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INTRODUCTION 2 - 1

Credit Scoring Model

Construction of the test

• G0 group of n0 bad clients

• G1 group of n1 good clients

• S – the score for each client (one-dimensional absolutely
continuous random variable)

• D = 0, 1 random variable denotes bad or good client

• c – given cutoff point, c ∈ R

• The client is classified as G1 if S ≥ c and G0 otherwise for given
cutoff point c
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Measure of Diagnostic Accuracy

• T = 1 positive test result

• T = 0 negative test result

Test results: Confusion matrix

Positive test, T = 1 Negative test, T = 0 Total

G1 (D = 1) True positive (TP ) False negative (FN) TP + FN

G0 (D = 0) False positive (FP ) True negative (TN) FP + TN

Total TP + FP FN + TN n = n0 + n1
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The sensitivity (Se) of the test is its ability to detect good client when
he is good. Se = P (T = 1|D = 1) is a probability P that the test
result is positive (T = 1), given that the client is good (D = 1).

The specificity (Sp) of the test is its ability to exclude the solidity of
client when it is absent. Sp = P (T = 0|D = 0) is a probability P that
the test result is negative (T = 0), given that the client is bad
(D = 0).

Extreme models
Ideal model: Se = Sp = 1
Random model: Se = Sp = 1/2.
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Notation

Assume the realization s ∈ R of random value S (score) is available for
each client.
Let F0, F1 denote cumulative distribution functions of score of bad
and good clients, i.e.

F0(a) = P (S ≤ a |D = 0),

F1(a) = P (S ≤ a |D = 1), a ∈ R.

Assumption: F0, F1 and their corresponding densities f0, f1 are
continuous on R.
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Practice
Empirical estimators of distribution functions

F̂0(a) = 1
n0

n∑
i=1

I(si ≤ a ∧D = 0)

F̂1(a) = 1
n1

n∑
i=1

I(si ≤ a ∧D = 1), a ∈ [L,H],

where

I(A) . . . the indicator of event A

si . . . the score of i-th client

n0, n1 . . . number of bad and good clients, n = n0 + n1

L . . . the minimum value of given score

H . . . the maximum value of given score
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Lorenz curve

The curve is given parametrically by

x = F0(a)

y = F1(a), a ∈ R.

Notation: x = F0(a), R(x) = F1(F
−1
0 (x))

we can write the Lorenz curve as R(x), x ∈ [0, 1].
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Gini index

Definition

Gini =
A

A+B
= 2A,

where
A . . . area between the diagonal and Lorenz curve for actual model

A+B . . . area between the diagonal and Lorenz curve for ideal model

Properties

Gini ∈ [0, 1]
random model ⇒ Gini = 0

ideal model ⇒ Gini = 1
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Kolmogorov-Smirnov statistics

Definition

KS = max
a∈R

|F0(a)− F1(a)| .

Remark In context with notation R(x) for the Lorenz curve we can
express K-S statistics as

KS = max
x∈[0,1]

|x−R(x)| .
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The Lift, QLift

Definition

Lift(a) =
P (D = 0 |S ≤ a)

P (D = 0)
=
P (S ≤ a |D = 0)

P (S ≤ a)
=

F0(a)
FALL(a)

,

where

FALL(a) = P (S ≤ a) = P (S ≤ a ∧D = 0) + P (S ≤ a ∧D = 1).

If we denote pB = P (D = 0), we can write

Lift(a) =
F0(a)

pBF0(a) + (1− pB)F1(a)
, a ∈ R.

Remark The transformation q = FALL(a) leads to QLift

QLift(q) =
1
q
F0(F

−1
ALL(q)), q ∈ (0, 1],
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The QLift

AS2011 Ribno, September 25th − 28th, 2011



QUALITY INDEXES 3 - 8

Lift Ratio

As analogy to Gini index, we can choose a similar approach to derive
the Lift Ratio (LR) index for Lift

LR =

∫ 1
0 QLift(q) dq − 1∫ 1

0 QLiftideal(q) dq − 1
=

A

A+B
,

where QLiftideal(q) represents the value of QLift(q) for the case of
ideal model.

For more detailed description of LR index, see Řezáč and Koláček [3].

AS2011 Ribno, September 25th − 28th, 2011



PROPOSED INDEX 4 - 1

Proposed index

Let a ∈ R be a cut-off point. Let us consider the classical contingency
table of given discrimination problem

Σ

P (S>a|D=1)P (D=1) P (S≤a|D=1)P (D=1) n1·

P (S>a|D=0)P (D=0) P (S≤a|D=0)P (D=0) n2·

Σ n·1 n·2 1
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We can express the probabilities in the table by cumulative distribution
functions F0, F1. The table takes the form

Σ

(1−F1(a))(1−pB) F1(a)(1−pB) n1·

(1−F0(a))pB F0(a)pB n2·

Σ n·1 n·2 1

Pearson’s Chi-square test of independence for contingency table:

χ2(a) = (n11n22−n12n21)2
n·1n·2n1·n2·

= (F0(a)−F1(a))2

(F0(a)−F1(a))2+ 1
pB

F1(a)(1−F1(a))+ 1
1−pB

F0(a)(1−F0(a))
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The value χ2(a) describes the power of dependence of both groups
(good and bad clients) for given score value a.

Definition The proposed index KR

KR = max
a∈R

χ2(a).

Properties of χ2(a):

• χ2(a) ∈ [0, 1], ∀a ∈ R

• χ2(a)→ 0 for a→ ±∞

• For ideal model ⇒ ∃a ∈ R such that χ2(a) = 1

• For random model χ2(a) = 0, ∀a ∈ R

The KR index is a type of “generalization” of KS index. However, it
takes some advantages. Moreover, it reflects the proportion of bad
clients, so it gives more information about actual model then KS
index.
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Simulation Study

Parameters of simulation

• distribution of bad clients N(µ0, σ
2)

• distribution of good clients N(µ1, σ
2)

• µ0 < µ1

Let us define Mean Difference D (Mahalanobis distance)

D =
µ1 − µ0

σ
.

It describes the difference between score of groups of bad and good
clients. It takes values from 0 to ∞. In our simulation study, we have
calculated all quality indexes for each value of D.

Four cases of models:

pB = 0.05, 0.1, 0.2, 0.4.
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Real data

Consumer loans data

• The use of some (not specified) scoring function for predicting the
likelihood of repayment of a client.

• We are interested in determining which clients are able to repay
their loans.

• A test set: 2327 clients – 2030 have repaid their loans (group G1)
and 297 had problems with payments or did not pay (group G0).
Thus pB

.
= 0.13.

• We use mentioned indexes to assess the discrimination power of
given scoring function.

AS2011 Ribno, September 25th − 28th, 2011



EXAMPLE 6 - 2

The empirical estimate of Lorenz curve, Gini = 0.803
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EXAMPLE 6 - 3

The empirical estimates of F0, F1, KS = 0.757
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EXAMPLE 6 - 4

The empirical estimate of QLift, LR = 0.615
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The empirical estimate of χ2, KR = 0.300
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EXAMPLE 6 - 6

Summary of measures

Gini K–S LR KR

Index for the data 0.803 0.757 0.615 0.300

Conclusions

• all described indexes are widely used in practice

• we developed a new approach to measure power of scoring models

• the proposed index is more conservative
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