The star clusters of the Milky Way

Emily L. Hunt | March 4th, 2024 | University of Vienna

Nomenclature: the Milky Way's star clusters

Open clusters

Bound, $\lesssim 10^4~\text{M}_{Sun}$, young

Globular clusters

Bound, $\gtrsim 10^4\,{\rm M}_{\rm Sun}$, old

Associations / moving groups

Unbound, $\lesssim 10^3$ M $_{
m Sun}$, young

Why they're extremely useful

→ GAIA'S HERTZSPRUNG-RUSSELL DIAGRAM

Stars in clusters formed at the **same time** from the **same material**

Gaia DR2 Hertzsprung-Russell diagram (Credit: Gaia Collaboration+18)

The Milky Way Cepheid Leavitt law based on Gaia DR2 parallaxes of companion stars and host open cluster populations

Louise Breuval¹, Pierre Kervella¹, Richard I. Anderson², Adam G. Riess^{3,4}, Frédéric Arenou⁵, Boris Trahin¹, Antoine Mérand², Alexandre Gallenne^{6,7,8,9}, Wolfgang Gieren⁷, Jesper Storm¹⁰, Giuseppe Bono^{11,12}, Grzegorz Pietrzyński^{7,8}, Nicolas Nardetto⁶, Behnam Javanmardi¹, Vincent Hocdé⁶

How Do Disks and Planetary Systems in High-mass Open Clusters Differ from Those around Field Stars?

Kirsten Vincke and Susanne Pfalzner

Don't just take my word for it...

Painting a portrait of the Galactic disc with its stellar clusters *

T. Cantat-Gaudin^[1], F. Anders^[1], A. Castro-Ginard^[1], C. Jord^[1], M. Romero-Gómez^[1], C. Soubiran^[2], L. Casamiquela^[2], Y. Tarricq^[2], A. Moitinho^[3], A. Vallenari^[4], A. Bragaglia^[5], A. Krone-Martins^{[3]6}, and M. Kounke^[7]

The Gaia-ESO survey: Calibrating a relationship between Age and the [C/N] abundance ratio with open clusters*

G. Casali^{1,2}, L. Magrini², E. Tognelli^{3,4}, R. Jackson⁵, R. D. Jeffries⁵, N. Lagarde⁶, G. Tautvaišienė⁷, T. Masseron^{8,9}, S. Degl'Innocenti^{3,4}, P. G. Prada Moroni^{3,4}, G. Kordopatis¹⁰, E. Pancino^{2,11}, S. Randich², S. Feltzing¹², C. Sahlholdt¹², L. Spina¹³, E. Friel¹⁴, V. Roccatagliata^{2,4}, N. Sanna², A. Bragaglia¹⁵, A. Drazdauskas⁷, Š. Mikolaitis⁷, R. Minkevičiūtė⁷, E. Stonkutė⁷, Y. Chorniy⁷, V. Bagdonas⁷, F. Jimenez-Esteban¹⁶, S. Martell^{17,18}, M. Van der Swaelmen², G. Gilmore¹⁹, A. Vallenari²⁰, T. Bensby¹², S. E. Koposov²¹, A. Korn²², C. Worley¹⁹, R. Smiljanic²³, M. Bergemann²⁴, G. Carraro²⁵, F. Damiani²⁶, L. Prisinzano²⁶, R. Bonito²⁶, E. Franciosini², A. Gonneau¹⁹, A. Hourihane¹⁹, P. Jofre²⁷, J. Lewis¹⁹, L. Morbidelli², G. Sacco², S. G. Sousa²⁸, S. Zaggia²⁰, A. C. Lanzafame²⁹, U. Heiter³⁰, A. Frasca³¹, A. Bayo³²

Gaia's impact

Launched in 2013, Gaia is measuring **astrometry** and **photometry** for stars in the Milky Way.

Its accuracy is really incredible!

- $\sim 10^9$ stars
- At least 40 \times the accuracy
- Down to magnitude ~21

How many stars is that?

How many stars is that?

But there's a catch...

There are many **difficulties** when trying to work with star clusters:

- 1. No perfect algorithm to recover clusters
- 2. "Invisible" clusters from before Gaia ~50% of clusters are missing!
- 3. Clusters reported with Gaia many duplicates + how many are real?
- 4. The completeness of the census

5. How to even **define** an open cluster!

Papers reporting new open clusters. Gaia DR2 was released in 2018.

Clustering algorithms

Clustering algorithms use **user-defined parameters** to extract **clusters** from data. There are many of them!

After applying DBSCAN

HDBSCAN was best!

I tried multiple different algorithms HDBSCAN was the most sensitive

Sadly, it also reported the most false positives...

The false positive problem

However, HDBSCAN is **unusable** without an extra step to remove false positives:

Toy 3D dataset

After applying HDBSCAN clustering

With cluster significance test shading

Creating an all-sky catalogue

Recall: unknown how many literature clusters are real & census has unknown completeness

The solution? An all-sky catalogue!

HDBSCAN most sensitive \implies should get good results!

The setup

Performed clustering in three different distance ranges, totalling almost **13000** different fields

The goal: recover greater than 99% of clusters with signal to noise ratios over 3 σ

Add-on: more stars

Many stars in Gaia fainter than G=18 are still usable - I included all stars with Rybizcki+21 classification over 0.5

Total of **729 million** stars (largest ever Gaia clustering analysis)

King 9, without (left) and with (right) these extra stars

Add-on: cluster classifications

Cluster colour-magnitude diagrams (CMDs) are a useful indicator of the quality of a cluster

I used an **approximate Bayesian neural network** to classify cluster CMDs

CMD classification for a candidate cluster

Add-on: cluster photometric parameters

I also made a similar network to infer **photometric parameters** (age, extinction, photometric distance)

Isochrone fit for to IC 4756

All in all: we go from this...

18.1

- **7169 clusters** (4105 highly reliable)
- **2387 new clusters** (739 highly reliable)
- Plus many extras...

We accidentally detected tidal tails!

We accidentally detected tidal tails!

On new clusters

There are clearly big advantages to a single blind search!

There are some **very obvious clusters** that were missed previously

HSC 2384, a new open cluster that was hidden behind IC 2602

How many pre-reported clusters do we find?

A big blind search makes it possible to say **lots** about literature clusters, e.g.:

- Recover **just 51.6%** of clusters in biggest pre-Gaia catalogue, Kharchenko+13. ~1000 missing clusters that we would find if real hence, probably not
- Recover **only 18.1%** of clusters in Kounkel+20 Unlikely that many of their clusters real - we use same algorithm + better data
- Some Gaia-era papers: recover almost all objects; others: not as many...

Are all of the clusters we detect bound?

Are all of the clusters we detect bound?

22.1

Are all of the clusters we detect bound?

Existing vs. new clusters.

Distinguishing between bound & unbound clusters

It's clear I needed to separate open clusters from unbound moving groups. But how?

Logically: Virial theorem time?

The virial theorem states that an object in gravitational equilibrium should have $2T = \left| U
ight|$

For star clusters, we can express this as:

$$Q = rac{T}{V} = rac{\eta r_{50} \sigma^2}{2GM} pprox rac{1}{2} ~~ ext{for a bound cluster}.$$

But it didn't work...

Virial ratios for clusters in the catalogue.

They were consistently too large by a factor of ~10.

The issue: **binary stars** messing up velocity dispersion measurements

Jacobi radii to the rescue!

I spent a while looking for a solution.

A bound cluster will have a radius r_J (the Jacobi radius) at which its potential is stronger than its host galaxy:

$$r_J = \left(rac{M}{4\Omega^2 - k^2}
ight)^{rac{1}{3}}$$

Measuring accurate cluster masses

Problem: cluster masses not widely measured for Milky Way clusters

To do this more accurately: I developed method for **selection effect** corrections

The magnitude-dependent selection function of three clusters

Measuring accurate cluster masses II

- Stellar masses from isochrone interpolation
- Additional correction for unresolved binary stars applied
- Kroupa IMF fitted

Corrections are **important!**

Uncorrected and corrected cluster mass functions

Onto Jacobi radii: for three reliable clusters

Jacobi radius determination for three reliable clusters

Intersection = r_J

All three are clear bound open clusters

But what about the 'weird' clusters?

Jacobi radius determination for three suspect clusters

- HSC 1131: not bound (disk stream?)
- HSC 2376: not bound (expanding association?)
- HSC 1131: bound! (small, ~60 solar masses)

Some limitations

Method is not perfect:

- Have to assume spherical clusters
- Have to assume circular orbits
- Not good for clusters below ~40 MSun

But I think it's still much better than using nothing!

How does it change the catalogue's distribution?

The catalogue divided into clusters with (left) and without (right) a valid Jacobi radius.

What are the differences between them?

Radius and concentration of clusters vs. mass and age

- Moving groups **expand** with time; open clusters do not
- High-mass open clusters are very concentrated
- Low-mass open clusters and moving groups less concentrated

The power of cluster masses

The catalogue's completeness depends strongly on mass

Kernel density estimate of cluster distance distribution in mass bins.

Full KDE estimate of cluster mass-distance distribution.

Cluster age function

Open cluster catalogues in Gaia era have **fewer old clusters**

(likely due to removal of erroneous old objects)

The cluster age function for OCs in the catalogue.

The first ever Gaia cluster mass function

The cluster mass function for OCs in the catalogue

Low-mass clusters are destroyed faster

The cluster mass function for OCs in the catalogue

The cluster mass function divided into age bins

Low-mass clusters are destroyed faster

The cluster mass function divided into age bins

The slope of the cluster mass function, with age

Connecting to theory and other galaxies

Young clusters in all galaxies form with initial mass from power law of slope pprox -2 (Krumholz 2019 + references therein)

New result: can constrain how this **flattens** with time, due to faster destruction of low-mass clusters

Our results will be able to constrain **rate** and **intensity** of GMC and spiral arm collisions

About individual cluster mass functions

All cluster mass function datapoints for all open clusters within 2 kpc

Conclusions

- I made the largest ever deduplicated Milky Way star cluster catalogue (Hunt & Reffert 2021, 2023)
- Jacobi radii and cluster masses can differentiate bound and unbound clusters effectively
 (Hunt & Deffort submitted)

(Hunt & Reffert submitted)

• Large catalogue of **cluster masses** reveals new details on cluster formation and destruction processes

(also in Hunt & Reffert submitted)

I'm currently on the job market!

web: emily.space

- Largest ever MW cluster catalogue
- Jacobi radii to distinguish bound/unbound clusters
- Many new results from these mass measurements