
Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

Bi7740: Scientific computing
Introduction to Monte Carlo methods

Vlad Popovici
popovici@iba.muni.cz

Institute of Biostatistics and Analyses
Masaryk University, Brno

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

Supplemental bibliography

Gentle, J.E.: Random number generation and Monte Carlo
methods. 2003. Springer. 2nd Ed.

Jones O., Maillardet R., Robinson, A. Scientific programming
and simulation using R. 2009., CRC Press.

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

Outline

1 Random number generators

2 Non-uniform random variable generation

3 Monte Carlo methods for inference
Inference about the mean

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

Numerical experiments: simulations

General approach:
1 identify the random variable of interest X
2 identify/postulate its distributional properties
3 generate one or several large samples identical and

independely distributed X1, . . . ,Xn from the distribution of X
4 estimate the quantity of interest (e.g. estimate EX using

sample average) and assess its accuracy (e.g. via confidence
intervals)

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

Random number generators (RNGs)

all random variables can be generated by transforming a
uniformly distributed random variable X ∈ U(0, 1)

there is no algorithmic (deterministic) way of generating
infinitely long sequences of true random numbers

computers generate pseudorandom numbers

there exist devices to generate (believed to be) random
sequences: e.g. radioactive decay: the time elapsed between
emission of two consecutive particles (α, β, γ). See:
http://www.fourmilab.ch/hotbits

Vlad Bi7740: Scientific computing

http://www.fourmilab.ch/hotbits

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

RNGs, cont’d

two aspects:
1 generate good pseudorandom numbers in U(0, 1):

independent and uniformly distributed
2 find proper trasformations to the desired distribution

you cannot prove that an RNG is truly random

there are a batteries of tests that an RNG must pass to be
acceptable

for any RNG, one can find a statistical test that will reject it as
a good generator

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

RNGs, cont’d

Formalism:
an RNG is a structure (S, µ, f ,U, g) where

S is a finite set of states
µ is a probability distribution on S used to select the initial seed
(state) s0

f : S → S is a transition function. The state of the RNG
evolves according to the recurrence si = f(si−1) for i ≥ 1
U is the output space. Usually U = (0, 1)
g : S → U is the output function. The numbers ui = g(si) are
called random numbers produced by the RNG

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

RNGs, cont’d

S is finite⇒ ∃l ≥ 0, j > 0 finite such that sl+j = sl

this implies that ∀i ≥ l, ui+j = ui since both f and g are
deterministic

the smallest positive j for which this happens is called period
lenght of the RNG and is denoted by ρ

obviously, ρ ≤ |S |

ex.: if the state is represented on k bits, then ρ ≤ 2k

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

RNGs, cont’d

Quality criteria:

extremly long period ρ

efficient implementation

repeatability

portability

availability of jump-ahead property: quickly compute the si+v

given si , so you can partition a long sequence in
subsequences to be used in parallel

randomness

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

RNGs, cont’d

Coverage:

let Ψt = {(u0, . . . , ut)|s0 ∈ S}

is Ψt uniformly covering the hypercube (0, 1)t?

tests of discrepancy between the empirical distribution of Ψt

and the uniform distribution

figure of merit: a measure of the coverage quality

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

RNGs, cont’d

Randomness and i.i.d:

statistical tests: try to detect empirical evidence against H0:
"ui are realizations of i.i.d U(0, 1)". Example: diehard tests
(Marsaglia, 1995)

passing more tests improves the confidence in RNG, but
cannot prove the RNG is foolproof for all cases

good RNG passes a set of simple tests

polynomial time perfect RNG: there is no polynomial-time
algorithm the can predict any given bit of ui with a probability
of success ≥ 1/2 + 2−kε , for some ε > 0, after observing
u0, . . . , ui−1

the usual RNGs are not polynomial time perfect

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

RNGs, cont’d

Multiple Recursive Generator has a general recurrence

xi = (a1xi−1 + · · ·+ ak xi−k) mod m

where m (modulus) and k (order) are integers carefully selected,
and coefficients a1, . . . , ak ∈ Zm.
The state is si = (xi−k+1, . . . , xi)

T .
When m is prime, it is possible to select ai such that the period
length ρ = mk − 1.

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

RNGs, cont’d

Example (historical, not in serious use anymore): MLCG (Lehmer,
1948): multiplicative linear congruential generator:

si+1 = (a1si + a0) mod m

This generates integers that are converted to (0, 1) by division with
m. Weakness: (Marsaglia, 1968): if (si , . . . , si+d) represent some
points in a d−dimensional space, they have a lattice structure: they
lie in a number of specific hyperplanes.
Famous multipliers (a0 = 0):

a1 = 23,m = 108 + 1: original version, has higher order
correlations
a1 = 65539,m = 229: infamous RANDU generator (IBM 360
series, in the 1970s): catastrophic higher order correlations
a1 = 69069,m = 232 (Marsaglia, 1972): good properties and
converage up to 6 dimensions

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

RNGs, cont’d

Exercise:

write a function

rng . mlcg = function (n , a1=20 , a0=0 , m=53 , s0=21)

which implements the procedure MLCG (with some default
parameters), and returns a sequence of n numbers.

generate a sequence and plot ui+1 vs ui

> u = rng . mlcg (200)
> plot (u [2 : 2 0 0] , u [1 : 1 9 9])

discuss!

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

RNGs, cont’d

Exercise:

let n = 20000

execute

> u = rng . mlcg (n , a1=65539, a0=0 , m=2^31 , s0=10)
> z = (u−0.5) / (2^31−1) # map to (0 ,1)
> hist (z) # i s i t reasonably uni form?
> z1 = z [1 : (n−2)] ; z2 = z [2 : (n−1)] ; z3 = z [3 : n]
> plot (z1 , z2 , pch=19 , x l im=c (0 , 1) , y l im=c (0 , 1))
> x11 () ; plot (z1 [z3 < 0 .01] , z2 [z3 < 0 .01] , . . .

pch=19 , x l im=c (0 , 1) , y l im=c (0 , 1))

discuss!

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

RNGs, cont’d

In R: don’t let the RNG to be "randomly" selected!

for serious work, always set the seed, check the RNG, etc:
they might be version-dependent; also you want other to be
able to reproduce your results

read the help for RNG

uniform random numbers are generated with runif()
function

check also {d, p, q}unif() functions

read the help for .Random.seed()

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

Outline

1 Random number generators

2 Non-uniform random variable generation

3 Monte Carlo methods for inference
Inference about the mean

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

Non-uniform r.v. generation (NRNG)

Requirements:

correctness: a good approximation of the theoretical
distribution

robustness: RNG should work well on a large range of
parameters

efficiency

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

NRNG: inversion method

best choice, when feasible
to generate X with distribution function F , starting from a
uniform variate U ∈ (0, 1), apply the inverse F−1 to U:

X = F−1(U) := min{x |F(x) ≥ U}

easy to see that the distribution of X is as required:

P[X ≤ x] = P[F−1(U) ≤ x] = P[U ≤ F(x)] = F(x)

for some distributions, F−1 can be obtained analytically. Ex.:
Weibull distribution F(x) = 1 − exp(−(x/β)α), with α, β > 0;
has the inverse F−1(U) = β[− ln(1 − U)]1/α

other distributions do not have a close form inverse: e.g.
normal, χ2,... ⇒ approximations

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

NRNG: inversion method, cont’d

Example (principle of inversion):

r e t u r n X wi th cdf F , f o r a
uni form r . v . 0 < U < 1
(look−up tab le method)
X = 0
while (F (X) < U) X = X + 1
return (X)

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

NRNG: Rejection method

consider F with a compact support and
bounded F(x) ≤ k

consider a series of points (Xi ,Yi)
uniformly distributed under the density
function

the distribution of Xi is the same as the
distribution of X (F): P[a < Xi < b] =
probability of a point falling in the region =∫ b

a F(x)dx
procedure:

1 generate X ∼ U[a, b] and Y ∼ U[0, 1]
independently

2 if Y < F(X) return X , otherwise repeat

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

NRNG: Rejection method

Exercise: Implement the rejection method for
generating random variates from the pdf

F(x) =

x if 0 < x < 1

2 − x if 1 ≤ x < 2

0 otherwise

Generate n = 5000 r.v., plot their histogram
(use
hist(..., freq=FALSE, ylim=c(0,1,01))
and the original pdf.

Histogram of z

z

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

Generating normally distributed r.v.

you can use the rejection method

alternative: Box-Muller algorithm: based on the observation
that the coordinates of points in a 2D Cartesian system
described by 2 independent normal distributions correspond
to polar coordinates that are realizations of 2 independent
uniform distributions

Box-Muller transform: if U1,U2 are independent uniformly
distributed on (0,1), then

Z1 = r cos θ =
√
−2 ln U1 cos(2πU2)

Z2 = r sin θ =
√
−2 ln U1 sin(2πU2)

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

Improved Box-Muller algorithm, with rejection step:
1 generate U1,U2 ∼ U(−1, 1)

2 accept S2 = U2
1 + U2

2 if S2 < 1, else go to step 1

3 set W =
√
−2 ln S2

S2

4 return X = U1W and Y = U2W

Exercise: Implement the procedure above in R!

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

Other methods for NRNG

kernel density estimation: approximate the inverse using a
kernels for which efficient generators exist

composition: consider F to be a convex combination of
several distributions Fj :

F(x) =
∑

j

pjFj(x)

To generate from F , one generates J with probability pj and
then generates X from Fj

convolution: if X = Y1 + · · ·+ Yn, with Yj independent with
specified distributions, then generate the Yj ’s and sum them

etc etc

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference

Efficient implementations exist in R for:

normal distribution: rnorm; log-normal: dlnorm

binomial distribution: rbinom

Poisson distribution: rpois

. . .

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference
Inference about the mean

Outline

1 Random number generators

2 Non-uniform random variable generation

3 Monte Carlo methods for inference
Inference about the mean

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference
Inference about the mean

MC methods for inference

General approach:
1 identify the random variable of interest X
2 identify/postulate its distributional properties
3 generate one or several large samples identical and

independently distributed X1, . . . ,Xn from the distribution of X
4 estimate the quantity of interest (e.g. estimate EX using

sample average) and assess its accuracy (e.g. via confidence
intervals)

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference
Inference about the mean

Outline

1 Random number generators

2 Non-uniform random variable generation

3 Monte Carlo methods for inference
Inference about the mean

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference
Inference about the mean

MC inference about the mean

Reminder:
problem: compute z = EZ when x is not available analytically,
but Z can be simulated
consider n replicates Z1, . . . ,Zn of Z and estimate z by the
empirical mean ẑ =

∑
i Zi/n

denote σ2 = Var{Z} < ∞
central limit theorem:

√
n(ẑ − z)→ N(0, σ2), as n → ∞

from this, an 1 − α confidence interval can be obtained as(
ẑ − z1−α/2

σ
√

n
, ẑ − zα/2

σ
√

n

)
where zα denotes the α−quantile of the normal distribution
(Φ(zα) = α)

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference
Inference about the mean

MC for inference about the mean

Implement the following procedure:

write the R function pdf1(n) to generate n = 1000 r.v. drawn
from

f(X) = 0.2N1(X) + 0.3N2(X) + 0.5N3(X)

where Ni are Gaussians with parameters µ1 = 0, σ1 = 0.5,
µ2 = 6.5, σ2 = 1.25, µ3 = 14.5, σ3 = 0.75. Do not use for
loops or any function from the various nonstandard packages!

plot the density of the sample drawn and compare it with the
theoretical plot of the mixture density

repeat the procedure for n = 10000 and n = 100000. what do
you see?

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference
Inference about the mean

-5 0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

density.default(x = x)

N = 1000 Bandwidth = 1.294

D
en

si
ty

Vlad Bi7740: Scientific computing

Random number generators
Non-uniform random variable generation

Monte Carlo methods for inference
Inference about the mean

generate p = 1000 samples of n = 1000 r.v.: X [p × n]

compute x̂i as the sample average for each of the p samples
and the grand average X̂

what is the true mean of this mixture of Gaussians?

test the normality of the distribution of x̂i (e.g.
shapiro.test())

estimate the 95% empirical confidence interval (using
quantiles of the distribution of x̂i) and compare it with the
theoretical one (using sample variance for σ2) obtained from a
single sample (say, X[1,])

Vlad Bi7740: Scientific computing

	Random number generators
	Non-uniform random variable generation
	Monte Carlo methods for inference
	Inference about the mean

