F5030 Introduction to Quantum Mechanics

Faculty of Science
Autumn 2005
Extent and Intensity
2/2/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. Mgr. Tomáš Tyc, Ph.D. (lecturer)
Mgr. Ondřej Přibyla (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. Mgr. Tomáš Tyc, Ph.D.
Timetable
Mon 18:00–19:50 F4,03017, Tue 12:00–13:50 F3,03015, Thu 12:00–13:50 F1 6/1014
Prerequisites (in Czech)
( F4120 Theoretical mechanics )
Absolvování základního kurzu fyziky.
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
there are 12 fields of study the course is directly associated with, display
Course objectives
Basic course in nonrelativistic quantum mechanics. The probability amplitude and wavefuction. Formalism of quantum mechanics: mathematical tools, postulates, Schrödinger equation. One-dimensional problems - potential steps and barriers, tunneling. Quantization of a harmonic oscillator, angular momentum and of the hydrogen atom. Spin 1/2, Pauli matrices. Systems of identical particles. Approximative methods - time independent and dependent perturbation theory, Fermi golden rule, variational method. Density matrix, entangled states, Bell inequalities, Greenberger-Horne-Zeilinger states. Note on quantum cryptography, teleportation, cloning, and quantum computers.
Syllabus (in Czech)
  • 1. Motivace pro kvantovou mechaniku - neobvyklé chování kvantových objektů - úspěšnost kvantové fyziky při vysvětlení jevů týkajících se malých objektů - nezbytnost kvantové mechaniky pro pochopení i těch nejzákladnějších vlastností hmoty - aplikace v technologiích (počítače, mobilní telefony, nové materiály atd.) - chemická vazba - nelze porozumět bez kvantové mechaniky, podobně procesy v živé přírodě 2. Analogie geometrická vs. vlnová optika -- klasická vs. kvantová mechanika - trajektorie světelného paprsku daná Fermatovým principem - šíření světla po všech možných trajektoriích podle Huygensova-Fresnelova principu - trajektorie hmotného bodu daná Hamiltonovým principem - šíření hmotného po všech možných trajektoriích ve shodě s Feynmanovou formulací kvantové mechaniky 3. Pojem amplitudy pravděpodobnosti a vlnové funkce - událost a její amplituda pravděpodobnosti - princip superpozice pro amplitudy pravděpodobnosti, příklady - skládání pravděpodobností v klasické a kvantové mechanice - vlnová funkce - amplituda nalezení částice v daném místě prostoru - normování vlnové funkce 4. Kvantové stavy a operátory - Hilbertův prostor - fyzikální význam skalárního součinu - fyzikální veličiny a hermitovské operátory - možné výsledky měření fyzikální veličiny, spektrum operátoru - ortogonalita vlastních stavů, její fyzikální význam - rozklad jednotkového operátoru - střední hodnota operátoru 5. Souřadnicová reprezentace - stavy částice na přímce, vlnová funkce - operátor souřadnice a jeho vlastní stavy, Diracova delta funkce - operátor hybnosti jako generátor translace, vlastní stavy - komutační relace pro operátor souřadnice a hybnosti - přechod od souřadnicové k impulzové reprezentaci a zpět 6. Obecné relace neurčitosti - odvození relací neurčitosti v obecném tvaru - příklady: operátory souřadnice a hybnosti, složky momentu hybnosti - vlnová klubka, vlastní stavy momentu hybnosti 7. Schrödingerova rovnice - linearita časového vývoje, rovnice prvního řádu - Hamiltonův operátor - stacionární stavy, jejich časový vývoj - časový vývoj pravděpodobností a středních hodnot ve stacionárním stavu - časový vývoj obecného stavu vyjádřeného v bázi stacionárních stavů - hustota toku pravděpodobnosti 8. Jednorozměrné problémy - řešení Schrödingerovy rovnice pro pravoúhlé potenciálové bariéry - diskrétní a spojité spektrum energií v jámě - odraz od bariéry, jámy a schodu - tunelování - příklady (hrot v elektronovém mikroskopu, alfa-rozpad, Josephsonův jev) 9. Harmonický oscilátor - zavedení kreačního a anihilačního operátoru, jejich komutátor - generování nových vlastních stavů hamiltoniánu - omezení energie zdola, spektrum možných hodnot energie - aplikace: fotony, fonony, Planckův vyzařovací zákon 10. Kvantování momentu hybnosti - vlastnosti trojrozměrných rotací, komutační relace pro složky momentu hybnosti - výběr vhodného systému komutujících veličin - žebříčkové operátory, tvoření nových vlastních stavů - celočíselný a poločíselný moment hybnosti, spinový stupeň volnosti - dalekosáhlé důsledky: rotační spektra molekul, stavy elektronů v atomu, výběrová pravidla pro přechod mezi stavy 11. Atom vodíku - přechod do těžišťové soustavy a ke sférickým souřadnicím - rozpad problému na úhlovou a radiální část - úhlová část - převedení na moment hybnosti - řešení radiální části, vlastní hodnoty energie, degenerace hladin 12. Přibližné metody - stacionární poruchová teorie, opravy k energii a koeficienty nových stacionárních stavů - degenerovaný případ, sekulární rovnice - časově proměnné poruchy, pravděpodobnost přechodu, Fermiho zlaté pravidlo - variační metoda a její aplikace v chemii 13. Identické částice - změna stavu při záměně částic - bosony a fermiony - fermiony - Slaterův determinant, Pauliho pincip, Fermiho energie - bosony - bunching, Cooperovy páry 14. Modernejší partie - provázanost (entanglement), Bellovy a GHZ stavy - popis podsystému pomocí matice hustoty - měření a kolaps stavu - Bellovy nerovnosti - zmínka o kvantové kryptografii, teleportaci, klonování a kvantových počítačích.
Literature
  • CELÝ, Jan. Základy kvantové mechaniky pro chemiky. I, Principy [Celý, 1986]. 1. vyd. Brno: Rektorát UJEP, 1986, 176 s. info
  • CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
  • LIBOFF, Richard L. Introductory quantum mechanics. 2nd ed. Reading: Addison-Wesley Publishing Company, 1993, vii, 782 s. ISBN 0-201-54715-5. info
  • MATTHEWS, Paul T. Základy kvantové mechaniky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1976, 256 s. URL info
  • GRIFFITHS, David Jeffrey. Introduction to quantum mechanics. Englewood Cliffs: Prentice Hall, 1995, 9, 394 s. ISBN 0-13-124405-1. info
  • LANDAU, Lev Davidovič and Jevgenij Michajlovič LIFŠIC. Úvod do teoretickej fyziky. 1. vyd. Bratislava: Alfa, 1982, 357 s. info
  • MARX, György. Úvod do kvantové mechaniky. Translated by Luděk Bednář - Zdeněk Urbánek. Vyd. 1. Praha: Státní nakladatelství technické literatury, 1965, 294 s. URL info
  • BLOCHINCEV, Dimitrij Ivanovič. Základy kvantové mechaniky. Translated by Jan Cejpek. 1. vyd. Praha: Nakladatelství Československé akademie věd, 1956, 545 s. URL info
  • DAVYDOV, Aleksandr Sergejevič. Kvantová mechanika. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1978, 685 s. URL info
Assessment methods (in Czech)
Přednáška, cvičení
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.
  • Enrolment Statistics (Autumn 2005, recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2005/F5030