HW 2	Inorganic Materials Chemistry	Name:	
Points:	C7780	Date:	
Max. 100 points	Fall 2013	A	

1. (10 pts) In the crystalline $\mathrm{Cu}_{3} \mathrm{~N}$, copper atoms possess coordination number 2 . What is the coordination number of N ?
2. (15 pts) X-ray radiation of a Cu anode $(\lambda=1.54 \AA)$ was diffracted under an angle of 14.22° at silicon crystal. Calculate the interplanar distance d in Si for the first order diffraction ($\mathrm{n}=$ 1).
3. (15 pts) Stishovite is a high-pressure modification of SiO_{2} having the rutile structure.
a) What is the coordination number of Si and O ?
b) Should it have higher or lower density then quartz?
c) Should it have longer or shorter $\mathrm{Si}-\mathrm{O}$ bond lengths then quartz?
4. (10 pts) Write balanced chemical equation for a solid state reaction:
$\mathrm{ZnC}_{2} \mathrm{O}_{4}+\mathrm{Fe}(\mathrm{OH})_{3} \rightarrow \mathrm{ZnFe}_{2} \mathrm{O}_{4}$
5. (20 pts) Cubic spinel $\mathrm{ZnFe}_{2} \mathrm{O}_{4}$ crystallizes with 8 formula units in the cubic unit cell. The cell parameter $a=8.42 \AA$ Á. Calculate the density in $\mathrm{g} \mathrm{cm}^{-3}$ of the material.
$N_{\mathrm{A}}=6.02214110^{23} \mathrm{~mol}^{-1}, A_{\mathrm{r}}(\mathrm{Zn})=65.41, A_{\mathrm{r}}(\mathrm{Fe})=55.85, A_{\mathrm{r}}(\mathrm{O})=15,999$.
6. (30 pts) Gibbs free energy change for nucleation ΔG_{N} is given by two terms - surface and volume. $\quad \Delta G_{\mathrm{N}}=4 \pi r^{2} \gamma_{\mathrm{SL}}+4 / 3 \pi r^{3} \Delta G_{\mathrm{V}}$
$\gamma_{\mathrm{SL}}=$ the solid/liquid interfacial energy
ΔG_{V} - the free energy change between the 'monomer' in solution and unit volume of bulk crystal

$$
\Delta G_{V}=-\frac{R T \ln S}{V_{m}}
$$

S - supersaturation = the quotient (ratio) of the actual concentration and the concentration of the respective species at equilibrium conditions, indicates how far away from equilibrium the system is.
V_{m} - molar volume of the bulk crystal, r - nucleus radius
a) Explain what is a critical radius of nuclei $r_{\mathrm{C}}-$ draw a graph of ΔG_{N} versus r.
b) Suggest a way how to control the critical nucleation radius r_{C} by changing some reaction parameter.

