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Introduction

ROC curves and their analysis are based on statistical decision theory, they

were originally developed for electronic-detection-signal theory (see Zhou et al.

2002 for details).

The concept of ROC curves was introduced in medicine by Lee Lusted in

1971.

Recently, there has been an increased use of ROC methodology in a wide

area of different disciplines.

Statistical aspects of ROC analysis: many excellent books and papers are

available (e.g. Pepe 2003 or Zhou et al. 2002 and list of References).

Aim: To explain the definition, properties and constructions of ROC curves

and to make them accessible for the general scientific audience.
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Diagnostic tests play an important role in medical care and contribute signif-

icantly to health care cost.

A diagnostic test has two purposes:

1. to provide reliable information about the patient’s condition

2. to influence the health care provider’s plan for managing the patients

A test can serve these purposes only if the health care provider knows how to

interpret it.

This information is acquired through an assessment of the test’s diagnos-

tic accuracy, which is the ability of a test to detect correctly a condition

when it is actually present and to correctly rule out when it is truly ab-

sent.

Two basic measures of diagnostic accuracy are sensitivity and specificity.
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Measure of Diagnostic Accuracy

• G1 group of subjects with a condition

• G0 group of subjects without a condition

• D = 0, 1 random variable denotes absence or presence of the condition

• T = 1 positive test result

• T = 0 negative test result

Test Results (Confusion matrix)

Positive test, T = 1 Negative test, T = 0 Total

G1 (D = 1) True positive (a) False negative (b) a+ b

G0 (D = 0) False positive (c) True negative (d) c+ d

Total a+ c b+ d
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The sensitivity (Se) of the test is its ability to detect the condition when it is

present.

Se = P (T = 1|D = 1) is a probability P that the test result is positive (T = 1),

given that the condition is present (D = 1),

Se =
a

a+ b

The specificity (Sp) of a test is its ability to exclude the condition when it is

absent.

Sp = P (T = 0|D = 0) is a probability P that the test result is negative (T = 0),

given that the condition is absent (D = 0),

Sp =
d

c+ d
, FPR = 1− Sp =

c

c+ d
, FPR = false positive rate

G1 True positive (a) False negative (b) a+ b

G0 False positive (c) True negative (d) c+ d

Total a+ c b+ d
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Example

The accuracy of screening mammography test results:

• 30 patients with pathology proven breast cancer

• 30 patients without disease

The mammograph was positive if the mammographer recommended addi-

tional diagnostic follow-up.

Test results

Cancer status Positive Negative Total

Present 29 1 30

Absent 19 11 30

Total 48 12 60

Se =
29

30
= 0.967, Sp =

11

30
= 0.367, FPR =

19

30
= 0.633
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Mammographer used a different decision treshold

Test results

Cancer status Positive Negative Total

Present 23 7 30

Absent 8 22 30

Total 31 29 60

Se =
23

30
= 0.767, Sp =

22

30
= 0.733, FPR =

19

30
= 0.267
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Receiver Operating Characteristic (ROC) Curve

The accuracy of a medical diagnostic test is often summarized in a

Receiver Operating Characteristic (ROC) Curve.

The ROC curve is defined as a plot of the probability

of false classification (1-Sp) of subjects from G0

versus the probability

of true classification (Se) of subjects from G1

across of all possible values of the given test.
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Explicit formula I

• X – the diagnostic test variable (one-dimensional absolutely continuous

random variable)

• The subject is classified as G1 if X ≥ c and G0 otherwise for given cutoff

point c ∈ R

• F0(c) = P (X ≤ c|G0) =
c∫

−∞
f0(x)dx

F1(c) = P (X ≤ c|G1) =
c∫

−∞
f1(x)dx

F0 or F1 are distribution functions of group G0 or G1, respectively, and f0

and f1 are corresponding density functions.

• F0 – the specificity (Sp) of the test

• 1− F1 – the sensitivity (Se) of the test
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• p – the probability of false classification of subject from G0

• q – the probability of true classification of subject from G1

p = 1− F0(c) ⇒ c = F−1
0 (1− p), 0 ≤ p ≤ 1

q = 1− F1(c) = 1− F1(F
−1
0 (1− p)), 0 ≤ p ≤ 1

ROC(p) = R(p) = 1− F1(F
−1
0 (1− p)), 0 ≤ p ≤ 1

ROC curve is displayed by plotting 1− F1(c) against 1− F0(c) for a range

of cutoff points c ∈ R.

Notation

Xj , j = 0, 1 denote random variable X if D = j, j = 0, 1, X0, X1 are indepen-

dent
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Extreme cases
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A perfectly accurate test because sensitivity is 1.0 when 1-

specificity is 0.0
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some ability do discriminate between patients with and without condition.
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ROC curve close to the perfectly accurate one
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Explicit formula II

• ROC(p) = R(p) – the distribution function of 1− F0(X1), i.e.

• R(p) is the nonzero distribution function of the p-value 1− F0(X1) for

testing the null hypothesis that an individual comes from G0

V = 1− F0(X1)

FV (p) = P (V ≤ p) =

= P (1− F0(X1) ≤ p) =

= P (X1 ≥ F−1
0 (1− p)) =

= 1− F1(F
−1
0 (1− p)) = R(p)
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Estimates of ROC curves

Parametric methods

(see DeLong et al. 1988, Zhou et al. 2002, Pepe 2003)

X – diagnostic variable → fX(x) = α0f0(x) + α1f1(x), α0 + α1 = 1, α0,1 ≥ 0.

f0, f1 – normal (Gaussian) densities with means µ0,µ1 and variances σ2
0 ,σ2

1 ,

respectively,

fj(x) =
1

σj
√
2π

e
−

(x−µj )2

2σ2
j , j = 0, 1 .

The ROC curve:

R(p) = Φ
(
a+ bΦ−1(p)

)

a = µ1−µ0

σ1
, b = σ0

σ1
,

Φ – standard normal distribution function, Φ(x) =
x∫
0

1√
2π
e−

t2

2 dt.

Receiver Operating Characteristic (ROC) Curve:A Tool for Describing and ComparingContinuous Diagnostic Tests – p. 17



Nonparametric methods

The empirical ROC curve: F0 and F1 are replaced by their cumulative distri-

bution function.

Kernel methods: F0 and F1 are estimated by kernel methods (e.g. Azzalini

1981, Lejeune and Sarda 1992, Altman and Léger 1995,

Zou, Hall and Shapiro 1997, Bowman et al. 1998, Lloyd 1998,

Lloyd and Yong 1999, Hall and Hyndman 2002, Zhou et al.

2002, Zhou and Harezlak 2002, Peng and Zhou 2004).
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Nonparametric estimates of distribution function

Let Z1,. . . ,Zn be random sample from random variable Z with distribution func-

tion F .

Empirical distribution function

Fn(x) =
1

n

n∑

i=1

I(Zi ≤ x).

Kernel estimate of distribution function

F̂h(x) =
1

n

n∑

i=1

W

(
x− Zi

h

)
, W (x) =

x∫

−1

K(t)dt

• K – a kernel, a non-negative symmetric function, supported on [−1, 1],

integrated to unity

K(x) = 15
16 (1− x2)2I[−1,1], K(x) = 3

4 (1− x2)I[−1,1]

• h – a smoothing parameter (bandwidth), h = h(n) – a sequence of

nonrandom positive numbers, h→ 0, nh→ ∞ as n→ ∞.
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Nonparametric estimates of ROC curve

Notation

• Independent samples X0,1,. . .X0,n0 from G0 and X1,1,. . .X1,n1 from G1

on, respectively F0 and F1 are at hand

Empirical ROC curve

F0 and F1 are replaced by their empirical distribution functions

Fnj
(x) =

1

nj

nj∑

i=1

I(Xi,j ≤ x), j = 0, 1

and

R̂(p) = 1− F̂1(F̂
−1
0 (1− p)).
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Smooth kernel estimate of ROC curve

Estimates of F0 and F1:

F̂j,hj
(x) =

1

nj

nj∑

i=1

W

(
x−Xj,i

hj

)
, j = 0, 1

Kernel formula I

R̂(p) = 1− F̂1,h1(F̂
−1
0,h0

(1− p)), 0 ≤ p ≤ 1, hj = O(n
−1/3
j ), j = 0, 1

Estimates of optimal bandwidths for F̂j , j = 0, 1 need not to be optimal for

R̂(p).

Kernel formula II.

R̂(p) = F̂V,h1(p) =
1

n1

n1∑

i=1

W

(
p− (1− F̂0(X1,i))

h̃1

)

F̂0,h0(X1,i) =
1

n0

n0∑

j=1

W

(
X1,i −X0,j

h0

)
, W (x) =

x∫

−1

K(t)dt

Receiver Operating Characteristic (ROC) Curve:A Tool for Describing and ComparingContinuous Diagnostic Tests – p. 21



Problems with bandwidth selection

F̂h(x) =
1

n

n∑

i=1

W

(
x− Zi

h

)
, W (x) =

x∫

−1

K(t)dt

Mean Integrated Square Error (E denotes an expectation)

MISE(F̂h) =

∫
E(F̂h(x)− F (x))2dx,

Optimal bandwidth minimizing MISE(F̂h) provided that F ∈ C2:

hopt = n−1/3

(
c1

β2
2ψ2

)1/3

c1 =

1∫

−1

W (x)(1−W (x))dx > 0, β2 =

1∫

−1

x2K(x)dx, ψ2 =

∫
(F ′′(x))2dx
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Methods for estimation of the optimal bandwidth:

• Terrell and Scott (1985), Terrell (1990) – maximal smoothing principle

• Sarda (1993) – a cross-validation method

• Altman and Léger (1995), Zhou and Harezlak (2002) – a method of the

reference (Gaussian) density

• Lloyd and Yong (1999) – a more complex selection of bandwidth,

procedure based on two-stage plug-in method

• Zhou et al. (2002) – the bandwidths optimal for densities estimates

• Hall and Hyndman (2003) – a method allows interaction between

distribution for each group

• Peng and Zhou (2004) – a method is based on local linear smoothing

• Horová and Zelinka (2007) – an iterative method

• Horová et al. (2007)

Receiver Operating Characteristic (ROC) Curve:A Tool for Describing and ComparingContinuous Diagnostic Tests – p. 23



Simulations
Normal data
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- - - Kernel formula I h0 = 0.8595, h1 = 0.6781

––– Kernel formula II h0 = 0.8595, h̃1 = 0.0982
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Exponential data
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––– Kernel formula II h0 = 0.3424, h̃1 = 0.0010
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Simulation study

We generated 1000 random samples of normally distributed random variables

for testing the quality of kernel estimates of ROC curve: X0,i ∼ N(0, 1), X1,i ∼
N(1.5, 05), i = 1, . . . 100. Following figures present the bounds (yellow area)

containing all estimates of ROC curve for the both kernel formulae (dashed

blue lines) and the true ROC curve (solid red line), as well.
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Summary ROC measures

• Area under ROC curve (AUC)

• Partial area under ROC curve (PAUC)

• Specificity corresponding to maximum improvement of sensitivity (MIS)
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Area under curve

• The most common used global index of diagnostic accuracy is the area

under the ROC curve – AUC

• The area under the ROC curve is the probability that a pair of individuals

known to be from different groups will be correctly classified.

AUC(R(p)) =

1∫

0

R(p)dp

• A simple calculation shows that the area under ROC curve is exactly

equal to the probability P (X0 < X1):

AUC(R(p)) = P (X0 < X1)

• Values of AUC close to 1.0 indicate that the test has high diagnostic

accuracy
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Empirical AUC

The empirical AUC: calculate the trapezoidal area under each vertical slice

of an empirical ROC curve having a straight-line segment as its top; then sum

all individual areas.

ÃUCemp = 1
n0n1

n1∑

i=1

n0∑

j=1

Ψ(X0j , X1i)

where X01,. . . ,X0n0 and X11,. . . ,X1n1 are independent samples from F0 and

F1, respectively and

Ψ(X0j, X1i) =





1 X1i > X0j,

1
2 X1i = X0j

0 otherwise,

j = 0, 1

i = 1, . . . , nj .

Remark: It is analogous to the Mann-Witney U -statistics.
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AUC for binormal model

• X (a diagnostic test variable) −→ fX(x) = α0f0(x) + α1f1(x)

fj(x) =
1

σj
√
2π

e
−

(x−µj )2

2σ2
j , j = 0, 1 .

R(p) = Φ
(
a+ bΦ−1(p)

)
, a =

µ1 − µ0

σ1
, b =

σ0

σ1

AUC = Φ

(
a√

1 + b2

)

• Φ – standard normal distribution function
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Nonparametric methods of estimates of AUC

Composite trapezoidal rule

The estimates of F0 and F1 are evaluated in some set {xr ∈ R; r = 0 . . . N},

mostly xr = x0 + r t, t > 0.

The kernel estimate R̂ of the ROC curve is formed by pairs of points [pr, R̂(pr)]

where
pr = 1− F̂0(xr), R̂(pr) = 1− F̂1(xr), r = 0, . . . , N.

pr is non-increasing in r. The composite trapezoidal rule yields

ÂUC =
N∑

r=1

1

2
(pr−1 − pr)

(
R̂(pr−1) + R̂(pr)

)
=

=
1

2

N∑

r=1

(
F̂0,h0(xr)− F̂0,h0(xr−1)

)(
2− F̂1,h1(xr−1)− F̂1,h1(xr)

)
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The 1st method of kernel estimation of AUC (Kernel 1)

In terms of distribution function AUC can be expressed as

AUC = P (X0 < X1) = P (X0 −X1 < 0) = FX0−X1(0) = F c(0),

where F c = FX0−X1 is a distribution function of a random variable Y = X0 −
X1. Then a kernel estimate of F c is

F̂ c
h0,h1

(x) = 1
n0n1

n1∑

i=1

n0∑

j=1

W

(
x−(X0j−X1i)√

h2
0+h2

1

)
,

where h0 and h1 are the bandwidths for F0 and F1, respectively (Lloyd 1998).

Hence the kernel estimate ÂUCI of AUC is given by

ÂUCI = F̂ c
h0,h1

(0) = 1
n0n1

n1∑

i=1

n0∑

j=1

W

(
X1i−X0j√

h2
0+h2

1

)
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The 2nd method of kernel estimation of AUC (Kernel 2)

An estimate of F c by means of the only bandwidth h, i. e.

F̂ c
h(x) =

1
n0n1

n1∑

i=1

n0∑

j=1

W
(

x−(X0j−X1i)
h

)
,

and

hF
c

opt = (n0n1)
−1/3

(
c1

β2
2ψ

c
2

)1/3

, hF
c

opt ≈ O((n0n1)
−1/3),

where

ψc
2 =

∫ (
F c′′(x)

)2
dx,

ÂUCII = F̂ c
h(0) =

1
n0n1

n1∑

i=1

n0∑

j=1

W
(

X1i−X0j

h

)
.
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The 3rd method of kernel estimation of AUC (Kernel 3)

This method uses the Kernel formula II for ROC estimate.

We get by direct integration:

ÂUCIII =

1∫

0

R̂(p)dp =

1∫

0

F̂V,h1(p)dp =

=
1

n1

n1∑

i=1

1∫

0

W

(
p− (1− F̂0(X1,i))

h̃1

)
dp

F̂0,h0(X1,i) =
1

n0

n0∑

j=1

W

(
X1,i −X0,j

h0

)
, W (x) =

x∫

−1

K(t)dt

This method is usefull for evaluating the Partial Area Under Curve.
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Partial area under ROC curve

AUC: the average performance over the entire range of possible sensitivities

and specificities.

Problems:

• Two different curves can provide the same area

• Not all regions of the ROC curve have the equal clinical importance

• Clinical relevant sensitivities or specificities are often somewhere away

from the ends of the ROC curve

• PAUC – a partial area under curve, i.e. area between two specificities or

sensitivities

PAUCI =

p2∫

p1

R(p)dp, pi = 1− F0(ci), i = 1, 2

between two specificities

PAUCII =

p̃2∫

p̃1

R(p)dp, p̃i = 1− F0(F
−1
1 (1− q̃i)), i = 1, 2

between two sensitivities q̃1, q̃2

The choice of the appropriate ranges depends on clinical settings.
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Maximum improvement of sensitivity over chance diagonal (MIS)

MIS – the maximum difference in observed sensitivity and sensitivity at chance

diagonal over all values of specificity.

The corresponding (1-specificity) is denoted by pMIS
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A different point of view:

Assume R(p) is concave. pMIS is defined as argument of maximum of the

function Q(p) = R(p)− p, i.e. zero of Q′(p):

Q′(p) = R′(p)− 1, R′(p) =
f1(c)

f0(c)
, c = F−1

0 (1− p)

Q′(p) = 0 :
f1(θ)

f0(θ)
= 1 ⇒ f1(θ) = f0(θ)
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θ

θ = F−1
0 (1− pMIS), pMIS = 1− F−1

0 (θ)

R′′(p) < 0 ⇒ pMIS realizes the maximum of Q(p) = R(p)− p.

Explanation: pMIS is such a point where a tangent to the ROC curve has a

slope equal to 1.
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Application for real data

Leukaemia data

(Data provided by Faculty Hospital Brno)

Fusion gene (FG) is the most common chromosomal aberration in acute

leukaemias. Detectable FG at the end of induction therapy predict relapse

with a high probability. However, detection of it with sensitivity of at least one

malignant cell among 10 000 normal cells is not successful in all patients.

Wilms Tumour Gene (WT1) is a tumour suppressor gene, expressed in ma-

lignant and normal hematopoietic progenitor cells. Because WT1 has been

shown to be expressed in the vast majority of patients with acute leukaemias,

the relevance of WT1 mRNA expression regarding prognosis and possible

prediction of relapse was investigated.

The WT1 expression and FG occurrence was followed in CD34+ peripheral

blood progenitor cells collected from 59 leukemic patients in the first remission.

29 patients were in group G0 (without FG) and 30 in group G1.

The question: Does higher expression of WT1 indicate FG occurrence?
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Leukaemia data
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Head trauma data

(Source of the data: see Zhou et al. 2002)

The bi-normal model and the kernel method were used for processing of the

second real data set. We consider the use of CK–BB isoenzyme measured

within 24 hours of injury for predicting the outcome of severe head trauma.

We are interested in determining which patients have a poor outcome after

suffering a severe head trauma.

60 patients: 19 had moderate to full recovery and 41 eventually had poor or

no recovery.

We use the ROC curve to assess the discrimination between patients with and

without a poor outcome.

Question: Is CK–BB isoenzyme a good predictor of the outcome?

The data don’t satisfy the conditions of normality and the bi-normal model

gives worse results in this case. For improvement of them some transforma-

tion of the data (logarithmic, Box-Cox) should be used.
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Head trauma data
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Pancreatic cancer data

(Source of the data: see Zhou and Hazerlak 2002)

The kernel methods were applied to real data set from Mayo Clinic, where sera

from group of 51 ‘control’ patients with pancreatitis and 90 ‘case’ patients with

pancreatic cancer were studied with a carbohydrate antigen assay (CA19-9).

We study a relative accuracy of biomarker CA19-9 for 90 patients with

condition and 51 patients without condition.
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Pancreatic cancer data
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Salmon data
(Source of the data: see Johnson and Wichern 1992)

The salmons have a remarkable life cycle. They are born in freshwater

streams and after a year or two swim into the ocean. After a couple of years in

saltwater they return to their, place of birth to spawn and die. At the time they

are about to return as mature fish, they are harvested while still in the ocean.

To help regulate catches samples of fish taken during the harvest must be

identified, as coming from Alaskan or Canadian waters. The fish carry some

information about their birth place in the growth rings on their scales. Typically,

the rings associated with freshwater growth are smaller for the Alaskan-born

than for the Canadian-born salmon.

X0: diameter of rings for the first-year freshwater growth for the Alaskan-born

salmons (hundredths of an inch)

X1: diameter of rings for the first-year freshwater growth for the Canadian-born

salmons (hundredths of an inch)

Samples of sizes n0 = n1 = 50

Question: Is the diameter of rings for the first-year freshwater growth

suitable indicator of the origin of the salmon?
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Salmon data
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Hurricanes Data

(Source of the data:

http://sunsite.univie.ac.at/textbooks/statistics/stclatre.html)

Suppose you have records of the Longitude and Latitude coordinates at which

37 storms reached hurricane strength for two classifications of hurricanes -

Baro hurricanes and Trop hurricanes. The fictitious data were presented for

illustrative purposes by Elsner, Lehmiller, and Kimberlain (1996), who inves-

tigated the differences between baroclinic and tropical North Atlantic hurri-

canes.

The Longitude coordinates were taken as the response variable X for the first

ROC curve and the Latitude coordinates for the second one.

X0: Longitude (Latitude) coordinates for Trop hurricanes

X1: Longitude (Latitude) coordinates for Baro hurricanes

Question: Are Longitude or Latitude coordinates usable for classifica-

tion of the hurricanes?
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Hurricanes Data – Longitude coordinates
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Hurricanes Data – Latitude coordinates
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Conclusion

The ROC curves have found useful application in diagnostic medicine.

Ongoing development in ROC analysis will address more complex types of

diagnostic situations and will likely expand the applicability of ROC analysis.
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