INORGANIC MATERIALS

Final Test 100 points

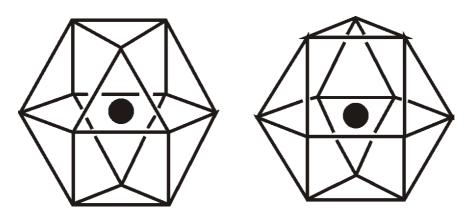
..... name

1. a) (10 points) Consider coordination number of cations and anions in the following structure type compounds, fill the blank positions:

n:m = 1:1	CN (a:b)	n:m = 1:2	CN (a:b)	n:m = 1:3	CN (a:b)	n:m = 2:3	CN (a:b)
NaCl		CaF ₂	8:4	ReO ₃		Al ₂ O ₃	6:4
CsCl		TiO ₂ rutile	6:3	AlCl ₃	6:2	****	****
ZnS		SiO ₂ quartz		****	****	****	****
NiAs	6:6	****	****	****	****	****	* * * * *

b) (10 points) Devise a general rule which links stoichiometric coefficients n, m in $M_n X_m$ with coordination numbers a and b for cations and anions, respectively.

2. (10 points) Zeolite-A (LTA) has a single peak in the ²⁹Si NMR spectrum (- 89 ppm) and has a Si/Al ratio of 1. Comment on these observations with respect to the Si and Al distribution and ordering.


3. (20 points) Semiconductors of the 13/15 and 12/16 types frequently adopt the sphalerite (zinc blende) structure. Draw a unit cell of ZnS-blende and calculate the number of formula units in the unit cell.

4. (10 points) Stishovite is a high-pressure modification of SiO₂ having the rutile structure. Should it have longer or shorter bond lengths then quartz?

5. (10 points) Which of these polyhedra represent the coordination environment of a metal atom in

a) copper

b) magnesium

6. The solid state reaction between CaO and SiO₂ is an important process in the cement and iron production (slag formation). Ca₂SiO₄ is formed in the first step. Write chemical reactions taking place at the interfaces and calculate the Kirkendall ratio for this process

a) (10 points) First, assume counter diffusion of Ca²⁺ and Si⁴⁺

b) (20 points) The assumption a) is unrealistic, because the highly charged Si⁴⁺ is very strongly bound to the oxide network and its diffusion coefficient is negligible. Suggest alternative diffusion process and calculate the Kirkendall ratio.