
$$P[X \le x] = P[F^{-1}(U) \le x] = P[U \le F(x)] = F(x)$$

- for some distributions, F^{-1} can be obtained analytically. Ex.: Weibull distribution $F(x) = 1 - \exp(-(x/\beta)^{\alpha})$, with $\alpha, \beta > 0$; has the inverse $F^{-1}(U) = \beta[-\ln(1-U)]^{1/\alpha}$
- other distributions do not have a close form inverse: e.g. normal, χ²,... ⇒ approximations

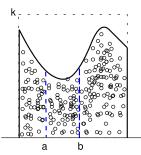
NRNG: inversion method, cont'd

Example (principle of inversion):

```
# return X with cdf F, for a
# uniform r.v. 0 < U < 1
# (look-up table method)
X = 0
while (F(X) < U) X = X + 1
return (X)
```



NRNG: Rejection method



- consider *F* with a compact support and bounded *F*(*x*) ≤ *k*
- consider a series of points (X_i, Y_i) uniformly distributed under the density function
- the distribution of X_i is the same as the distribution of X(F): $P[a < X_i < b] =$ probability of a point falling in the region = $\int_a^b F(x) dx$
- o procedure:
 - generate $X \sim U[a, b]$ and $Y \sim U[0, 1]$ independently
 - 2) if Y < F(X) return X, otherwise repeat

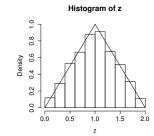
NRNG: Rejection method

Exercise: Implement the rejection method for generating random variates from the pdf

$$F(x) = \begin{cases} x & \text{if } 0 < x < 1\\ 2 - x & \text{if } 1 \le x < 2\\ 0 & \text{otherwise} \end{cases}$$

Generate n = 5000 r.v., plot their histogram (use

hist(..., freq=FALSE, ylim=c(0,1,01)) and the original pdf.



Generating normally distributed r.v.

- you can use the rejection method
- alternative: Box-Muller algorithm: based on the observation that the coordinates of points in a 2D Cartesian system described by 2 independent normal distributions correspond to polar coordinates that are realizations of 2 independent uniform distributions
- Box-Muller transform: if U₁, U₂ are independent uniformly distributed on (0,1), then

$$Z_1 = r \cos \theta = \sqrt{-2 \ln U_1} \cos(2\pi U_2)$$
$$Z_2 = r \sin \theta = \sqrt{-2 \ln U_1} \sin(2\pi U_2)$$

Improved Box-Muller algorithm, with rejection step:

Exercise: Implement the procedure above in R!

Other methods for NRNG

- kernel density estimation: approximate the inverse using a kernels for which efficient generators exist
- composition: consider F to be a convex combination of several distributions F_j:

$$F(x) = \sum_{j} p_{j} F_{j}(x)$$

To generate from F, one generates J with probability p_j and then generates X from F_j

- convolution: if $X = Y_1 + \cdots + Y_n$, with Y_j independent with specified distributions, then generate the Y_j 's and sum them
- etc etc

Efficient implementations exist in R for:

- normal distribution: rnorm; log-normal: dlnorm
- binomial distribution: rbinom
- Poisson distribution: rpois

• . . .

Inference about the mean

Outline

Non-uniform random variable generatior

Monte Carlo methods for inference • Inference about the mean

Inference about the mean

MC methods for inference

General approach:

- identify the random variable of interest X
- identify/postulate its distributional properties
- generate one or several large samples identical and independently distributed X₁,..., X_n from the distribution of X
- estimate the quantity of interest (e.g. estimate EX using sample average) and assess its accuracy (e.g. via confidence intervals)

Inference about the mean

Outline

Monte Carlo methods for inference Inference about the mean

MC inference about the mean

Reminder:

- problem: compute z = EZ when x is not available analytically, but Z can be simulated
- consider *n* replicates $Z_1, ..., Z_n$ of *Z* and estimate *z* by the empirical mean $\hat{z} = \sum_i Z_i / n$
- denote $\sigma^2 = Var\{Z\} < \infty$
- central limit theorem:

$$\sqrt{n}(\hat{z}-z) \rightarrow \mathcal{N}(0,\sigma^2), \text{ as } n \rightarrow \infty$$

• from this, an 1 – α confidence interval can be obtained as

$$\left(\hat{z}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}},\hat{z}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$$

where z_{α} denotes the α -quantile of the normal distribution $(\Phi(z_{\alpha}) = \alpha)$

MC for inference about the mean

Implement the following procedure:

• write the R function pdfl(n) to generate n = 1000 r.v. drawn from

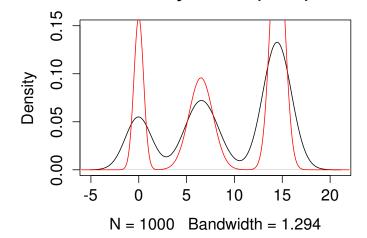
$$f(X) = 0.2N_1(X) + 0.3N_2(X) + 0.5N_3(X)$$

where N_i are Gaussians with parameters $\mu_1 = 0, \sigma_1 = 0.5$, $\mu_2 = 6.5, \sigma_2 = 1.25, \mu_3 = 14.5, \sigma_3 = 0.75$. Do not use **for** loops or any function from the various nonstandard packages!

- plot the density of the sample drawn and compare it with the theoretical plot of the mixture density
- repeat the procedure for n = 10000 and n = 100000. what do you see?

Inference about the mean

density.default(x = x)



- generate p = 1000 samples of n = 1000 r.v.: $X[p \times n]$
- compute x̂_i as the sample average for each of the p samples and the grand average X̂
- what is the true mean of this mixture of Gaussians?
- test the normality of the distribution of x̂_i (e.g. shapiro.test())
- estimate the 95% empirical confidence interval (using quantiles of the distribution of \hat{x}_i) and compare it with the theoretical one (using sample variance for σ^2) obtained from a single sample (say, X[1,])

