Mesoporous Materials

Amorphous, disordered - silica xerogels

Ordered, amorphous walls

Pore diameter, d [nm]	Material	Example
d > 50	Macroporous	Aerogels
2 < d < 50	Mesoporous	Xerogels
d < 2	Microporous	Zeolites

Pore size distribution

Mesostructure Assembly

Mesoporous Materials

MMS mesoporous molecular sieves

MCM-n Mobil Composition of Matter

M41S

A - lamellar MCM-50

B - hexagonal MCM-41

C - cubic MCM-48

Inverse hexagonal

Discovered 1992

Supramolecular templating

Surfactants - amphiphilic molecules, polar (head group)and nonpolar (chain, tail) part lyophilic, lyophobic

Ionic surfactants, cationic, anionic, zwitterionic Nonionic amines, polyethyleneoxides

- A normal surfactant molecule
- B gemini
- **C** swallow tail

Surfactants

Surfactants

Anionic

• sulfates:	$C_nH_{2n+1}OSO_3Na^+$
• sulfonates:	$C_nH_{2n+1}SO_3H$
• phosphates:	$C_nH_{2n+1}OPO_3H_2$
• carboxylates:	C _n H _{2n+1} COOH

Cationic

alkylammonium salts:	$C_nH_{2n+1}(CH_3)_3NX$	$X = OH, Cl, Br, HSO_4$

• dialkylammonium salts: $(C_{16}H_{33})_2(CH_3)_2N^+Br^-$

Noionic

- primary amines: $C_nH_{2n+1}NH_2$
- polyethyleneoxides: HO(CH₂CH₂O)_nH

Supramolecular templating

Phase diagram of C₁₆TMABr CMC = critical micelle conc.

Micelles - Supramolecular Templates

Micellar shapes

A -spherical, B - rod-like, C - lamellar

Micelles in media

- A normal, in polar solvent, H₂O
- **B** inverse, in nonpolar solvent, organics

Micellar shapes

Micellar structures

- A) sphere, B) cylinder, C) planar bilayer,
- **D**) reverse micelles, **E**) bicontinuous phase, **F**) liposomes).

Critical packing parameter – CPP

 $CPP = V_{\rm H} / a_0 l_{\rm c}$

 V_H volume of the hydrophobic part, a_0 surface area of the hydrophilic part, l_c critical chain length:

```
l_c \le 1.5 + 1.265 n [Å]
```

n number of carbon atoms. l_c depends on the chain shape.

CPP	surfactant	micelle shape
< 0.33	linear chain, large head	spherical
0.33 - 0.5	linear chain, small head	cylindrical
0.5 - 1.0	two chains, large head	bilayers

Surfactant Molecules

Surfactant Molecules

 L_1 = micellar solution; Nc = nematic phase; H_1 = normal hexagonal phase (MCM-41; SBA-15); V_1 = normal bicontinuous cubic phase (MCM-48); L_{α} = lamellar phase (MCM-50)

path A, the micellar solution route path B, the lamellar phase route path C, the nematic phase route

Mechanism of the mesoporous material formation (hexagonal, MCM-41)

LCT Liquid Crystal Templating

SLC Silicatropic Liquid Crystals

Lamellar to Hexagonal Transformation

Silicate Rod Assembly

--

• Electrostatic interactions

b)
$$S'I^+$$
 $I = Fe^{2+}, Fe^{3+}, Co^{2+}, Ni^{2+}, Mg^{2+}, Mn^{2+}, Pb^{2+}, Al^{3+}$

 $\mathbf{S} =$ sulfonane

c) $S^+X^-I^+$

I = silicate – polyelectrolyte positive charge

 $\mathbf{X} = \mathbf{Cl}$

 $\mathbf{S} = trimethylammonium}$

d) **S'M**⁺**I**⁻

I = aluminateM = NaS = phophate

• Hydrogen Bond

a)
$$S^0I^0$$
 I = silicate

S = ammine

b) **N⁰I⁰**

N = polyethylenoxide

• Covalent Bond

a) **S-I**

 $\mathbf{I} = niobate$, tantalate

 $\mathbf{S} = ammine$

MCM-41

TEM micrograph of hexagonal molecular sieve

TEM image of the Pd-grafted mesoporous silicate material

Silicate Layer Puckering

Charge Density Matching

SiO2

Folding Sheets

ì

i.

XRD of hexagonal MCM-41

XRD of lamellar MCM-50

 $a_0 = \frac{2d_{100}}{\sqrt{3}}$

Template Removal

Mesoporous Platinum Metal

H₂[PtCl₆] or (NH₄)₂[PtCl₆] C₁₆(EO)₈ Assembly of liquid crystalline phase Reductants: Fe, Zn, Hg, NH₂NH₂ Washed with acetone, water, HCl

SEM (upper) and TEM (lower) images of mesoporous Pt metal show particles 90-500 nm in diameter and a pore diameter of 30 A and a pore wall thickness of 30 A.

Surface Silanols in MCM-41 Pores

