

Central European Institute of Technology BRNO | CZECH REPUBLIC

Use of AFM for mechanical mapping of nanostructured surfaces

Jan Přibyl Nanobio Core Facility CEITEC MU, Masaryk university, Brno pribyl@nanobio.cz

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

OP Research and Development for Innovation

Content

- Equipment AFM, biosensors
- BioAFM imaging, stiffness mapping, adhesion studies
- Samples, analysis
- Ongoing projects, cooperation, examples

AFM microscopy / spectroscopy

Stiffness mapping (nanoindentation)

AFM imaging

Biosamples

 DNA – proteins – nanoparticles – liposomes – bacteria – single cells – cell clusters

Working environment

- Lab atmosphere
- Liquid environment (drop/Petri dish)
- Elevated temperatures (37 °C)

Eluid Probe

Sample

Hybrid modes: QI, QNM

→ Topography&Mechanical properties

www.bruker.com www.azonano.com

Nature Protocols 6, 1443–1452 (2011) ↔ ⊂ ≡ I ⊤ ≡ ⊂

Force spectroscopy (nanoindentation studies)

dECM

AFM cantilever above the dECM (optical view)

\rightarrow For tissue engineering

ForceMapping as imaging method

- High attraction forces
- Soft material (macroscopic view)

Samples by group of Gancarlo Forte, ICRC, Brno AFM operator: Guido Caluori

Chromatin-protein interaction

→ For tissue engineering ForceMapping as imaging method

- Collapsive material
- Soft material (macroscopic view)

Pesl M, Pribyl J, et al. 2016 Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing *Biosensors and Bioelectronics* **85** 751–7 Pesl M, Pribyl J, et al. 2016 Phenotypic assays for analyses of pluripotent stem cell–derived cardiomyocytes J Mol Recognit n/a-n/a Pesl M, Acimovic I, Pribyl J, et al. 2014 Forced aggregation and defined factors allow highly uniform-sized embryoid bodies and functional cardiomyocytes from human embryonic and induced pluripotent stem cells Heart

Vessels 29 834-46

Water – YM 7.09 MPa

Manitol YM 0.69 MPa

Hypocotyl and root parts

Plant samples under AFM spectroscopy investigation

by Marçal Gallemí Eva Benkova Lab & Jan Hejatko Lab

Top view optical imgs

Fibroblasts thawing process model case to study IVF related thawing

17:34 2.94 µm 17:34 108 kPa 25 % Rel YM −□− Fibroblasts Feeder cells 60 min SP = 1.5 nN \rightarrow deep indent. 20 µm 20 µm 0.00 SP height profile **YM** profile (12 hours) (12 hours) 25 % Rel YM

Together with I. Kratochvilova (Institute of Physics ASCR)

-D- Fibroblasts

Feeder cells

120 min

SP =0.4 nN

 \rightarrow surface indent.

fixed cell

SEM -

→ QI imaging

→ FM 2500 nN

0.00

30 µm

2.32 µm

1.50

1.00

Improved Method for Surface Immobilization of DNA Molecules Used in AFM Single Molecule Imaging 1-(3-Aminopropyl)silatrane (APS)

- Chem. structure: K₂O·Al₂O₃·SiO₂
- Hydrophilic surface
- Easy to be modified by chemical synthesis
- pKa ~ 3, physiological pH \rightarrow negative surface charge
- Mica = silicate, hydrated SiO_2 (~ Si-OH)

DNA on graphite (HOPG)

• High hydrophobicity

Examples of alkylsiloxanes Silanization process

- Especially with **APTES** during liquid silanization
- Even vapors of water can cause this effect
- Fixation for **optical** microscopy **expected** factor
- In contrary in fixation for AFM very disturbing
- Solution:
 silanization in vapours under vacuum (i.e. in desiccators)
 - monoalkoxysilanes can not polymerize

Reactivity of aminosiloxanes

TEtOHA

Self-polymerization

APS purification

- Reacts with many solid phases
- Purification by solvent extraction and crystallization
- Structure analysis by MS-ESi, MALDI-TOF and X-Ray

APS use for DNA imaging

- •APS aquatic solution stable in water
- •One step, short time applicability
- •Low roughess of mica surfaces modified with purified APS

Effect of substrate stiffness on mechanical and morphological properties of fibroblasts

Extracellular matrix rigidity – plays a role:

- Locomotion
- Groth control
- Differenciation
- Phagocytosis
- Etc.

A Actin structure

Β

Cell height

O. Collin, et al. "Spatiotemporal dynamics of actin-rich adhesion microdomains: influence of substrate flexibility," *J. Cell. Sci.*, vol. 119, 1914–1925, 2006.

Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating

A.J. Engler, et al. "Embryonic cardiomyocytes beat best on a matrix with heartlike elasticity: scar-like rigidity inhibits beating" *J Cell Sci. 2008, 121, 3794.*

Protein crosslinking

2 types of gel:

GHB = hyaluronan - BSA **GHBG** = hyaluronan - BSA - gelatin

Practical aspects

PAA (polyacrylamide) **gel** – poorly adherent to the dish, instable and very sticky in aquatic solutions

GHB and GHBG gels immobilized on microscopic slides

Surface roughness

GHB gel *Rms* = 57.2 nm (aver. rough.)

GHBG gel *Rms* = 39.7 nm (aver. rough.)

Microscopic glass Rms (Sq): 228.8 pm

Surface stiffness

RT **GHB** gel 37°C 373 kPa 1003 kPa 350 900 300 800 700 250 600 200 500 150 400 100 300 200 50 4 µm 4 µm E_{aver} 135.9 kPa 285.2 kPa

RT GHBZ gel 37°C

Mouse fibroblast on glass

Glass 70 MPa

Cell morphology substrate stiffness

Confocal microscopy

- DAPI nucleus staining
- Actin staining by Phalloidin

GHB 135.9 kPa

GHBG 19.9 kPa

Effect of substrate stiffness on filopodia / lamellipodia structure

Glass 70 MPa

4,59 μm 4,59 μm 4,59 μm 1,59 μm 1,

GHB 135.9 kPa

Substrate stiffness vs. cell stiffness and height

Gels based on crosslinked proteins and hyaluronan

- Mechanical properties similar to tissues
- Biocompatibility, non-toxic for cells
- Keeps adhesivity and mechanical properties (long term)
- Transparent compatible with optical microscopies
- Adhesive for cells
- Outlook: application for cardiomyocytes (single cells, EBs)

Samples

- 5. Combination with other methods
- AFM+MEA (microelectrode array)

→ Mechanical&electrical prop. of CMCs

b

Img & graph by Guido Caluori

 AFM+electrochemistry (*in-situ*)
 Combined study of electrochem. processes

asylumresearch.com

Nanoscale, 2009, 1, 40-49

Acknowledgement

Petr Skládal Guido Caluori Stěpán Solný Veronika Horňáková

Biology Dept., Fac. of Medicine MU, Brno

Vladimír Rotrekl Guido Caluori Šárka Jelínková Ivana Acimovic

ICRC, FNUSA Brno

Giancarlo Forte Giorgia Nardone Jorge Olivier De La Cruz

IST Austria

Marcal Gallemi Eva Benkova

Institute of Physics

Irena Kratochvilova Martin Golan

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Thank you for your attention!

Nanomechanical mapping

Optical microscopy

Confocal microscopy

AFM

Motivation

Why to quantify elasticity of (living) objects?

- Stiffness (Young's modulus) mapping
 → stiffness = basic parameter of any material
- Elasticity-phenotype relation ship
- Mechanobiological characterization
- Driving of instrument properties (QNM, QI)

Young's modulus of materials

Tissue's Young Modulus

Tissue elastic modulus (E) is given by the resistance offered by the tissues to deformation effects, i.e. the tissue stiffness.

www-materials.eng.cam.ac.uk/

Acta Biomater. 2007 Jul; 3(4): 413–438.

34

Force distance curve analysis

Chromation-BAF complex

on pLL-modified glass

Fig. 5A-C. High resolution AFM images of A smooth fibers with interspersed ellipsoid-shaped nodules (the interspersed nodules are 130 nm in width and 15 nm in height), B coiled nodular fibers (see arrows for example) 100 nm in width and 15 nm in height, and C extended smooth fibers the smallest of which are 25 nm in width and 3 nm in height

Chromatin only Tightly packed chains (linear / curled)

Chromatin-BAF Granular structure (size of grains ~ 50-100nm) **SUMMARY** + BAF

250 nm

Chromatin only Chains composed of ellipsoids

SUMMARY

Chromatin-BAF

Granular structure, grains composed of fibers (?) (~17nm)

Biomechanical studies on cardiomyocytes

- Primary CMCs
- Embryonic bodies iPS/HES cardiomyocytes
- Low noise ~ 10pN (~ 230 pm)
- Robust, low comp. requirements
- Possible combination with MEA
- Low throughput

Mapping of force/beat rate

- **Beta-adrenergic receptors diseases**
 - Duchenne muscular dystrophy
 - CPVT

In cooperation with V. Rotrekl, M. Pesl, Med Fac, MU

Mechanical & Electrical properties of CMCs

AFM & MEA/conductive tip

In cooperation with V. Rotrekl, M. Pesl, Med Fac, MU Instrument interface: R. Raiteri, G. Caluori, Uni Genoa, Italy

Use of AFM Force Mapping to study Integrin-Focal Adhesion (FA)

G. Nardone *et al.*, "YAP regulates cell mechanics by controlling focal adhesion assembly," *Nature Communications*, vol. 8, p. 15321, May 2017.

Use of AFM Force Mapping to study cancer cells stiffness

Two independent projects together with:

- Pavel Bouchal, Biochemistry Dept. MU
- Michal Masarik, Med Fac, MU

Hyaluronan - myeloperoxidase structure and mechanical properties

https://wardroundstuff.com/tag/neutrophils/

AFM measurements by Stepan Solny \bigcirc \bigcirc \bigcirc

Flexible surfaces (gels) as support for single CMs

With Vladimir Vinarsky, Giorgia Nardone, Giancarlo Forte (ICRC, FNUSA, Brno)

46 Equipment

- 1. BioAFM microscopes
- JPK NanoWizard3, ForceRobot300
 mounted on the confocal fluor. mic.
 - Contact/Tapping imaging in liquid
 - QI, ForceMapping in liquid (elev. temp.)

Petri dish heater

47

- NT-MDT Solver NEXT
 Ntegra Vita / Solaris
 - Contact/Tapping imaging
 - fully automated
 - education
 - in-situ elchem cell
- BrukerNano Dimension FastScan Bio
 - Contact/Tapping imaging in liquid
 - up to 1 image/sec
 - ScanAsyst
 - QNM/ForceMapping

(Images by: Petr Skladal, nanowerk.com)

48 **Equipment**

- 2. Microdeposition of liquids
- Scienion sciFlex Arrayers S1 and S3
 - deposition and immobilization of biomolecules
- InnoScan 1100
 - 2D fluorescence imaging (0.5 um resolution)
- 3. SPR biosensor
- Bionavis 220A
 - 4-channel SPR for real time kinetics of interaction
- 4. Supporting services
- Immobilization/conjugation of biomolecules
- ELISA (Biotek Synergy 2)
- QCM biosensors
- Electrochemistry (Autolab)

(Images by: Petr Skladal, bionavis.com, trendbio.com.au, innopsys.com)

Conclusions

BioAFM allows:

- Visualize objects (biomolecules to cells) in under near physiological conditions
- Mapping of Young's modulus of immobilized biosamples
- Time lapsed changes of mechanical properties

Future outlook

- BioAFM instrumentation improvement CO2 chamber, improved in-situ sterility, etc.
- Optical part improvement (objectives, cameras) → overlay imaging
- Tissue related experiments (i.e. heart valves)

