Hyades log t = 8.90 d = 45 pc [Fe/H] = +0.17 dex Width of Main Sequence about 1.8 mag in MV NO Observational error What are the reasons? Haffner & Heckmann, 1937, VeGeo, 55, 77 MV B-V „color“ Absolute magnitude: MV = -2.5 log (L1 + L2) Maximum at L1 = L2 => MV = -0.753 mag The maximal width of the main sequence due to binary systems is 0.753 mag x = a(CAB – CA) + VA – VAB q Vertical distance from the main sequence Praesepe: Fossati et al., 2008, A&A, 483, 891 Fe: -4.28 to -4.62dex; 0.34 dex Metallicity => different opacity Isochrones for 10 Myr Von Zeipel theorem (1924, MNRAS, 84, 665) Energy generation rate From the rotational velocity => e => Teff and L (log g) Slettebak et al., 1980, ApJ, 242, 171 Rotation Vega Hill et al., 2010, ApJ, 712, 250 Collins & Smith, 1985, MNRAS, 213, 519 p … Degree of differential rotation Collins & Smith, 1985, MNRAS, 213, 519 Conclusions – Width of the Main Sequence • Differential reddening: k.DE(B-V) • Spectroscopic Binaries: 0.753 mag • Metallicity: up to 1.2 mag for MV, but only 0.2 mag for (U – B) versus (B – V) • Rotation: 1 mag for MV, 0.2 (?) mag for (U – B) versus (B – V) Binary fraction • Important for the formation and evolution of star clusters • Critical parameter for the IMF • Needed for N-body numerical simulations • Observations are biased in many respects • Many different types of binary systems Lower metallicities seem to favour binary formation Machida, 2008, ApJ, 682, L1 How to observe the binary fraction? • Photometric observations of star clusters 1. “Cluster main sequence” 2. Eclipsing binaries 3. Positions (astrometric binaries) • Spectroscopic observations 1. Radial velocity variability 2. Direct detection in spectrum (SB2) Hurley & Tout, 1998, MNRAS, 300, 977 Haffner & Heckmann, 1937, VeGeo, 55, 77 Simulation with randomly distributed mass ratios Observations of Praesepe with known binary systems Observed binaries with the Gaia DR2 Cantat-Gaudin et al., 2018, A&A, 618, A93 Observed binaries with the Gaia DR2 Cantat-Gaudin et al., 2018, A&A, 618, A59 Bin size of one day Bin size of one hundred days Bin size of ten thousand days Results for open clusters • Sollima et al., 2010, MNRAS, 401, 577 – NGC 188 (9.63): 21 – 58% – NGC 2204 (9.20): 12 – 36% – NGC 2243 (9.58): 34 – 70% – NGC 2420 (9.08): 17 – 51% – NGC 2516 (8.52): 25 – 66% • Sana et al., 2009, MNRAS, 400, 1479 – NGC 6611 (6.50): 44 – 67% • Sana et al., 2008, MNRAS, 386, 447 – NGC 6231 (6.50): 63% - ? ⚫ Bica & Bonatto, 2005, A&A, 431, 943 – IC 4651 (9.26): 50 +- 11% – NGC 2287 (8.20): 48 +- 45% – NGC 2447 (8.60): 21 +- 9% – NGC 2548 (8.56): 48 +- 23% – NGC 2682 (9.51): 39 +- 16% – NGC 3680 (9.20): 25 +- 5% – NGC 5822 (9.00): 16 +- 8% – NGC 6208 (9.11): 54 +- 30% – NGC 6694 (7.85): 18 +- 12% • Sandhu et al., 2003, A&A, 408, 515 – NGC 2099 (8.60): ~30% – King 5 (9.00): ~30% – King 7 (8.80): ~20% Davis et al., 2008, AJ, 135, 2155 Globular clusters