Basic Structural Chemistry

Crystalline state

Structure types

Degree of Crystallinity

- Single Crystalline
- Polycrystalline
- Amorphous

Crystal Structure

-The building blocks of these two are identical, but different crystal faces are developed

- Cleaving a crystal of rocksalt

Crystals

- Crystal consist of a periodic arrangement of structural motifs = building blocks
- Building block is called a basis: an atom, a molecule, or a group of atoms or molecules
- Such a periodic arrangement must have translational symmetry such that if you move a building block by a distance:

$$
\bar{T}=n_{1} \bar{a}+n_{2} \bar{b}+n_{3} \bar{c}
$$

$$
\text { where } n_{1}, n_{2} \text {, and } n_{3} \text { are integers, and } \bar{a}, \bar{b}, \bar{c} \text { are vectors. }
$$

then it falls on another identical building block with the same orientation.

- If we remove the building blocks and replace them with points, then we have a point lattice or Bravais lattice.

Planar Lattice 2D

Five Planar Lattices

(a)

(d)

(c)
(b)

(e)

Name	Number of Bravais lattices	Conditions
Square	1	$a_{1}=a_{2}, \alpha=90^{\circ}$
Rectangular	2	$a_{1} \neq a_{2}, \alpha=90^{\circ}$
Hexagonal	1	$a_{1}=a_{2}, \alpha=120^{\circ}$
Oblique	1	$a_{1} \neq a_{2}, \alpha \neq 120^{\circ}, \alpha \neq 90^{\circ}$

Unit Cell: An „imaginary" parallel sided region of a structure from which the entire crystal can be constructed by purely translational displacements Contents of unit cell represents chemical composition

Space Lattice: A pattern that is formed by the lattice points that have identical environment.

Coordination Number (CN): Number of direct neighbours of a given atom (first coordination sphere)

Crystal $=$ Periodic Arrays of Atoms

Lattice point
(Atom, molecule, group of molecules, \ldots.)

Primitive Cell:

- Smallest building block for the crystal lattice.
- Repetition of the primitive cell gives a crystal lattice
\(\left.$$
\begin{array}{lcc}\hline & \begin{array}{c}\text { Bravais Lattice } \\
\text { (Lattice point = Basis of } \\
\text { Spherical Symmetry) }\end{array} & \begin{array}{c}\text { Crystal Structure } \\
\text { (Structural motif = Basis of } \\
\text { Arbitrary Symmetry) }\end{array} \\
\hline \begin{array}{l}\text { Number of } \\
\text { point groups: }\end{array}
$$ \& (7 crystal systems) \& (32 crystallographic point

groups)\end{array}\right]\)| $\mathbf{2 3 0}$ | |
| :---: | :---: |
| Number of
 space groups: | $(14$ Bravais lattices) |

Seven Crystal Systems

Fourteen Bravais Lattices

Simple Cubic (SC)

$$
a=b=c \quad \text { Conventional Cell }=\text { Primitive Cell }
$$

$$
\mathrm{a} \perp \mathrm{~b} \perp \mathrm{c}
$$

Add one atom at the center of the cube

Body-Centered Cubic (BCC)
Face-Centered Cubic (FCC)
Conventional Unit Cell \neq Primitive Cell

Primitive Cell

A volume of space translated through all the vectors in a lattice just fills all of space without overlapping or leaving voids is called a primitive cell of the lattice.

A primitive cell contains just one Bravais lattice point.
The primitive cell is the smallest cell that can be translated throughout space to completely recreate the entire lattice.
There is not one unique shape to a primitive cell and many possible shapes fulfill the definition.
The primitive cell for the simple cubic lattice is equal to the simple cubic unit cell (they are identical).
A common choice for the primitive cell of the body-centered cubic lattice is shown below.

Body-Centered Cubic (I)

Unit Cell

Primitive Cell

Nonprimitive Unit Cell vs. Primitive Cell

Face-Centered Cubic (F)

Unit Cell

Primitive Cell

Rotated 90°

The primitive cell is smaller or equal in size to the unit cell. The unit cells help to remind us of the symmetry (ie. Cubic).

Primitive Cell of BCC

-Rhombohedron primitive cell

-Primitive Translation Vectors:

$$
\begin{gathered}
a_{1}=\frac{1}{2} a(\hat{k}+9-2) ; \quad a_{2}=\frac{1}{2} a(-\hat{\mathbf{x}}+\hat{y}+\bar{z}) ; \\
\mathbf{a}_{3}=\frac{1}{2} a(\hat{\mathrm{~h}}-9+2) .
\end{gathered}
$$

Primitive Cell of FCC

$$
a_{1}=\frac{1}{2} a(1+y) ; \quad a_{2}=\frac{1}{2} a(\hat{y}+2) ; \quad a_{3}=\frac{1}{4} a(2+\hat{x})
$$

Index System for Crystal Planes (Miller Indices)

1) Find the intercepts on the axes in terms of the lattice constants a, b, c. The axes may be those of a primitive or nonprimitive unit cell.
2) Take the reciprocals of these numbers and then reduce to three integers having the same ratio, usually the smallest three integers. The result enclosed in parenthesis ($h \mathrm{kl}$), is called the index of the plane.

Miller Indices

Miller Indices

Miller Indices

Crystals

- metallic ($\mathrm{Cu}, \mathrm{Fe}, \mathrm{Au}, \mathrm{Ba}$, alloys) metallic bonding
- ionic ($\mathrm{NaCl}, \mathrm{CsCl}, \mathrm{CaF}_{2}, \ldots$)
cations and anions, electrostatic interactions
- covalent (diamond, graphite, $\mathrm{SiO}_{2}, \mathrm{AlN}, \ldots$) atoms, covalent bonding
- molecular (Ar, $\mathrm{C}_{60}, \mathrm{HF}, \mathrm{H}_{2} \mathrm{O}$, organics, proteins) molecules, van der Waals and hydrogen bonding

Crystal Bonding

- van der Waals bonds
- Ionic bonds
- Hydrogen bonds
- Metallic bonds
- Covalent bonds

Three Cubic Cells

Table 2 Characteristics of cubic lattices ${ }^{\text {a }}$

	Simple	Body-centered	Face-centered	
		a^{3}	a^{3}	a^{3}
Volume, conventional cell	\cdots	2	4	
Lattice points per cell	1	a^{3}	$\frac{1}{2} a^{3}$	$\frac{1}{4} a^{3}$
Volume, primitive cell	$1 / a^{3}$	$2 / a^{3}$	$4 / a^{3}$	
Lattice points per unit volume	1	12		
Number of nearest neighbors	6	8	$a / 2^{1 / 2}=0.707 a$	
Nearest-neighbor distance	a	$3^{1 / 2} a / 2=0.866 a$	6	
Number of second neighbors	12	6	a	
Second neighbor distance	$2^{1 / 2} a$	a	$\frac{1}{6} \pi \sqrt{2}$	
Packing fraction	$\frac{1}{6} \pi$	$\frac{1}{8} \pi \sqrt{3}$	$=0.740$	

Cube

$a=$ edge
d = face diagonl

$$
\left(d^{2}=a^{2}+a^{2}=2 a^{2}\right)
$$

$\mathrm{D}=$ body diagonal

$$
\left(D^{2}=d^{2}+a^{2}=2 a^{2}+a^{2}=3 a^{2}\right)
$$

$d=\sqrt{2} \cdot \mathrm{a}$

$\mathbf{S C}=\mathbf{P o l o n i u m}$

(b)

Space filling 52%

$\mathbf{B C C}=\mathbf{W}$, Tungsten

Space filling 68\%
CN 8

Fe, Cr, V, Li-Cs, Ba

$\mathrm{FCC}=\mathrm{Copper}, \mathrm{Cu}=\mathbf{C C P}$

Space filling 74\%
CN 12

Close Packing in Plane 2D

B and C holes cannot be occupied at the same time

Close Packing in Space 3D

hexagonal

$\mathbf{M g}, \mathrm{Be}, \mathrm{Zn}, \mathrm{Ni}, \mathrm{Li}, \mathrm{Be}, \mathrm{Os}, \mathrm{He}$,

(a)

(b)

Sc, Ti, Co, Y, Ru

hexagonal

cubic
$\mathbf{C u}, \mathbf{C a}, \mathbf{S r}, \mathbf{A g}, \mathbf{A u}, \mathbf{N i}, \mathbf{R h}$, solid $\mathbf{N e}-\mathrm{Xe}, \mathrm{F}_{2}, \mathrm{C}_{60}$, opal ($\mathbf{3 0 0} \mathbf{n m}$)

Structures with Larger Motifs

Coordination Polyhedrons

Coordination Polyhedrons

Space Filling

	Atom Radius	Number of Atoms (lattice points)	Space filling
SC	$\mathrm{a} / 2$	1	52%
BCC	$\sqrt{ } 3 \mathrm{a} / 4$	2	68%
FCC	$\sqrt{ } 2 \mathrm{a} / 4$	4	74%
Diamond	$\sqrt{ } 3 \mathrm{a} / 8$	8	34%

$\underline{\text { Type of Packing }} \xlongequal{$| Packing |
| :---: |
| Efficiency |$} \xlongequal{$| Coordination |
| :---: |
| Number |$}$

Simple cubic (sc)

Body-centered cubic (bcc)

52\% 6
68%
8

Hexagonal close-packed
74%12
(hcp)
74\%
12
Cubic close-packed

$\mathrm{CCP}=\mathrm{FCC}$

Close packed layers of CCP are oriented perpendicularly to the body diagonal of the cubic cell of FCC

Periodic Tolple of Metal Structures

Two Types of Voids (Holes)

5 Tetrahedral hole

2 Octahedral hole

3

Tetrahedral Holes T+

N cp atoms in lattice cell

N Octahedral Holes
2N Tetrahedral Holes

Octahedral Holes

Tetrahedral Holes T-

Two Types of Voids (Holes)

Octahedral Holes

Tetrahedral Holes

Tetrahedral Holes (2N)

$\mathrm{Z}=\underline{4}$ number of atoms in the cell (N)
$\mathrm{N}=\underline{8}$
number of tetrahedral holes (2 N)

Octahedral Holes (N)

$\mathrm{Z}=\underline{4}$ number of atoms in the cell (N)
$\mathrm{N}=\underline{4}$
number of octahedral holes (N)

Different Types of Radii

1 Metallic radius

3 lonic radius

Variation of atomic radii

through the Periodic table

Variation of ionic radii with coordination number

3 lonic radius

The radius of one ion was fixed to a reasonable value
($\mathrm{r}\left(\mathrm{O}^{2-}\right)=140 \mathrm{pm}$) (Linus Pauling)
That value is then used to compile a set of self consistent values for all other ions.

General trends for ionic radii

1. Ionic radii increase down a group.(Lanthanide contraction restricts the increase of heavy ions)
2. Radii of equal charge ions decrease across a period
3. Ionic radii increase with increasing coordination number the higher the CN the bigger the ion
4. The ionic radius of a given atom decreases with increasing charge

$$
\left(\mathbf{r}\left(\mathbf{F e}^{2+}\right)>\mathbf{r}\left(\mathbf{F e}^{3+}\right)\right)
$$

5. Cations are usually the smaller ions in a cation/anion combination (exceptions: $\mathbf{r}\left(\mathrm{Cs}^{+}\right)>\mathbf{r}\left(\mathbf{F}^{-}\right)$)
6. Frequently used for rationalization of structures:
„radius ratio" $\quad \mathbf{r}$ (cation)/r(anion) (<1)

Variation of the electron density along the $\mathrm{Li}-\mathrm{F}$ axis in LiF

$\mathrm{P}-$ Pauling radius
G - Goldschmidt radius
S - Shannon radius.

Cation/anion Radius Ratio

Limiting Radius Ratios

Structure map:

Dependence of the structure type (coordination number) on the electronegativity difference and the average principal quantum number (size and polarizability)
AB compounds

Lattice Enthalpy

The lattice enthalpy change ΔH_{L}^{0} is the standard molar enthalpy change for the following process:

$$
\mathrm{M}_{(\text {gas })}^{+}+\mathrm{X}_{\text {(gas) }}^{-} \rightarrow \mathrm{MX}_{\text {(solid) }} \quad \Delta H_{L}^{0}
$$

Because the formation of a solid from a „gas of ions" is always exothermic lattice enthalpies (defined in this way) are usually negative. If entropy considerations are neglected the most stable crystal structure of a given compound is the one with the highest lattice enthalpy.

Lattice enthalpies can be determined by a thermodynamic cycle \rightarrow Born-Haber cycle

A Born-Haber cycle for KCl
(all enthalpies: $\mathrm{kJ} \mathrm{mol}^{-1}$ for normal conditions \rightarrow standard enthalpies)
standard enthalpies of

- formation: 438
- sublimation: +89 (K)
- ionization: + 425 (K)
- atomization: $+244\left(\mathrm{Cl}_{2}\right)$
- electron affinity: -355 (Cl)
- lattice enthalpy: x

Born-Haber cycle

$\mathbf{0}=\mathbf{4 1 1}+\mathbf{1 0 8}+\mathbf{1 2 1}+\mathbf{5 0 2}+(-354)+\mathrm{L}$
$\mathrm{L}=-788 \mathrm{~kJ} \mathrm{~mol}^{-1}$
all enthalpies: $\mathrm{kJ} \mathrm{mol}^{-1}$ for normal conditions \rightarrow standard enthalpies

Lattice Enthalpy

$$
\mathrm{L}=\mathrm{E}_{\mathrm{coul}}+\mathrm{E}_{\mathrm{rep}}
$$

One ion pair
$\mathrm{E}_{\text {coul }}=\left(1 / 4 \pi \varepsilon_{0}\right) \mathrm{z}_{\mathrm{A}} \mathrm{Z}_{\mathrm{B}} / \mathrm{d}$
$\mathrm{E}_{\text {rep }}=\mathrm{B} / \mathrm{d}^{\mathrm{n}}$
$\mathrm{n}=$ Born exponent (experimental measurement of compressibilty)

Lattice Enthalpy

1 mol of ions

$$
\begin{aligned}
& \mathrm{E}_{\text {coul }}=\mathrm{N}_{\mathrm{A}}\left(\mathrm{e}^{2} / 4 \pi \varepsilon_{0}\right)\left(\mathrm{z}_{\mathrm{A}} \mathrm{z}_{\mathrm{B}} / \mathrm{d}\right) A \\
& \mathrm{E}_{\text {rep }}=\mathrm{N}_{\mathrm{A}} \mathrm{~B} / \mathrm{d}^{\mathrm{n}} \\
& L=N_{A} A \frac{Z_{A} Z_{B} e^{2}}{4 \pi \varepsilon_{0} d}+N_{A} \frac{B}{d^{n}} \\
& \mathrm{~L}=\mathrm{E}_{\text {coul }}+\mathrm{E}_{\text {rep }}
\end{aligned}
$$

Find minimum $\mathrm{dL} / \mathrm{d}(\mathrm{d})=0$

Calculation of lattice enthalpies

Coulombic contributions to lattice enthalpies

$$
V_{A B}=-A\left(\frac{z_{+} z_{-} e^{2}}{4 \pi \varepsilon_{0} r_{A B}} N\right.
$$

V_{AB} : Coulomb potential (electrostatic potential)
A: Madelung constant (depends on structure type)
N : Avogadro constant
z : charge number
e: elementary charge
ε_{0} : dielectric constant (vacuum permittivity)
r_{AB} : shortest distance between cation and anion

Madelung Constant

Count all interactions in the crystal lattice

Calculation of the Madelung constant

3D ionic solids:
Coulomb attraction and repulsion

Madelung constants:
CsCl: 1.763
$\mathrm{NaCl}: 1.748$
ZnS: 1.641 (wurtzite)
ZnS: 1.638 (sphalerite) ion pair: 1.0000 (!)
$A=6-\frac{12}{\sqrt{2}}+\frac{8}{\sqrt{3}}-\frac{6}{2}+\frac{24}{\sqrt{5}} \ldots \underset{\text { (infinite summation) }}{=1.748 \ldots(\mathrm{NaCl})}$

Madelung constant for $\mathbf{N a C l}$

$\mathrm{E}_{\text {coul }}=\left(\mathrm{e}^{2} / 4 \pi \varepsilon_{0}\right) *\left(\mathrm{z}_{\mathrm{A}} \mathrm{z}_{\mathrm{B}} / \mathrm{d}\right) *[6(1 / 1)-12(1 / \sqrt{ } 2)+8(1 / \sqrt{ } 3)-6(1 / \sqrt{ } 4)+24(1 / \sqrt{ } 5) \ldots$. convergent series

$$
\mathrm{E}_{\text {coul }}=\left(\mathrm{e}^{2} / 4 \pi \varepsilon_{0}\right) *\left(\mathrm{z}_{\mathrm{A}} \mathrm{z}_{\mathrm{B}} / \mathrm{d}\right) * A
$$

Madelung Constants for other Structural Types

Structural Type	A
NaCl	1.74756
CsCl	1.76267
CaF_{2}	2.519
ZnS Sfalerite	1.63805
ZnS Wurtzite	1.64132

Born repulsion $\mathbf{V}_{\text {Born }}$

Repulsion arising from overlap of electron clouds

Because the electron density of atoms decreases exponentially towards zero at large distances from the nucleus the Born repulsion shows the same behavior
approximation:

$$
V_{\text {Born }}=\frac{B}{r^{n}}
$$

B and n are constants for a given atom type; n can be derived from compressibility measurements (~ 8)

Total lattice enthalpy from Coulomb interaction and Born repulsion

$\Delta \mathrm{H}_{L}^{0}=\operatorname{Min} .\left(V_{A B}+V_{\text {Born }}\right)$

(set first derivative of the sum to zero)

$$
\Delta \mathrm{H}_{L}^{0}=-A \frac{z_{+} z_{-} e^{2}}{4 \pi \varepsilon_{0} r_{0}} N\left(1-\frac{1}{n}\right)
$$

Measured (calculated) lattice enthalpies ($\mathrm{kJ} \mathrm{mol}^{-1}$):
$\mathrm{NaCl}:-772$ (-757); CsCl: -652 (-623) (measured from Born Haber cycle)

The Kapustinskii equation

Kapustinskii found that if the Madelung constant for a given structure is divided by the number of ions in one formula unit (v) the resulting values are almost constant:

Structure	Madel. const.(A)	Alv	Coordination
CsCl	1.763	0.88	$8: 8$
NaCl	1.748	0.87	$6: 6$
CaF_{2}	2.519	0.84	$8: 4$
$\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$	4.172	0.83	$6: 4$

\rightarrow general lattice energy equation that can be applied to any crystal regardless of the crystal structure

$$
\Delta \mathrm{H}_{L}^{0}=-\frac{1.079 \cdot 10^{5} v \cdot \mathrm{Z}_{+} \mathrm{Z}_{-}}{r_{+} \cdot r_{-}}
$$

Most important advantage of the Kapustinski equation

\rightarrow it is possible to apply the equation for lattice calculations of crystals with polyatomic ions (e.g. KNO_{3}, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \ldots$. .
\rightarrow a set of „,thermochemical radii" was derived for further calculations of lattice enthalpies

Table 1.13 Thermochemical radii of polyatomic ions*

Ion	$p m$	Ion	pm	Ion	$p m$
NH_{4}^{+}	151	ClO_{4}^{-}	226	MnO_{4}^{2-}	215
$\mathrm{Me}_{4} \mathrm{~N}^{+}$	215	CN^{-}	177	O_{2}^{2-}	144
PH_{4}^{+}	171	CNS^{-}	199	OH^{-}	119
AlCl_{4}^{-}	281	CO_{3}^{2-}	164	PtF_{6}^{2-}	282
BF_{4}^{-}	218	IO_{3}^{-}	108	PtCl_{6}^{2-}	299
BH_{4}^{-}	179	$\mathrm{~N}_{3}^{-}$	181	PtBr_{6}^{2-}	328
BrO_{3}^{-}	140	NCO^{-}	189	PtI_{6}^{2-}	328
$\mathrm{CH}_{3} \mathrm{COO}^{-}$	148	NO_{2}^{-}	178	SO_{4}^{2-}	244
ClO_{3}^{-}	157	NO_{3}^{-}	165	SeO_{4}^{2-}	235

[^0]
Lattice Enthalpy

Born - Lande

$$
L=N_{A} M \frac{Z_{A} Z_{B} e^{2}}{4 \pi \varepsilon_{0} d}\left(1+\frac{1}{n}\right)
$$

El. config.	n
He	5
Ne	7
Ar	9
Kr	10
Xe	12

Born - Mayer

$$
L=N_{A} M \frac{Z_{A} Z_{B} e^{2}}{4 \pi \varepsilon_{0} d}\left(1-\frac{d^{*}}{d}\right) \quad \mathrm{d}^{*}=0.345 \AA
$$

Lattice Enthalpy

Kapustinski
M / v je přibližně konstantní pro všechny typy struktur $\mathrm{v}=$ počet iontů ve vzorcové jednotce

M nahrazeno 0.87 v , není nutno znát strukturu

$$
L=1210 v \frac{Z_{A} Z_{B}}{d}\left(1-\frac{0,345}{d}\right)
$$

Kapustinski

structure	\boldsymbol{M}	$\mathbf{C N}$	stoichm	$\boldsymbol{M} / \boldsymbol{v}$
CsCl	1.763	$(8,8)$	AB	0.882
NaCl	1.748	$(6,6)$	AB	0.874
ZnS sfalerite	1.638	$(4,4)$	AB	0.819
ZnS wurtzite	1.641	$(4,4)$	AB	0.821
CaF_{2} fluorite	2.519	$(8,4)$	AB_{2}	0.840
TiO_{2} rutile	2.408	$(6,3)$	AB_{2}	0.803
CdI_{2}	2.355	$(6,3)$	AB_{2}	0.785
$\mathrm{Al}_{2} \mathrm{O}_{3}$	4.172	$(6,4)$	$\mathrm{A}_{2} \mathrm{~B}_{3}$	0.834

$\mathrm{v}=$ the number of ions in one formula unit

Lattice Enthalpy of NaCl

Born - Lande calculation $\mathrm{L}=-765 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Only ionic contribution
Experimental Born - Haber cycle $\mathrm{L}=-788 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Lattice Enthalpy consists of ionic and covalent contribution

Applications of lattice enthalpy calculations:

\rightarrow thermal stabilities of ionic solids
\rightarrow stabilities of oxidation states of cations
\rightarrow Solubility of salts in water
\rightarrow calculations of electron affinity data
\rightarrow lattice enthalpies and stabilities of ,non existent" compounds

Cation/anion Radius Ratio

$\mathbf{r}_{\text {cation }} / r_{\text {anion }}=$ ideal
Stable

Unstable

CN	r/R
$12-$ hcp/ccp	1.00 (substitution)
$8-$ cubic	$0.732-1.00$
$6-$ octahedral	$0.414-0.732$
$4-$ tetrahedral	$0.225-0.414$

Structure Types Derived from CCP $=\mathrm{FCC}$

Pauling Rules

- Cation-Anion distance is determined by sums of ionic radii. Cation coordination environment is determined by radius ratio.
- The bond valence sum of each ion should equal oxidation state.
- Avoid shared polyhedral edges and/or faces. (particularly for cations with high oxidation state \& low coordination number)
- In a crystal containing different cations those with large valence and small coord. number tend not to share anions.
- The number of chemically different coordination environments for a given ion tends to be small.

Structure Types Derived from CCP = FCC

Characteristic Structures of Solids = Structure Types

Rock salt $\underline{\mathrm{NaCl}} \mathrm{LiCl}, \mathrm{KBr}, \mathrm{AgCl}, \mathrm{MgO}, \mathrm{TiO}, \mathrm{FeO}, \mathrm{SnAs}, \mathrm{UC}, \mathrm{TiN}, \ldots$
Fluorite ${\underline{\mathbf{C a F}_{2}}}_{\underline{2}} \mathbf{B a C l}_{\mathbf{2}}, \mathbf{K}_{\mathbf{2}} \mathbf{O}, \mathbf{P b O}_{\mathbf{2}} \ldots$
Lithium bismutide $\underline{\operatorname{Li}_{\underline{3}} \underline{B i}}$
Sphalerite (zinc blende) $\underline{\mathbf{Z n S}} \mathbf{C u C l}, \mathrm{HgS}, \mathrm{GaAs} . .$.
Nickel arsenide NiAs FeS, PtSn, CoS ...
Wurtzite $\underline{\mathbf{Z n S} \mathbf{Z n O}, ~ M n S, ~ S i C ~}$
Rhenium diboride ReB_{2}

Structure Types Derived from CCP = FCC

Anions/cell ($=4$)	Oct. (Max 4)	Tet. (Max 8)	Stoichiometry	Compound
4	$100 \%=4$	0	$\mathrm{M}_{4} \mathrm{X}_{4}=\mathbf{M X}$	$\begin{aligned} & \mathrm{NaCl} \\ & \text { (6:6 coord.) } \end{aligned}$
4	0	100\% = 8	$\mathbf{M}_{8} \mathrm{X}_{4}=\mathrm{M}_{2} \mathbf{X}$	$\mathbf{L i}_{2} \mathbf{O}$ (4:8 coord.)
4	0	50\% $=4$	$\mathrm{M}_{4} \mathrm{X}_{4}=\mathbf{M X}$	ZnS, sfalerite (4:4 coord.)
4	50\% = 2	0	$\mathrm{M}_{2} \mathrm{X}_{4}=\mathrm{MX}_{2}$	CdCl_{2}
4	100\% = 4	100\% = 8	$\mathrm{M}_{12} \mathrm{X}_{4}=\mathrm{M}_{3} \mathrm{X}$	$\mathbf{L i}_{3} \mathbf{B i}$
4 spinel	50\% $=2$	12.5\% = 1	$\mathrm{M}_{3} \mathrm{X}_{4}$	$\mathrm{MgAl}_{2} \mathrm{O}_{4}$,

Comparison between structures with filled octahedral and tetrahedral holes

O/t	fcc (ccp)	hcp
all oct.	NaCl	NiAs
all tetr.	CaF_{2}	ReB_{2}
oft (all)	$\mathrm{Li}_{3} \mathrm{Bi}$	$\left(\mathrm{Na}_{3} \mathrm{As}\right)$ (!) problem
$1 / 2 \underline{t}$	sphalerite (ZnS)	wurtzite (ZnS)
$1 / 20$	CdCl_{2}	CdI_{2}

Fluorite (CaF_{2}, antifluorite $\mathrm{Li}_{\mathbf{2}} \mathbf{O}$)

Fluorite structure $=$ a face-centered cubic array (FCC) of cations $=$ cubic close packing (CCP) of cations with all tetrahedral holes filled by anions $=$ a simple cubic (SC) array of anions.

Antifluorite structure $=$ a face-centred cubic (FCC) array of anions = cubic close packing (CCP) of anions, with cations in all of the tetrahedral holes (the reverse of the fluorite structure).

Fluorite ($\mathrm{CaF}_{\mathbf{2}}$, antifluorite $\left.\mathrm{Li}_{\mathbf{2}} \mathbf{O}\right)$

F/Li
$\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right], \mathrm{Cs}_{2}\left[\mathrm{SiF}_{6}\right],\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{TaF}_{6}\right]_{2}$

Fluorite structures $\left(\mathrm{CaF}_{2}\right.$, antifluorite $\left.\mathrm{Li}_{\mathbf{2}} \mathbf{O}\right)$

Oxides: $\mathbf{N a}_{\mathbf{2}} \mathbf{O}, \mathrm{K}_{\mathbf{2}} \mathbf{O}, \mathbf{U O}_{\mathbf{2}}$, $\mathbf{Z r O}_{\mathbf{2}}, \mathbf{T h O}_{\mathbf{2}}$
alkali metal sulfides, selenides and tellurides
$\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right],\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{PtCl}_{6}\right]$, $\mathrm{Cs}_{2}\left[\mathrm{SiF}_{6}\right]$, $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{TaF}_{6}\right]_{2}$.

$$
\begin{aligned}
& \mathrm{CaF}_{2}, \mathrm{SrF}_{2}, \mathrm{SrCl}_{2}, \mathrm{BaF}_{2}, \mathrm{BaCl}_{2}, \mathrm{CdF}_{2,}, \mathrm{HgF}_{2}, \mathrm{EuF}_{2}, \beta-\mathrm{PbF}_{2,}, \mathrm{PbO}_{2} \\
& \mathrm{Li}_{2} \mathrm{O}, \mathrm{Li}_{2} \mathrm{~S}, \mathrm{Li}_{2} \mathrm{Se}, \mathrm{Li}_{2} \mathrm{Te}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{~S}, \mathrm{Na}_{2} \mathrm{Se}, \mathrm{Na}_{2} \mathrm{Te}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{~K}_{2} \mathrm{~S}
\end{aligned}
$$

Sphalerite (zincblende, ZnS)

Cubic close packing of anions with $1 / 2$ tetrahedral holes filled by cations

Sphalerite (zincblende, ZnS)

Sphalerite (zincblende, ZnS)

13-15 compounds: BP, BAs, AlP, AlAs, GaAs, GaP, GaSb, AlSb, InP, InAs, InSb

12-16 compounds: BeS, BeSe, BeTe, $\beta-\mathrm{MnS}$ (red), β-MnSe, β-CdS, CdSe, CdTe, HgS, HgSe, $\mathbf{H g T e}, \mathbf{Z n S e}$, ZnTe

Halogenides: AgI, CuF, CuCl, CuBr, CuI, NH4F
Borides: PB, AsB
Carbides: β-SiC
Nitrides: BN

Diamond

Diamond

SiO_{2} cristobalite
hexagonal

SiO_{2} tridymite ice

Cubic Diamond

Diamond Structure

C, $\mathrm{Si}, \mathrm{Ge}, \alpha-\mathrm{Sn}$

- Add 4 atoms to a FCC
- Tetrahedral bond arrangement
- Each atom has 4 nearest neighbors and 12 next nearest neighbors

Elements of the 14th Group

	$a(\AA)$	$d\left(\mathrm{~g} . \mathrm{cm}^{-3}\right)$
C	3.566	3.515
Si	5.431	2.329
Ge	5.657	5.323
$\mathrm{a}-\mathrm{Sn}$	6.489	7.285

Diamond Lattice (100)

Diamond Lattice (110)

Diamond Lattice (111)

Diamond Lattice (111) Hard Sphere Model

Diamond Lattice (111) Hard Sphere Model

Face Centered Cubic Lattice (111) Hard Sphere Model

Wurzite, ZnS

Hexagonal close packing of anions with $1 / 2$ tetrahedral holes filled by cations

Wurzite, ZnS

ZnO, ZnS, ZnSe, ZnTe, BeO, CdS, CdSe, MnS, AgI, AIN

Semiconductors of 13-15 and 12-16 type

Structure of III-V and II-VI Compound Semiconductors

Zinc blende

Wurtzite

Rock Salt, $\mathbf{N a C l}$

Cubic close packing of anions with all octahedral holes filled by cations

Rock Salt, $\mathbf{N a C l}$

Na^{+}

Rock Salt, NaCl

(a)

(b)

Anion and cation sublattices

Rock Salt Crystal Structure

Rock salt structures ($\mathbf{N a C l}$)

Hydrides: LiH, NaH, KH

Borides: ZrB, HfB
Carbides: TiC, ZrC, VC, UC
Nitrides: $\mathbf{S c N}, \mathbf{T i N}, \mathbf{U N}, \mathbf{C r N}, \mathbf{V N}, \mathbf{Z r N}$
Oxides: $\mathrm{MgO}, \mathrm{CaO}, \mathrm{SrO}, \mathrm{BaO}, \mathrm{TiO}, \mathrm{VO}, \mathrm{MnO}, \mathrm{FeO}$, CoO, NiO
Chalcogenides: MgS, CaS, SrS, BaS, $\alpha-M n S, ~ M g S e, ~$ CaSe, SrSe, BaSe, CaTe

Halides: LiF, LiCl, LiBr, LiI, NaF, NaBr, NaI, KF, $\mathrm{KCl}, \mathrm{KBr}, \mathrm{KI}, \mathrm{RbF}, \mathrm{RbCl}, \mathrm{RbBr}, \mathrm{AgCl}, \mathrm{AgF}, \mathrm{AgBr}$

Intermetallics: SnAs
Other
FeS_{2} (pyrite), CaC_{2}

NiAs - type

Hexagonal close packing of anions with all octahedral holes filled by cations

NiS, NiAs, NiSb, NiSe, NiSn, NiTe, FeS, FeSe, FeTe, FeSb, PtSn, CoS, CoSe, $\mathrm{CoTe}, \mathrm{CoSb}, \mathrm{CrSe}, \mathrm{CrTe}, \mathrm{CoSb}$,

PtB (anti-NiAs structure)

ReB $_{2}$ - type

Hexagonal close packing of anions with all tetrahedral holes filled by cations

$\mathrm{Li}_{3} \mathbf{B i}$ - type (anti BiF_{3})

$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}, \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
bcc

$\mathrm{Li}_{3} \mathrm{Bi}$ - type (anti BiF_{3})

$$
\begin{aligned}
& \mathrm{Fe}_{3} \mathrm{Al} \\
& {\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}} \\
& \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]
\end{aligned}
$$

Cubic close packing of anions with all tetrahedral and octahedral holes filled by cations

CsCl
Primitive cubic packing of anions with all cubic holes filled by cations

CsCl

$\mathrm{CsBr}, \mathrm{CsI}, \mathrm{CsCN}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NH}_{4} \mathrm{Br}, \mathrm{TlCl}, \mathrm{TlBr}, \mathrm{TlI}, \mathrm{CuZn}, \mathrm{CuPd}, \mathrm{LiHg}$

ReO_{3}

NaCl structure with $3 / 4$ of cations removed and $1 / 4$ of anions removed

$$
\mathbf{U O}_{3}, \mathrm{MoF}_{3}, \mathrm{NbF}_{3}, \mathrm{TaF}_{3}, \mathrm{Cu}_{3} \mathbf{N}
$$

Perovskite, CaTiO_{3}

Two equvivalent views of the unit cell of perovskite

O

Cubic "close packing" of Ca and O with $1 / 4$ octahedral holes filled by Ti cations

Perovskite structure $\mathbf{C a T i O}_{3}$

$\mathrm{TiO}_{6}-$ octahedra
CaO_{12} - cuboctahedra
$\left(\mathrm{Ca}^{2+}\right.$ and O^{2-} form a cubic close packing)
preferred structure of piezoelectric, ferroelectric and superconducting materials

Perovskite, CaTiO_{3}

Cubic "close packing" of A and X with $1 / 4$ octahedral holes filled by B cations

Similarity to CsCl

Perovskite, CaTiO_{3}

Perovskite Crystal Structure

A
$\mathrm{KNbO}_{3}, \mathrm{KTaO}_{3}, \mathrm{KIO}_{3}$, $\mathrm{NaNbO}_{3}, \mathrm{NaWO}_{3}, \mathrm{LaCoO}_{3}$, $\mathrm{LaCrO}_{3}, \mathrm{LaFeO}_{3}, \mathrm{LaGaO}_{3}$, $\mathrm{LaVO}_{3}, \mathrm{SrTiO}_{3}, \mathrm{SrZrO}_{3}$, SrFeO_{3}.

Rutile, $\mathbf{T i O}_{2}$

CN - stoichiometry Rule $\mathrm{A}_{\mathrm{x}} \mathrm{B}_{\mathrm{y}}$
$\mathrm{CN}(\mathrm{A}) / \mathrm{CN}(\mathrm{B})=\mathrm{y} / \mathrm{x}$
Distorted hexagonal close packing of anions with $1 / 2$ octahedral holes filled by cations (giving a tetragonal lattice)

Rutile, $\mathbf{T i O}_{2}$

Rutile Crystal Structure

$$
\begin{gathered}
\mathrm{GeO}_{2}, \mathrm{CrO}_{2}, \mathrm{IrO}_{2}, \mathrm{MoO}_{2}, \mathrm{NbO}_{2}, \beta-\mathrm{MnO}_{2}, \mathrm{OsO}_{2}, \mathrm{VO}_{2} \\
(>340 \mathrm{~K}), \mathrm{RuO}_{2}, \mathrm{CoF}_{2}, \mathrm{FeF}_{2}, \mathrm{MgF}_{2}, \mathrm{MnF}_{2}
\end{gathered}
$$

The rutile structure: $\mathbf{T i O}_{\mathbf{2}}$

TiO_{6} - octahedra
OTi_{3} - trigonal planar
(alternative to CaF_{2} for highly charged smaller cations)

The spinel structure: $\mathbf{M g A l}_{2} \mathbf{O}_{4}$

fcc array of O^{2-} ions, A^{2+} occupies $1 / 8$ of the tetrahedral and $\mathrm{B}^{3+} 1 / 2$ of the octahedral holes
\rightarrow normal spinel:
$\mathrm{AB}_{2} \mathrm{O}_{4}$
$\rightarrow \underline{\text { inverse spinel: }}$
$\mathrm{B}[\mathrm{AB}] \mathrm{O}_{4}\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$:
$\mathrm{Fe}^{3+}\left[\mathrm{Fe}^{2+} \mathrm{Fe}^{3+}\right] \mathrm{O}_{4}$
\rightarrow basis structure for several magnetic materials

Spinel

$\mathrm{AB}_{2} \mathrm{X}_{4}$ Spinel normal: Cubic close packing of anions with $1 / 2$ octahedral holes filled by B cations and $1 / 8$ tetrahedral holes by A cations
$\mathrm{MgAl}_{2} \mathrm{O}_{4}, \mathrm{CoAl}_{2} \mathrm{O}_{4}, \mathrm{MgTi}_{2} \mathrm{O}_{4}, \mathrm{Fe}_{2} \mathrm{GeO}_{4}, \mathrm{NiAl}_{2} \mathrm{O}_{4}, \mathrm{MnCr}_{2} \mathrm{O}_{4}$
$\mathrm{AB}_{2} \mathrm{X}_{4}$ Spinel inverse: As for spinel but A cations and 1/2 of B cations interchanged
$\mathrm{MgFe}_{2} \mathrm{O}_{4}, \mathrm{NiFe}_{2} \mathrm{O}_{4}, \mathrm{MgIn}_{2} \mathrm{O}_{4}, \mathrm{MgIn}_{2} \mathrm{~S}_{4}, \mathrm{Mg}_{2} \mathrm{TiO}_{4}, \mathrm{Zn}_{2} \mathrm{TiO}_{4}, \mathrm{Zn}_{2} \mathrm{SnO}_{4}$, $\mathrm{FeCo}_{2} \mathrm{O}_{4}$.

Layered Structures

CdI_{2} Hexagonal close packing of anions with $\mathbf{1 / 2}$ octahedral holes filled by cations
$\mathrm{CoI}_{2}, \mathrm{FeI}_{2}, \mathrm{MgI}_{2}, \mathrm{MnI}_{2}, \mathrm{PbI}_{2}, \mathrm{ThI}_{2}, \mathrm{TiI}_{2}, \mathrm{TmI}_{2}, \mathrm{VI}_{2}, \mathrm{YbI}_{2}, \mathrm{ZnI}_{2}, \mathrm{VBr}_{2}$, $\mathrm{TiBr}_{2}, \mathrm{MnBr}_{2}, \mathrm{FeBr}_{2}, \mathrm{CoBr}_{2}, \mathrm{TiCl}_{2}, \mathrm{TiS}_{2} ., \mathrm{TaS}_{2}$.
CdCl_{2} Cubic close packing of anions with $\mathbf{1 / 2}$ octahedral holes filled by cations
$\mathbf{C d C l}_{2}, \mathrm{CdBr}_{2}, \mathrm{CoCl}_{2}, \mathrm{FeCl}_{2}, \mathrm{MgCl}_{2}, \mathrm{MnCl}_{2}, \mathbf{N i C l}_{2}, \mathbf{N i I}_{2}, \mathrm{ZnBr}_{2}, \mathrm{ZnI}_{2}$, $\mathrm{Cs}_{2} \mathrm{O}^{*}$ (anti-CdCl ${ }_{2}$ structure)

CdI_{2} Hexagonal close packing

CdCl_{2} Cubic close packing

CdCl_{2} Cubic close packing

Fázové přeměny za zvýšeného tlaku

Zvýšení koordinačního čísla
Důsledky zvýšení tlaku Zvýšení hustoty
Prodloužení vazebných délek Přechod ke kovovým modifikacím

X-ray structure analysis with single crystals

Principle of a four circle X-ray diffractometer for single crystal structure analysis

[^0]: *J.E. Huheey (1983) Inorganic Chemistry, 3rd edn, Harper and Row, London, based on data from H.D.B. Jenkins and K.P. Thakur (1979) J. Chem. Ed., 56, 576.

