Materials in human history

Historical perspective:

New materials bring advancement to societies

- Stone age
- Bronze age
- Iron age
- Silicon age

Materials in human history

50 000 B.C.	Iron oxide pigments	Lascaux, Altamira
-------------	---------------------	-------------------

- 24 000 B.C. Ceramics fat, bone ash, clay
- **3 500 B.C. Cu metallurgy**
 - **Glass, Egypt and Mesopotamia**
- **3 200 B.C. Bronze**
- **1 600 B.C. Iron metallurgy, Hittites**
- **1 300 B.C.** Steel
- **1 000 B.C.** Glass production, Greece, Syria
- **105 B.C. Paper, China**
- 590 A.D. Gun powder, China
- 700 A.D. Porcelain, China

Materials in human history metals

FIG. 11.—EGYPTIAN GOLDSMITHS WASHING, MELTING AND WEIGHING GOLD. BENI HASAN, 1900 B.C.

Materials in human history ceramics

Development of materials in human history

Materials

Chemical compounds - single use pharmaceuticals, fertilizers, fuels

Materials - repeated or continual use, shaping

Materials

Ceramics (oxides, carbides, nitrides, borides)

Glasses (oxides, fluorides, chalcogenides, metallic)

Metals, Alloys, Intermetallics

Polymers - inorganic, organic, hybrid

Semiconductors (Si, Ge, 13/15, 12/16 compounds)

Composites, Hybrid Materials

Zeolites, Layer and Inclusion Materials

Biomimetic Materials

Fullerenes and Fullerene Tubes

Properties of materials

Property = a material trait, the kind and magnitude of response to a specific stimulus

Properties

Mechanical Electrical Thermal Magnetic Optical Deteriorative (corrosion) Catalytic Biocompatibility

Metals	Ceramics	Polymers
Strong	Strong	Usually not strong
Ductile	Brittle	Very ductile
Electrical	Electrical	Electrical
Conductor	Insulator	Insulator
Heat Conductor	Thermal Insulator	Thermal Insulator
Not transparent	May be transparent	Not transparent
Shiny	Heat Resistant	Low Densities

Materials Science

Materials Science:

Studies relationships between the structure and properties of materials

Materials Engineering:

Designing and engineering the structure of a material to produce a predetermined set of properties

Materials Science

Processing

Structure

Properties

Function

Materials Chemistry among natural and technical sciences

Materials Chemistry

Role of Materials Chemistry

- Synthesis of new materials new atom architecture
- Preparation of high purity materials
- Fabrication techniques for tailored shapes, morphologies, and size

Natural and Synthetic Single Crystals

Calcite CaCO₃

Materials Chemistry

Single crystals, defects, dopants, non-stoichiometry **Monoliths** Coatings Thin or thick films - singlecrystalline, polycrystalline, amorphous, epitaxial **Fibers, Wires, Tubes Powders – primary particles, aggregates, agglomerates** polycrystalline, amorphous, nanocrystalline (1-100 nm) **Porous materials** micropores (< 20 Å), mesopores (20-500 Å), macropores (> 500 Å) **Micropatterns** Nanostructures – spheres, hollow spheres, rods, wires, tubes, photonic crystals **Self-assembly – supramolecular chemistry: rotaxenes, catenanes,** 15 cavitands, carcerands

Direct reactions of solids – "heat-and-beat"

Precursor methods

Chimie douce, soft-chemistry methods, synthesis of novel metastable materials, such as open framework phases

Ion-exchange methods, solution, melt

Intercalation: chemical, electrochemical, pressure, exfoliationreassembly

Crystallization techniques, solutions, melts, glasses, gels, hydrothermal, molten salt, high P/T

Vapor phase transport, synthesis, purification, crystal growth, doping

Electrochemical synthesis, redox preparations, anodic oxidation, oxidative polymerization

Preparation of thin films and superlattices, chemical, electrochemical, physical, self-assembling mono- and multilayers

Growth of single crystals, vapor, liquid, solid phase chemical, electrochemical

High pressure methods, hydrothermal, diamond anvils

Combinatorial materials chemistry, creation and rapid evaluation of gigantic libraries of related materials

- Strong covalent bond (4.9 eV)
- Hardness (α-monocrystal, Vickers 21 GPa)
- Tensile Strength 1.5 GPa (β-whisker)
- Young modulus 350 GPa
- Decomposition temp. 1840 °C/1 atm N₂
- Density 3.2 g cm⁻³

Si₃N₄ Ceramics

Microstructure of materials

SiC/Si₃

3.00kV 2mm DSM 982 GEMINI

N₄ nanocomposite

20

