Algebra III exercises, fall semester 2021-22

Giulio Lo Monaco

1. Describe coproduct in the category $\mathbf{A b}$ of abelian groups and group homomorphisms. What is the relation between these and coproducts in Grp? [2 points]
2. A generating set for an algebra A is a set $X \subseteq A$ such that $\langle X\rangle$. A basis is a generating set X such that for each $a \in X$, then $\langle X \backslash\{a\}\rangle \neq A$.
Prove that an algebra need not have a basis. Prove that if A is finitely generated, then it has a finite basis.
[2 points]
3. Let consider an algebra structure on \mathbb{N} with one unary operation - \odot defined by $0^{\odot}=0$ and for $n>0, n^{\odot}=n-1$. Prove that \mathbb{N} has no basis. [1 point]
4. Consider the set $\{a, b, c, d\}$ with no operations. How many congruences does it have? Now endow it with a unary operation defined by $a \mapsto b, b \mapsto$ $a, c \mapsto d, d \mapsto c$. How many congruences are there now?
[1 point]
5. An algebra is simple if its only congruences are the diagonal $\Delta_{A} \subseteq A \times A$ and $A \times A$ itself.
Consider an algebra A with one ternary operation t defined by

$$
t(x, y, z)= \begin{cases}z & \text { if } x=y \\ x & \text { if } x \neq y\end{cases}
$$

Prove that A is simple.
[1 point]
6. Given a monad T on a category \mathcal{C}, we know that there are two functors $F^{T}: \mathcal{C} \leftrightarrows \operatorname{Alg}(T): U^{T}$. Prove that these form an adjunction $F^{T} \dashv U^{T}$. [2 points]
7. A split fork is a diagram $a \underset{f_{1}}{\stackrel{f_{0}}{\zeta}} b \xrightarrow{e} c$ for which there exist arrows $a \stackrel{t}{\longleftarrow} b \stackrel{s}{\longleftarrow} c$ in such a way that $e f_{0}=e f_{1}, e s=1_{c}, f_{0} t=1_{b}$ and $f_{1} t=s e$.
Prove that a split fork is always an absolute coequalizer.
[1 point]
8. Prove that the free group monad is finitely accessible.
[2 points]
9. Describe the algebras of the monad $(-)^{\mathbb{N}}$.
[1 point]
10. Prove that, if $|X|=\lambda$, then the monad $(-)^{X}$ is λ^{+}-accessible, but it is not μ-accessible for any $\mu \leq \lambda$.
[2 points]
11. There is a free point monad on sets given by $X \mapsto X \amalg \bullet$. The multiplication $X \amalg \bullet \amalg \bullet \rightarrow X \amalg \bullet$ is defined by sending X to X and both additional points to the unique additional points in the codomain. The unit is the inclusion $X \hookrightarrow X \amalg \bullet$.
Establish whether this monad is λ-accessible for some λ, and describe its algebras.
[2 points]
12. Prove that a sequence of R-modules $A \rightarrow B \rightarrow C \rightarrow 0$ is exact if and only if for every R-module N the induced sequence

$$
0 \rightarrow \operatorname{Hom}(C, N) \rightarrow \operatorname{Hom}(B, N) \rightarrow \operatorname{Hom}(A, N)
$$

is exact.
[2 points]
13. Prove that a sequence $A \rightarrow B \rightarrow C \rightarrow 0$ of R-modules is exact if and only if the square $\stackrel{\substack{u \\ \downarrow \\ 0}}{\substack{ \\\downarrow \\ C}}$
[2 points]
14. Find an example of a non-flat module.
[2 points]
15. Find two modules M and N with finitely generated submodules M_{0} and N_{0} respectively, such that there is a non-zero tensor $\sum m_{i} \otimes n_{i} \in M_{0} \otimes N_{0}$ which is zero in $M \otimes N$.
[1 point]
16. Remember that a poset I is directed if every finite subposet I_{0} admits an upper bound in I. A diagram in a category is called directed if it is indexed by a directed poset. Give an explicit description of the colimit of a directed diagram.
(Hint: if all the maps in a given directed diagram are inclusions, then the colimit is simply the union of all the involved modules.)
[2 points]
17. Show that the operation of tensoring commutes with directed colimits, i.e. if A is a module and $\left(B_{i}\right)_{i \in I}$ is a directed diagram, then the natural map

$$
\operatorname{colim}_{i \in I}\left(A \otimes B_{i}\right) \rightarrow A \otimes \operatorname{colim}_{i \in I} B_{i}
$$

is an isomorphism.
[2 points]
18. A ring is called a PID (principal ideal domain) if every ideal is of the form $I=(a)$, i.e. generated by a single element. Show that, if R is a PID, then a quotient of an injective R-module is injective.
[1 point]
19. Show that every module admits both a projective and an injective resolution.
[2 points]
20. Show that the homology and the cohomology functors are additive, i.e. for two maps $f, g: C \rightarrow D$ between chain complexes, we have $H_{n}(f+g)=$ $H_{n}(f)+H_{n}(g)$ and similarly for cohomology.
[2 points]
21. Show that, for a left (resp. right) exact functor F there is a natural isomorphism $R_{0} F \cong F\left(\right.$ resp. $\left.L_{0} F \cong F\right)$.
[1 point]
22. If B is a \mathbb{Z}-module and p is a natural number, compute the modules $\operatorname{Ext}^{n}(\mathbb{Z} / p, B)$ for all n. (Hint: \mathbb{Z} is a PID.)
Also, compute all modules $\operatorname{Tor}^{n}(\mathbb{Z} / p, B)$.
[3 points]
23. Prove at least one between (a) and (b) and at least one between (c) and (d) among the following statements:
(a) A is projective $\Leftrightarrow \forall B \operatorname{Ext}^{1}(A, B)=0 \Leftrightarrow \forall B \forall n>0 \operatorname{Ext}^{n}(A, B)=0$;
(b) B is injective $\Leftrightarrow \forall A \operatorname{Ext}^{1}(A, B)=0 \Leftrightarrow \forall A \forall n>0 \operatorname{Ext}^{n}(A, B)=0$;
(c) A is flat $\Leftrightarrow \forall B \operatorname{Tor}^{1}(A, B)=0 \Leftrightarrow \forall B \forall n>0 \operatorname{Tor}^{n}(A, B)=0$;
(d) B is flat $\Leftrightarrow \forall A \operatorname{Tor}^{1}(A, B)=0 \Leftrightarrow \forall A \forall n>0 \operatorname{Tor}^{n}(A, B)=0$.
[4 points]
24. Show that if U is an exact functor and F is right exact, then we have natural isomorphisms $U L_{n} F \cong L_{n} U F$.
[2 points]
25. Show that $\operatorname{Tor}^{n}(A, B)$ commutes with finite sums in both variables. [2 points]

