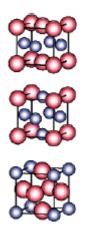

HW 1	Inorganic Materials	Name:	
	Chemistry		
Points:	C7780	Date:	
Max. 100 points	Fall 2013	A	


1. (5 pts) A unit cell have in general shape of a) cube b) tetrahedron c) parallelepiped

2. (35 pts) Assume that CaO reacts with CeO₂ and forms CaCeO₃. What could be the structure type of this compound?

Write balanced chemical equations for the reactions taking place at the interfaces I and II (assume counter diffusion of both cations) and calculate the Kirkendall ratio for this process.

- 3. (10 pts) Derive Miller indices for planes that intersects the cell axes at a/2, 2b/3, 2c.
- 4. (15 pts) Give stoichiometric formulas for the structures. Large atoms = A, small atoms = B

- 5. (15 pts) Specific surface area of α -Fe₂O₃ was measured by nitrogen adsorption at 77 K and its value is 120 m² g⁻¹. Density of this oxide is 5.277 g cm⁻³. Calculate the particle size assuming a spherical particle shape.
- 6. (20 pts) Maghemite γ -Fe₂O₃ crystallizes in a defect inverse spinel structure (as Fe₃O₄), but some positions of Fe³⁺ in octahedral holes must be vacant, in order to maintain stoichiometry. What part of these holes must be empty in comparison with Fe₃O₄.

 \square = vacancy, empty hole, (X) = tetrahedral position, [Y] = octahedral position Fill stoichiometric coefficients at the horizontal lines:

(Fe) [Fe, \square O_4