HW 3	Inorganic Materials	Name:	
	Chemistry		
Points:	C7780	Date due:	Dec. 21, 2016
Max. 100 points	Fall 2016		

1. (30 pts.) Use the ligand field theory to explain why Mn_3O_4 is a normal spinel while Fe₃O₄ is an inverse spinel. Hint: draw diagrams of energy levels of d-electrons for ions in tetrahedral and octahedral sites, use approximation $\Delta_T = 4/9 \Delta_O$, consider all MO₄ and MO₆ moieties as high spin complexes, calculate ligand field stabilization energy in terms of Δ_O for both normal and inverse arrangement of ions, compare them and find which is more stable.

2. (**50 pts.**) Calculate the wall thickness of a hexagonal MCM-41 mesoporous material, assume that it possesses cylindrical pores.

a) First, calculate the d(100) = interplanar distance in the (100) plane from the XRD diffractogram. CuK α radiation was used with $\lambda = 1.542$ Å. Diffraction maximum was found at 2.14 °20.

b) Now, derive the formula relating the interplanar distance d(100) to the hexagonal mesoporous parameter a_0 and calculate its value.

c) Derive the formula relating the diameter D_p of a pore to specific surface area SA (870 m²/g) and total pore volume V_p (0.683 cm³/g). Assume cylindrical pores.

d) Finally, calculate the wall thickness (*wt*) of MCM41 material.

3. (20 pts.) Ferromagnetic magnetite can be crystallized by a vapor transport reaction under atmosphere of HCl(g) as a transport agent. Powder of Fe_3O_4 reacts with HCl at hotter end and crystallizes at cooler end.

a) Write and balance the VPT reaction:

 $Fe_3O_4(s) + HCl(g) \rightleftharpoons$

b) Is the reaction endo- or exothermic?