F1711 Mathematics 1

Faculty of Science
Autumn 2007
Extent and Intensity
3/2/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
Mgr. Pavla Musilová, Ph.D. (lecturer)
Mgr. Jiří Vohánka, Ph.D. (seminar tutor)
Mgr. Pavel Zvěřina (seminar tutor)
Ing. Stanislav Petráš (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: Mgr. Pavla Musilová, Ph.D.
Timetable
Wed 12:00–14:50 F1 6/1014
  • Timetable of Seminar Groups:
F1711/01: Thu 16:00–17:50 F4,03017, P. Zvěřina
F1711/02: Thu 18:00–19:50 F4,03017, J. Vohánka
F1711/04: Thu 16:00–17:50 Fs1 6/1017, S. Petráš
Prerequisites (in Czech)
Středoškolská matematika
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives (in Czech)
Předmět je první částí úvodu do základů matematické analýzy, lineární algebry a teorie pravděpodobnosti. Je určen studentům bakalářských nefyzikálních a profesních fyzikálních programů. Jeho cílem je naučit studenty používat matematické postupy běžné v přírodních vědách, nikoli však jako pouhé rutinní procedury, ale s pochopením jejich podstaty. Výklad problematiky je založen spíše na názorném zavádění pojmů motivovaném potřebou konkrétního výpočetního aparátu přírodních věd (fyziky, chemie, biologie, věd o Zemi), popř. i geometrie, a na intuitivně pochopitelném vysvětlení vlastností těchto pojmů, než na tradičním schématu definice - věta --důkaz. Matematická tvrzení jsou však vždy formulována korektně, s uvedením potřebných předpokladů a pro názornost i protipříkladů. Pozornost je věnována zejména pojmům, bez kterých se studium žádné přírodní vědy nemůže obejít: pojem funkce a jeho vlastnosti a základní pojmy lineární algebry. Studenti programů a oborů, kde je matematika přímo součástí vědní discipliny samotné, mohou předmět chápat jako průpravu pro absolvování nezbytných teoretických matematických disciplin.
Syllabus (in Czech)
  • 1. Lineární algebra poprvé (To nejnutnější z lineární algebry) 1.1 Lineární rovnice (1. týden) (Linearita neboli úměra je všudypřítomná -- v geometrii, ve fyzice, v chemii, biologii a bůhvíkde ještě.) * lineární zákony (fyzikální, chemické, biologické, ...) * lineární geometrické útvary -- přímky a roviny * soustavy lineárních rovnic * Gaussova eliminace a k čemu mohou být matice 1.2 Algebra čísel, vektorů a matic (2. a 3. týden) (Počítat s čísly umí každý (?) -- ale s vektory a maticemi to jde také.) * reálná čísla a vlastnosti množin reálných čísel, komplexní čísla * vektory v R3 a počítání s nimi: součet, násobení číslem; lineárně závislé a nezávislé vektory, báze; skalární, vektorový a smíšený součin a jejich geometrický význam matice a počítání s nimi: součet, násobení číslem, součin, hodnost * čtvercové matice: determinant, inverzní matice * přechody mezi bázemi -- vida, k čemu také mohou být matice * vektory, matice a fyzikální i nefyzikální veličiny 2.Funkce jedné proměnné (Všechno souvisí se vším, ale v přírodě je zejména důležitá závislost na čase -- funkce, čáry (grafy) a čáry s funkcemi.) 2.1 Funkce a jejich grafy (3. a 4. týden) (K získání představy o chování funkce nejlépe poslouží její graf .) * funkce a její graf, operace s funkcemi: součet, součin, podíl, skládání, inverze * limity všeho druhu -- jak se chová funkce a její graf, jestliže se proměnná libovolně blíží k předem dané hodnotě * posloupnosti (také funkce) a jejich limity, posloupnosti všudypřítomné: kolik máme pra...prababiček, proč nehrát "letadlo", jak si spočítat úroky, ... * spojité funkce -- funkce, jejichž graf není přetržen, obvykle popisují přírodní jevy * elementární funkce -- název zamlčuje, že úvahy o nich tak zcela elementární nejsou (polynomy, racionální funkce, exponenciály a mocniny, logaritmy, goniometrické a cyklometrické funkce), jak se příroda řídí elementárními funkcemi (kmitání, oběh planet, jaderný rozpad, absorpce záření, vidění a slyšení, ...) 2.2 Derivování (5., 6. a 7. týden) (Aby bylo možné rychle a výstižně nakreslit graf funkce, je třeba znát některé triky.) * derivace určuje sklon grafu, tj. rychlost jeho změny: pravidla pro derivování součtu, součinu a podílu funkcí, složených a inverzních funkcí, derivace implicitní funkce -- jde jen o výpočty limit * derivace derivovaných funkcí, neboli derivace vyšších řádů: počítáme křivost a další charakteristiky grafu * diferenciály -- zatím stručně jen pro pořádek * průběh funkce: návod na rychlé nakreslení grafu * funkce zadané parametricky, trajektorie částic -- geometrie a fyzika, ale i jiné oblasti přírodovědy * primitivní funkce: než jsme si stačili všimnout, někdo funkci zderivoval -- jak vypadala? * pravidla pro hledání primitivních funkcí: substituční metody, per partes 2.3 Integrování (8, 9. a 10. týden) (Jak si poradit s výpočtem plochy rovinného útvaru nebo objemu tělesa, nenajdeme li vzorec v tabulkách,aneb na co všechno stačí jednoduchý integrál.) * plocha pod grafem funkce dlážděná proužky: dělení intervalu, horní a dolní součty funkce * integrabilita -- horní a dolní součty funkce vedou k témuž výsledku, Riemannův integrál * kdo by se trápil s dělením, stačí najít primitivní funkci: Newtonova-Leibnizova formule -- vztah mezi Riemannovým integrálem a primitivní funkcí * co všechno lze jednoduchým integrálem počítat -- někdy dokonce i charakteristiky dvojrozměrných a trojrozměrných těles (hmotnost, plocha, těžiště, moment setrvačnosti ... ) * křivkový integrál prvního druhu: hmotnosti, momenty setrvačnosti, těžiště křivek (drátů) * (jsou i jiné typy integrálů -- stručný průvodce) 3. Pravděpodobnost (Život je jen náhoda, ale i ta má své zákonitosti.) 3.1 Základní informace o pravděpodobnostech (11. týden) (Kostky jsou vrženy, karty rozdány -- ale kolika způsoby to lze udělat?) * náhodné jevy, co je to pravděpodobnost * kombinace, variace, s opakováním i bez -- kdo se v tom vyzná ? * neslučitelné jevy a nezávislé jevy -- kdy pravděpodobnosti sčítat a kdy násobit ? * podmíněná pravděpodobnost -- sníží se pravděpodobnost výskytu další bomby v letadle, vezmeme-li si tam svou vlastní ? * výpočty pravděpodobností -- má smysl sázet Sportku ? 3.2 Náhodné veličiny (12. týden) (Jak přesně mohou Číňané změřit svého císaře?) * náhodná veličina s diskrétním rozdělením, střední hodnota, střední kvadratická odchylka * náhodná veličina se spojitým rozdělením, střední hodnota, střední kvadratická odchylka (ve hře opět integrál), různé typy rozdělení * to nejjednodušší ze základů zpracování měření 3.3 Co je matematická statistika (13. týden) (Statistika je věda o zjišťování, zpracování, hodnocení a interpretaci číselných údajů ssloužících k popisu rozsáhlých souborů popř k redukci rušivých odchylek způsobených náhodnými činiteli.) * spousta nových názvů s přesnou definicí: pozorování, četnosti, statistiky, odhady, modely, parametry, náhodný výběr, třídění, korelace, ... * testy významnosti * odhady * prokládání křivek: lineární regrese a metoda nejmenších čtverců
Literature
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika pro porozumění i praxi I (Mathematics for understanding and praxis). Brno: VUTIUM, 2006, 281 pp. Vysokoškolské učebnice. ISBN 80-214-2914-3. info
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
Assessment methods (in Czech)
Přednáška a klasické cvičení. Přístup ke zkoušce viz Informace učitele. Zkouška: písemná a ústní část.
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
Teacher's information
http://physics.muni.cz/~pavla/teaching.php
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 2010 - only for the accreditation, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.
  • Enrolment Statistics (Autumn 2007, recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2007/F1711