

Orion Nebula, Distance about 450 pc, Total Mass about 5000 M(sun), Diameter about 3 pc

M11, NGC 6705: Total Mass About 10000 M(sun), 200 Myr

Cluster formation

- Observations versus Models
- Important parameters
 - 1. Time scale
 - 2. Total mass
 - 3. Initial Mass Function
 - 4. Velocity distribution
 - 5. Binary fraction
 - 6. Diameter
 - 7. Density distribution

Distribution of young open clusters and star forming regions from Alfaro et al., 2009, Ap&SS, 324, 141

Distribution of star forming regions from Preibisch & Mamajek, 2008, Handbook of Star Forming Regions, Volume II

Stars hotter than B0 and B0 to B2

Giant Molecular Clouds

- Star Clusters can only form within "Giant Molecular Clouds" (GMC) with a high enough initial mass
- The stellar formation rate in the solar neighborhood is very low
- But still there have to exist several GMCs to form Star Clusters
- Is the formation process the same for all observed Galaxy types?

Giant Molecular Clouds

Recent investigation of the ¹³CO Gas within 2000 pc around the Sun

The number of young OCLs can be very well explained

Formation rate of 0.45 OCLs per kpc⁻² Myr⁻¹ in the galactic disk within 2 kpc around the Sun

Battinelli & Capuzzo-Dolcetta, 1991, MNRAS, 248, 76

NGC 6611 (M16)

d = 1750 pc t = 8 Myr

Star formation "live"

Gaseous Pillars · M16

PRC95-44a · ST Scl OPO · November 2, 1995 J. Hester and P. Scowen (AZ State Univ.), NASA

Initial Mass Function

- The "Initial Mass Function" (IMF) describes the mass distribution for a population of stars when they are formed together
- Relevant astrophysics:
 - 1. Size, total mass and metallicity of the initial GMC
 - 2. Fragmentation of the GMC
 - 3. Conservation of the angular momentum
 - 4. Local and global magnetic fields
 - 5. Accretion in the Pre-Main Sequence phase
- The only observational parameter for the test of stellar formation and evolution models
- We observe a luminosity function which has to be transformed to the IMF

Initial Mass Function

- Several most important questions are still not solved
 - 1. Is the IMF homogeneous within the Milky Way?
 - 2. Is the IMF constant throughout time?
 - 3. What is the influence of the local and global magnetic field on the IMF?
 - 4. What is the influence of the local and global metallicity on the IMF?

Initial Mass Function

The IMF $\theta(m)$, often called "Present-Day Mass Function" (PDMF), is defined as:

 $dN = \theta(m) dm$

dN is the number of all stars per cubic parsec on the *main sequence* with a mass between M and (M + dm).

But we observe not the masses of stars but their magnitudes (relative and absolute) or luminosities.

So we have to define the luminosity function and transform it into the IMF.

In each row ($M_v + dM$) there is a mixture of main sequence and evolved objects. For the IMF, we need the main sequence only.

Luminosity function

The luminosity function $\Psi(M_v)$, is defined as:

 $dN = -\Psi(M_V) dM_V$

dN is is the number of all stars per cubic parsec on the main sequence with an absolute magnitude between M_v and $(M_v + dM_v)$. The transformation to the IMF is given as:

 $\theta(m) = -\Psi(M_v)[dm(M_v)/dM_v]^{-1}$

The second term is the derivation of the Mass-Luminosity function $m(M_V)$. It is depending on the age (t), metallicity (Z) and rotation (v_{rot})

Correction of the observations

We have to correct the complete observations for the evolved objects. There are three possibilities:

- 1. Take a statistical sample with a well known luminosity function (clusters)
- 2. Take a statistical sample with well known photometric magnitudes and distances
- Take isochrones = theoretical star evolution = models based on observations = circular argument

All these methods are not self consistent and always introduce an unknown error to the analysis

FRACTION f of MAIN-SEQUENCE STARS (Type Earlier than Sp_d)

	M_{ν}								
	-4.5	- 3.5	-2.5	-1.5	-0.5	+0.5	+1.5	+2.5	+3.5
Sp _d f	B0 0.10	B3 0.25	B6 0.48	B9 0.51	A1 0.43	A6 0.40	F0 0.60	F8 0.70	G7 0.90

Salpeter, 1955, ApJ, 121, 161

Results of classical spectral classification, only 10% of stars with $M_v = -4.5$ mag are on the main sequence!

These values are depending on the chosen sample for the spectral classification and which classification scheme is applied.

The errors are rather large.

All observations have to be normalized to one "standard system" which means essentially to one "time scale".

The observations show, that this heuristic law describes them very well

 $\theta(m) \approx m^{-\Gamma}$ Salpeter law (1955)

Star cluster are one of the most important observational test for the IMF because they, normally, have well defined ages, distances and metallicities. However, the errors are still quiet large.

But there is still no homogeneous IMF determination for open clusters taking into account the available data.

Bastian et al, 2010, Annual Review of Astronomy and Astrophysics, 48, 339

TYCHO2 data						
cluster	$(m - M)_0$					
	[mag]					
Blanco 1*	6.8					

cluster	($(m-M)_0$	E	B-V	t	\underline{d}	
		[mag]	[r	nag]	Myr	[′]	
Blanco 1*		6.8	(0.03	50	105	
Stock 2		7.5			100	260	
$\alpha \text{ Per}^*$		6.3	(0.09	20	255	
$Pleiades^*$		5.6	(0.05	75	300	
$\operatorname{NGC}2451A$	*	6.4	0	0.00	20	140	
IC 2391*		5.8	(0.00	20	110	
Praesepe*		6.0	(0.00	650	195	
IC 2602*		5.8	(0.03	10	185	
$\operatorname{NGC} 7092$		7.6	0	0.12	70	170	
cluster	#	Г		\max	range	V_T range	е
	stars			[M	[_☉]	[mag]	
Blanco 1	34	-2.27 ± 0.0	.70	[1.1;	[4.8]	[6.1; 11.4]	ł
Stock 2	204	-2.01 ± 0.01	.40	[1.5;	4.1]	[7.6; 11.0])]
α Per	70	-1.57 ± 0.5	.44	[1.1;	6.8]	[5.0; 10.5]	5]
Pleiades	127	-1.99 ± 0.00	.39	[1.0;	4.1]	[5.0; 10.9])]
m NGC2451A	27	-0.69 ± 0.00	.63	[1.3;	6.8]	[4.8; 10.0])]
IC 2391	29	-1.07 ± 0.00	.53	[1.1;	[8.1]	[3.5; 10.7]	[]
$\operatorname{NGC}7092$	25	-1.93 ± 1.00	24	[1.4;	[3.4]	[6.5; 9.9]]

Sanner & Geffert, 2001, A&A, 370, 87

Cluster	Mass range	Mass function slopes ($\Gamma \pm \sigma$)					
	(<i>M</i> ⊙)	Inner region	Outer region	Whole cluster			
Be 62	11.17-1.14	-0.89 ± 0.17	-2.10 ± 0.74	-1.88 ± 0.34			
NGC 1528	2.55-0.73	-1.96 ± 0.42	-2.17 ± 0.43	-2.10 ± 0.35			
NGC 1960	6.82 - 1.01	-1.25 ± 0.24	-1.99 ± 0.15	-1.80 ± 0.14			
NGC 2287	2.70-0.83	-1.35 ± 0.86	-1.22 ± 0.27	-1.22 ± 0.19			
NGC 2301	2.78-0.82	-0.85 ± 0.33	-1.56 ± 0.54	-1.34 ± 0.32			
NGC 2323	4.22-0.67	-1.69 ± 0.09	-2.28 ± 0.31	-2.01 ± 0.17			
NGC 2420	1.44-0.67	-0.93 ± 0.32	-1.50 ± 0.56	-1.30 ± 0.39			
NGC 2437	3.51-1.02	-1.72 ± 0.13	-2.30 ± 0.62	-2.03 ± 0.42			
NGC 2548	2.46-0.82	-1.11 ± 0.85	-1.02 ± 0.36	-1.12 ± 0.70			

Mass-Function Slope Γ for Two Subregions and for the Whole-Cluster Region in the Given Mass Range

Typical values and errors