# **Credit Scoring Models and their Quality**

Jan Koláček, Martin Řezáč

Department of Mathematics and Statistics Faculty of Science Masaryk University Brno, Czech Republic www.muni.cz





1

## Contents

- Introduction
- Quality indexes
- Proposed index
- Simulation study
- Example
- References



## **Credit Scoring Model**

#### **Construction of the test**

- $\mathcal{G}_0$  group of  $n_0$  bad clients
- $\mathcal{G}_1$  group of  $n_1$  good clients
- S the score for each client (one-dimensional absolutely continuous random variable)
- D = 0, 1 random variable denotes bad or good client
- c given cutoff point,  $c \in \mathbb{R}$
- The client is classified as  $\mathcal{G}_1$  if  $S\geq c$  and  $\mathcal{G}_0$  otherwise for given cutoff point c



## Measure of Diagnostic Accuracy

- T = 1 positive test result
- T = 0 negative test result

#### **Test results: Confusion matrix**

|                         | Positive test, $T = 1$ | Negative test, $T = 0$ | Total           |
|-------------------------|------------------------|------------------------|-----------------|
| $\mathcal{G}_1 \ (D=1)$ | True positive $(TP)$   | False negative $(FN)$  | TP + FN         |
| $\mathcal{G}_0 \ (D=0)$ | False positive $(FP)$  | True negative $(TN)$   | FP + TN         |
| Total                   | TP + FP                | FN + TN                | $n = n_0 + n_1$ |



The sensitivity (Se) of the test is its ability to detect good client when he is good. Se = P(T = 1 | D = 1) is a probability P that the test result is positive (T = 1), given that the client is good (D = 1).

The specificity (Sp) of the test is its ability to exclude the solidity of client when it is absent. Sp = P(T = 0|D = 0) is a probability P that the test result is negative (T = 0), given that the client is bad (D = 0).

#### **Extreme models**

Ideal model: Se = Sp = 1Random model: Se = Sp = 1/2.



## Notation

Assume the realization  $s \in \mathbb{R}$  of random value S (score) is available for each client.

Let  $F_0, F_1$  denote cumulative distribution functions of score of bad and good clients, i.e.

> $F_0(a) = P(S \le a \mid D = 0),$  $F_1(a) = P(S \le a \mid D = 1), \ a \in \mathbb{R}.$

Assumption:  $F_0, F_1$  and their corresponding densities  $f_0, f_1$  are continuous on  $\mathbb{R}$ .



#### **Practice**

Empirical estimators of distribution functions

$$\widehat{F}_{0}(a) = \frac{1}{n_{0}} \sum_{i=1}^{n} I(s_{i} \le a \land D = 0)$$
$$\widehat{F}_{1}(a) = \frac{1}{n_{1}} \sum_{i=1}^{n} I(s_{i} \le a \land D = 1), \ a \in [L, H],$$

where

$$\begin{split} I(A) & \dots & \text{the indicator of event } A \\ s_i & \dots & \text{the score of } i\text{-th client} \\ n_0, & n_1 & \dots & \text{number of bad and good clients, } n = n_0 + n_1 \\ L & \dots & \text{the minimum value of given score} \\ H & \dots & \text{the maximum value of given score} \end{split}$$



### Lorenz curve

The curve is given parametrically by

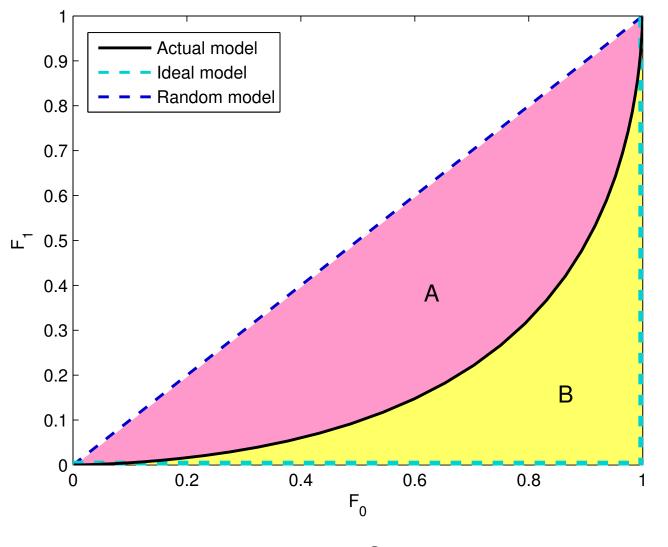
$$x = F_0(a)$$

$$y = F_1(a), \ a \in \mathbb{R}.$$

Notation: 
$$x = F_0(a), \ R(x) = F_1(F_0^{-1}(x))$$

we can write the Lorenz curve as  $R(x), x \in [0, 1]$ .





Lorenz curve, Gini index

## Gini index

#### Definition

$$Gini = \frac{A}{A+B} = 2A,$$

where

A ... area between the diagonal and Lorenz curve for actual model A+B ... area between the diagonal and Lorenz curve for ideal model

#### Properties

 $Gini \in [0, 1]$ random model  $\Rightarrow Gini = 0$ ideal model  $\Rightarrow Cini = 1$ 

ideal model  $\Rightarrow$  Gini = 1



## **Kolmogorov-Smirnov statistics**

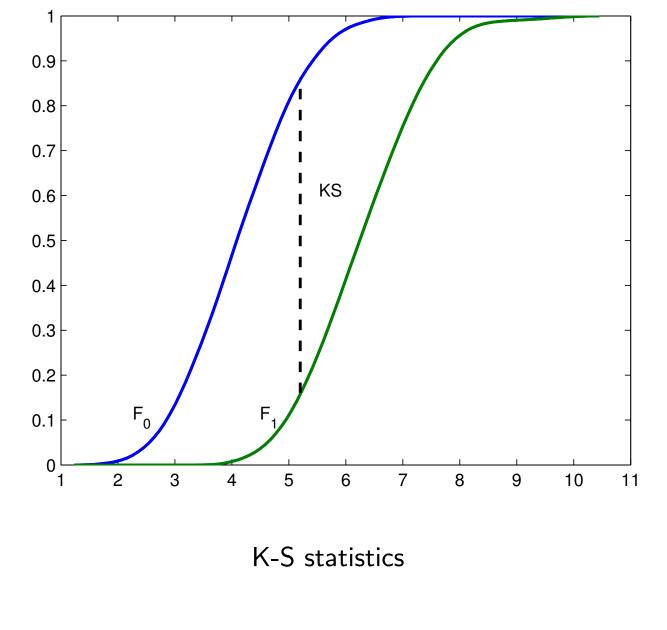
Definition

$$KS = \max_{a \in \mathbb{R}} |F_0(a) - F_1(a)|.$$

**Remark** In context with notation R(x) for the Lorenz curve we can express K-S statistics as

$$KS = \max_{x \in [0,1]} |x - R(x)|.$$





## The Lift, QLift

#### Definition

$$Lift(a) = \frac{P(D=0 \mid S \le a)}{P(D=0)} = \frac{P(S \le a \mid D=0)}{P(S \le a)} = \frac{F_0(a)}{F_{ALL}(a)},$$

where

$$F_{ALL}(a) = P(S \le a) = P(S \le a \land D = 0) + P(S \le a \land D = 1).$$

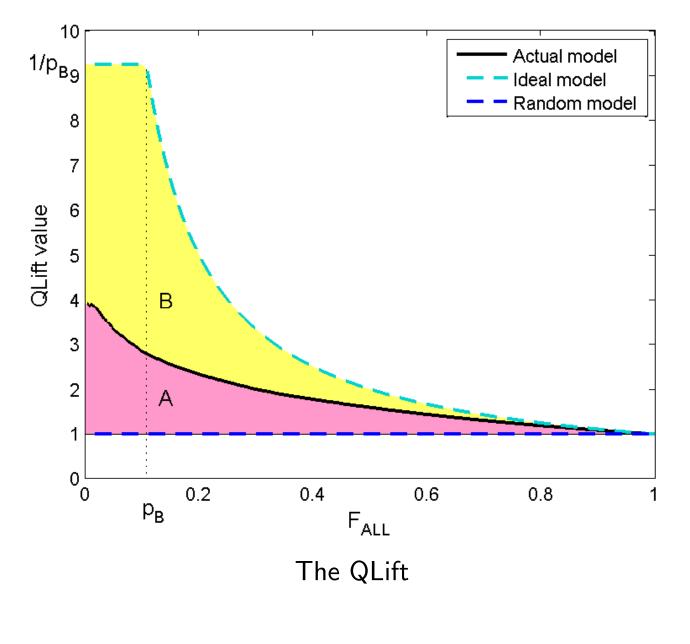
If we denote  $p_B = P(D = 0)$ , we can write

$$Lift(a) = \frac{F_0(a)}{p_B F_0(a) + (1 - p_B) F_1(a)}, \quad a \in \mathbb{R}.$$

*Remark* The transformation  $q = F_{ALL}(a)$  leads to QLift

$$QLift(q) = \frac{1}{q}F_0(F_{ALL}^{-1}(q)), \ q \in (0,1],$$





## Lift Ratio

As analogy to Gini index, we can choose a similar approach to derive the Lift Ratio (LR) index for Lift

$$LR = \frac{\int_{0}^{1} QLift(q) \, dq - 1}{\int_{0}^{1} QLift_{ideal}(q) \, dq - 1} = \frac{A}{A + B},$$

where  $QLift_{ideal}(q)$  represents the value of QLift(q) for the case of ideal model.

For more detailed description of LR index, see Řezáč and Koláček [3].



## **Proposed index**

Let  $a \in \mathbb{R}$  be a cut-off point. Let us consider the classical contingency table of given discrimination problem

|   |                          |                              | $\Sigma$ |
|---|--------------------------|------------------------------|----------|
|   | P(S > a   D = 1)P(D = 1) | $P(S \le a   D=1)P(D=1)$     | $n_{1.}$ |
|   | P(S > a   D = 0)P(D = 0) | $P(S \le a   D = 0)P(D = 0)$ | $n_2$ .  |
| Σ | $n_{\cdot 1}$            | $n_{\cdot 2}$                | 1        |



We can express the probabilities in the table by cumulative distribution functions  $F_0$ ,  $F_1$ . The table takes the form

|   |                         |                   | $\Sigma$ |
|---|-------------------------|-------------------|----------|
|   | $(1 - F_1(a))(1 - p_B)$ | $F_1(a)(1 - p_B)$ | $n_1$ .  |
|   | $(1-F_0(a))p_B$         | $F_0(a)p_B$       | $n_2$ .  |
| Σ | $n_{\cdot 1}$           | $n_{\cdot 2}$     | 1        |

*Pearson's Chi-square test* of independence for contingency table:

$$\chi^{2}(a) = \frac{(n_{11}n_{22} - n_{12}n_{21})^{2}}{n_{\cdot 1}n_{\cdot 2}n_{1\cdot n_{2\cdot}}}$$
$$= \frac{(F_{0}(a) - F_{1}(a))^{2}}{(F_{0}(a) - F_{1}(a))^{2} + \frac{1}{p_{B}}F_{1}(a)(1 - F_{1}(a)) + \frac{1}{1 - p_{B}}F_{0}(a)(1 - F_{0}(a))}$$



----- 4-2

The value  $\chi^2(a)$  describes the power of dependence of both groups (good and bad clients) for given score value a.

**Definition** The proposed index *KR* 

$$KR = \max_{a \in \mathbb{R}} \chi^2(a).$$

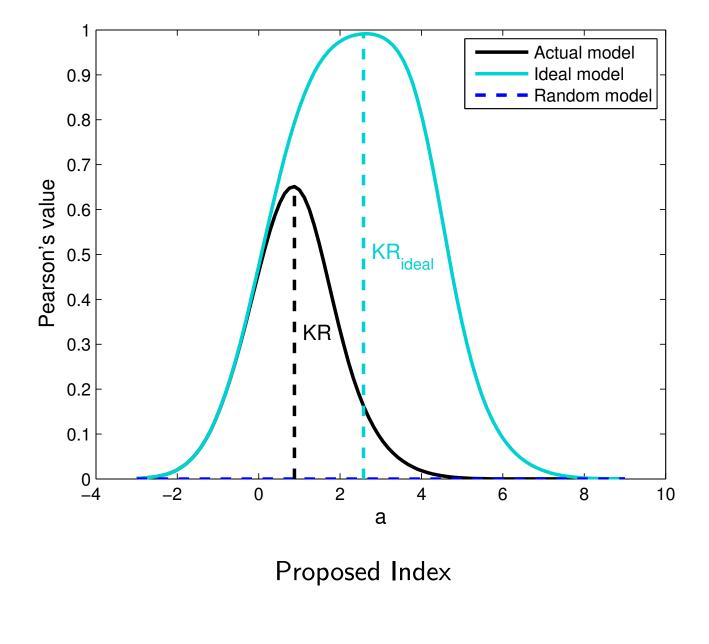
*Properties* of  $\chi^2(a)$ :

•  $\chi^2(a) \in [0,1], \quad \forall a \in \mathbb{R}$ 

• 
$$\chi^2(a) \to 0$$
 for  $a \to \pm \infty$ 

- For ideal model  $\Rightarrow \exists a \in \mathbb{R}$  such that  $\chi^2(a) = 1$
- For random model  $\chi^2(a) = 0, \ \forall a \in \mathbb{R}$

The KR index is a type of "generalization" of KS index. However, it takes some advantages. Moreover, it reflects the proportion of bad clients, so it gives more information about actual model then KS index.



## **Simulation Study**

#### **Parameters of simulation**

- distribution of bad clients  $N(\mu_0, \sigma^2)$
- distribution of good clients  $N(\mu_1, \sigma^2)$
- $\mu_0 < \mu_1$

Let us define Mean Difference D (Mahalanobis distance)

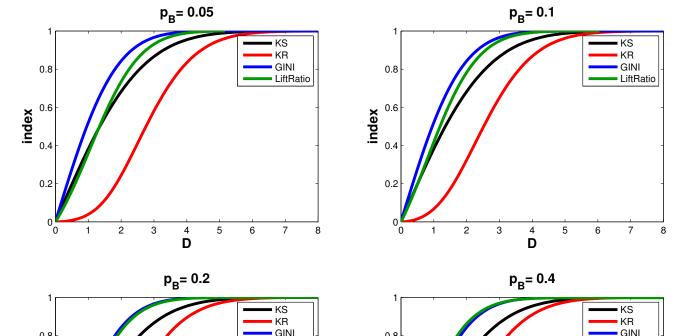
$$D = \frac{\mu_1 - \mu_0}{\sigma}.$$

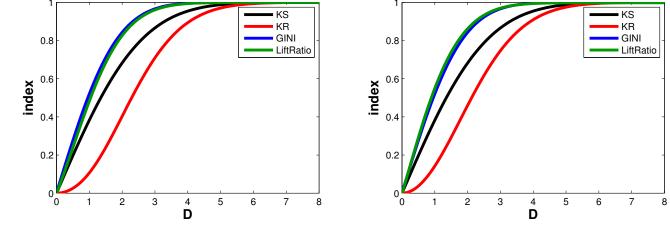
It describes the difference between score of groups of bad and good clients. It takes values from 0 to  $\infty$ . In our simulation study, we have calculated all quality indexes for each value of D.

Four cases of models:

$$p_B = 0.05, 0.1, 0.2, 0.4.$$







Dependence on D for all indexes.

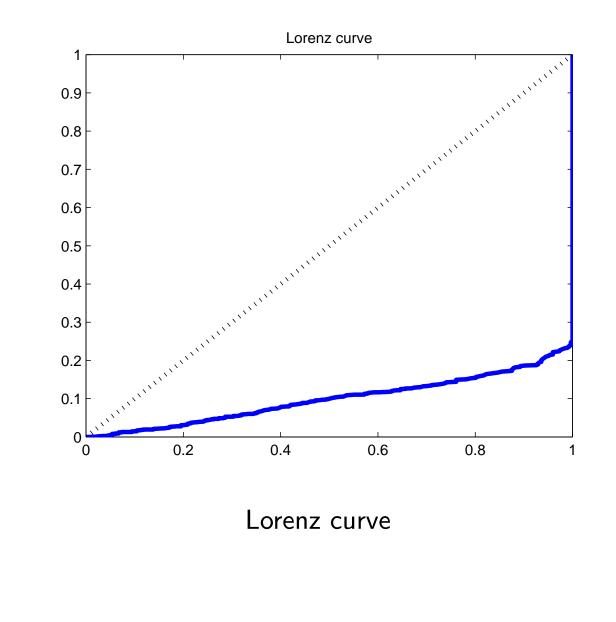
### **Real data**

#### **Consumer loans data**

- The use of some (not specified) scoring function for predicting the likelihood of repayment of a client.
- We are interested in determining which clients are able to repay their loans.
- A test set: 2327 clients 2030 have repaid their loans (group G₁) and 297 had problems with payments or did not pay (group G₀). Thus p<sub>B</sub> ≐ 0.13.
- We use mentioned indexes to assess the discrimination power of given scoring function.

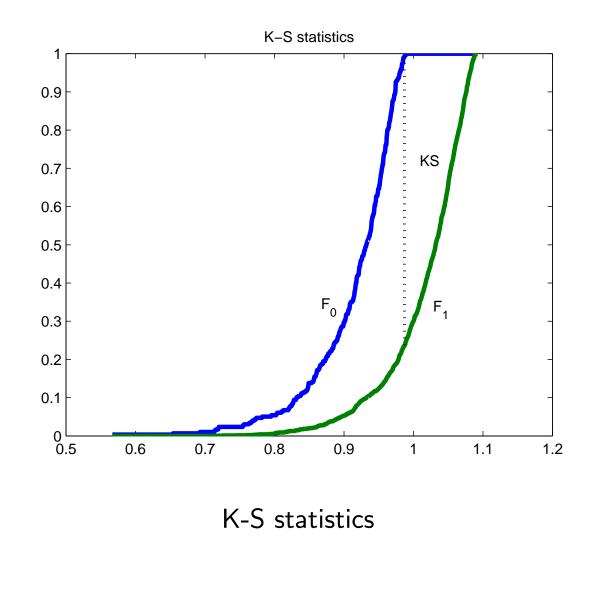


#### The empirical estimate of Lorenz curve, Gini = 0.803



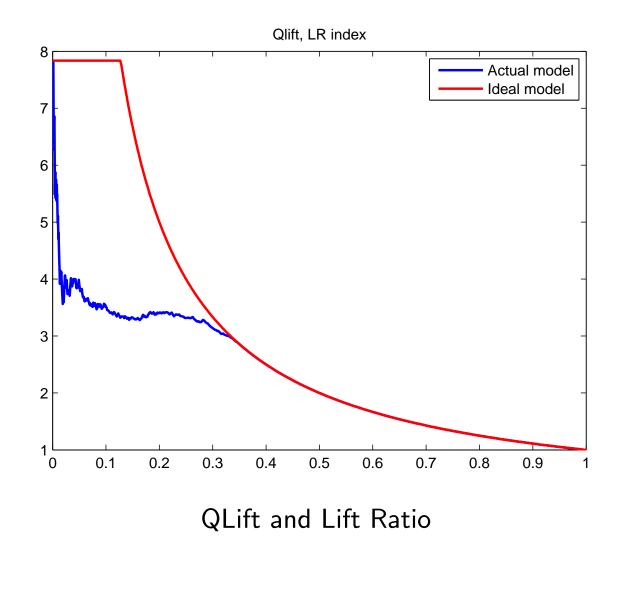


#### The empirical estimates of $F_0$ , $F_1$ , KS = 0.757

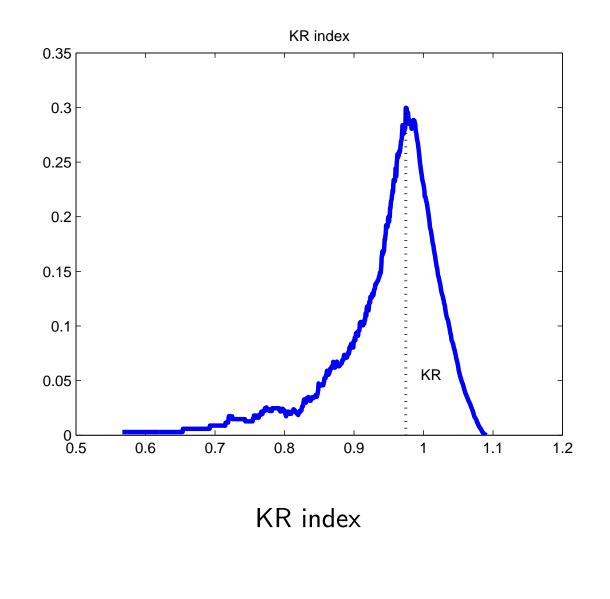




#### The empirical estimate of QLift, LR = 0.615









#### **Summary of measures**

|                    | Gini  | K–S   | LR    | KR    |
|--------------------|-------|-------|-------|-------|
| Index for the data | 0.803 | 0.757 | 0.615 | 0.300 |

#### Conclusions

- all described indexes are widely used in practice
- we developed a new approach to measure power of scoring models
- the proposed index is more conservative



## References

- Anderson, R. The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk Management and Decision Automation. Oxford University Press, Oxford, 2007.
- [2] Hand, D.J., Henley, W.E. Statistical Classification Methods in Consumer Credit Scoring: a review. *Journal of the Royal Statistical Society*, Series A. 160 (3), 523-541, 1997.
- [3] Řezáč, M., Koláček, J. On Aspects of Quality Indexes for Scoring Models. 19th International Conference on Computational Statistics, Paris France, August 22-27, 2010 Keynote, Invited and Contributed Papers 1, 1517-1524, 2010.
- [4] Siddiqi, N. Credit Risk Scorecards: developing and implementing intelligent credit scoring. Wiley, New Jersey, 2006.



- [5] Thomas, L.C. A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers. *International Journal of Forecasting* 16 (2), 149-172, 2000.
- [6] Thomas, L.C. *Consumer Credit Models: Pricing, Profit, and Portfolio.* Oxford University Press, Oxford, 2009.
- [7] Thomas, L.C., Edelman, D.B., Crook, J.N. Credit Scoring and Its Applications. SIAM Monographs on Mathematical Modeling and Computation, Philadelphia, 2002.
- [8] Xu, K. How has the literature on Gini's index evolved in past 80 years?. *economics.dal.ca/RePEc/dal/wparch/howgini.pdf*, 2003.
  Accessed on 1 December 2009.



7 - 2