C5340 Nonequilibrium systems

Faculty of Science
Autumn 2023
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Taught in person.
Teacher(s)
prof. RNDr. Igor Kučera, DrSc. (lecturer)
Guaranteed by
prof. RNDr. Igor Kučera, DrSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Igor Kučera, DrSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science
Timetable
Mon 16:00–17:50 C05/107
Prerequisites
Students must have completed the basic courses on mathemathics and physical chemistry.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 23 fields of study the course is directly associated with, display
Course objectives
The course uses an interdisciplinary approach to illustrate the existence and importance of nonequilibrium processes and nonlinear phenomena in nature and technical applications. Specific examples from physics, chemistry, biology and ecology are discussed in details in order to enchance the student's skills in solving quantitative problems. The lectures are supplemented by practical demonstrations of computer modeling and oscillating reactions.
Learning outcomes
The student will gain a thorough understanding of the subject. He/she will become familiar with the basic mathematical formalism of non-equilibrium thermodynamics and chemical kinetics and will be able to apply the abstract results to concrete examples. These mainly include formulation of equations to build formal mathematical models, assessing the degree of coupling among processes and the efficiency of energy conversion, analyses of the stability of stationary states and oscillatory behavior, and metabolic control analysis.
Syllabus
  • A. Introduction to the thermodynamics of irreversible processes 1. Entropy production 2. Phenomenological equations and Onsager reciprocal relations 3. Evolution criteria and stability of stationary states B. Thermodynamic analysis of coupled processes 1. Energy conversion in biological systems 2. Osmosis and electrokinetic phenomena 3. Thermoelectric phenomena C. Mathematical modeling of nonlinear dynamic systems 1. Basic terms; attractors 2. Bifurcations 3. Spatial pattern formation 4. Oscillating Belousov-Zhabotinsky reaction 5. Metabolic control analysis 6. Prebiotic evolution
Literature
    recommended literature
  • FISCHER, Oldřich. Nerovnovážné soustavy : termodynamika nevratných chemických a buněčných procesů. Edited by Igor Kučera. 1. vyd. Praha: Státní pedagogické nakladatelství. 154 s. 1987. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press. xvi, 1014. ISBN 0198501013. 1998. info
  • COVENEY, Peter V. and Roger HIGHFIELD. Šíp času :cesta vědou za rozluštěním největší záhady lidstva. 1. vyd. Ostrava: Oldag. 472 s., [1. ISBN 80-85954-08-7. 1995. info
  • GLEICK, James. Chaos :vznik nové vědy. Translated by Jaroslav Sedlář - Renata Kamenická. [1. vyd.]. Brno: Ando Publishing. 349 s. ISBN 80-86047-04-0. 1996. info
Teaching methods
Lectures complemented with practical demonstrations of computer modelling and laboratory experiments on oscillating reactions.
Assessment methods
The examination is written. Students may use any materials that they have brought with them. 50 % correct answers is needed to pass.
Language of instruction
Czech
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022.
  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2023/C5340