C6770 NMR Spectroscopy of Biomolecules

Přírodovědecká fakulta
podzim 2020
Rozsah
2/0/0. 2 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
Vyučováno online.
Vyučující
prof. Mgr. Lukáš Žídek, Ph.D. (přednášející)
doc. RNDr. Radovan Fiala, CSc. (přednášející)
Mgr. Pavel Kadeřávek, Ph.D. (přednášející)
Garance
prof. Mgr. Lukáš Žídek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta
Kontaktní osoba: prof. Mgr. Lukáš Žídek, Ph.D.
Dodavatelské pracoviště: Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta
Rozvrh
Út 9:00–10:50 C04/211
Předpoklady
The course is offered to students interested in NMR methods applied to biomacromolecules. Basic knowledge of structure of proteins and nucleic acids is expected.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 9 mateřských oborů, zobrazit
Cíle předmětu
The course will provide introduction to modern NMR techniques which can be applied to extract structural information for small and mid-size biological macromolecules - peptides, proteins, DNA and RNA oligonucleotides. Experimental procedures and computational protocols for determination of three-dimensional structures and dynamics based on NMR data will be discussed. Students who finish the course successfully will understand principles of NMR and its applications to biochemical problems described in original research articles, to analyze NMR experiments and design their modification, to chose the correct approach of solving a given problem, and to combine results of individual approaches to obtain a complex picture of the studied problem. The course is designed so that students who continue to study in a PhD program will be able to apply the learned skills in their own research projects.
Osnova
  • 1. NMR as a tool for structure biology; Origin of magnetism. Structure determination based on NMR-derived distance restraints, comparison with diffraction techniques (advantages and disadvantages). Other biomolecular applications of NMR spectroscopy: quick quality control, intermolecular interactions, molecular motions (overall, internal), kinetics and thermodynamics, in-vivo measurements, spatial resolution. Limitations of biomolecular liquid-state NMR spectroscopy. Magnetism of Dirac particles, nuclear magnetism, magnetic dipole moment and its precession in a homogeneous magnetic field, relation between angular momentum and magnetic moment, energy and precession frequency of a magnetic moment in a magnetic field.
  • 2. What is going on inside the magnet. Macroscopic magnetization and distribution of magnetic moments in thermodynamic equilibrium, polarization, coherence. Basic NMR experiment. NMR spectrometer, radio-wave irradiation, signal detection. Local magnetic fields in a molecule (caused by nuclei, electrons), chemical shift, dipole-dipole interactions, J-coupling, modulation of carrier frequency, Fourier transformation, spectrum.
  • 3. 2D NMR experiments (correlated spectroscopy). Basic idea (NOESY as an example), heteronuclear spectroscopy. Spin echoes, INEPT, HSQC.
  • 4. NMR of proteins I. Spin systems in proteins. 3D experiments for sequential resonance assignment, HNCA, HN(CO)CA, HNCACB, CBCA(CO)NH. Side-chain assignment.
  • 5. NMR of proteins II. Strong coupling and isotropic mixing, TOCSY. Side-chain assignment from HSQC-TOCSY.
  • 6. NMR of proteins III. Technical issues. Pulses and delays, offset effects and selective pulses, quadrature detection, pulsed-field gradients, phase cycling, suppression of water signal.
  • 7. NMR of proteins IV. Structure determination. Structural parameters (inter-proton distances from NOE, torsion angles from J-coupling, orientation from residual dipolar coupling). Calculation of 3D structure by restrained molecular dynamics simulation.
  • 8. NMR of nucleic acids I. Spin systems in nucleic acids, 1D spectroscopy in water and deuterium oxide, homonuclear correlations in bases and sugar-phosphate backbone.
  • 9. NMR of nucleic acids II. Isotope labeling and heteronuclear spectroscopy of nucleic acids, structural parameters, structure determination.
  • 10. NMR relaxation and dynamics of molecules I - theory of relaxation. Relaxation mechanisms (chemical shift anisotropy and dipole-dipole interactions). Adiabatic contribution and loss of coherence. Non-adiabatic contributions and return to equilibrium. Correlation function, spectral density function, relaxation rates.
  • 11. NMR relaxation and dynamics of molecules II - measurement and analysis. Relaxation rates R1 and R2, steady-state nuclear Overhauser effect. Model-free analysis and spectral density mapping, limitations.
  • 12. Interactions, exchange. Effect of slow dynamics on relaxation rates and line-shape.
Literatura
  • CAVANAGH, John. Protein NMR spectroscopy : principles and practice. 2nd ed. Amsterdam: Elsevier. xxv, 885. ISBN 9780121644918. 2007. info
Výukové metody
Interactive on-line lectures in real time combining explanation of basic ideas with analysis of model examples, computer simulations of the discussed topics.
Metody hodnocení
Oral examination in a form of discussion of problems solved by the student. On-line possible.
Vyučovací jazyk
Angličtina
Navazující předměty
Informace učitele
http://www.ncbr.chemi.muni.cz/~lzidek/C6770/C6770.html
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, podzim 2019, podzim 2021, podzim 2022, podzim 2023.