F5170 Plasma physics

Faculty of Science
Autumn 2011
Extent and Intensity
2/1/0. 3 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Lenka Zajíčková, Ph.D. (lecturer)
Mgr. Petr Synek, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. Mgr. Lenka Zajíčková, Ph.D.
Timetable
Tue 11:00–13:50 F1 6/1014
Prerequisites
( F2050 Electricity and magnetism || F2070 Electricity and magnetism ) && F4120 Theoretical mechanics && ( F4100 Introduction to Microphysics || F4050 Introduction to Microphysics ) && F4090 Electrodyn.and theory of rel.
F2050 Elektřina a magnetismus nebo F2070 Elektřina a magnetismus pro učitele, (1. ročník jaro) a
F4120 Teoretická mechanika, (2. ročník podzim) a
F4100 Úvod do fyziky mikrosvěta nebo F4050 Úvod do fyziky mikrosvěta pro učitele, (2. ročník jaro) a
F4090 Elektrodynamika a teorie relativity, (2. ročník jaro)
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
This course is intended as a general introduction to plasma physics designed for students meeting this subject for the first time. The students finishing the course acquire fundamentals of plasma physics based on statistical kinetic theory and magnetohydrodynamic equations.
At the end of the course students should be able to: define correctly the plasma; define the distribution function; employ the distribution function for determination of macroscopic variables; recall the Boltzmann kinetic equation also for existence of particle collisions; compose macroscopic transport equations and explain the physical meaning of particular terms; apply transport equations, under simplified assumptions, for understanding plasma collective behavior, e.g. plasma conductivity and dielectric response, diffusion and plasma oscillations.
Syllabus
  • The course is structured into 11 topics:
  • 1. Introduction (criteria for the definition of a plasma, brief summary of methods for plasma production and plasma applications)
  • 2. Charged particle motion in electromagnetic fields (uniform static fields, nonuniform magnetostatic fields, slowly time-varying electric field)
  • 3. Elements of plasma kinetic theory (phase space, distribution function and its physical interpretation, the Boltzmann kinetic equation - BKR, Relaxation model for the collision term)
  • 4. Average values and macroscopic variables (average value of a physical quantity, drift and thermal velocity, flux, particle current density, momentum flow tensor, pressure tensor, heat flow vector, heat flow triad, total energy flux triad, higher moments of the distribution function)
  • 5. The equilibrium state (the equilibrium state distribution function, properties of the Maxwell-Boltzmann distribution function, solution of BKR for equilibrium in the presence of an external force, the Saha equation)
  • 6. Particle interactions in plasma (collision processes, kinetics and dynamics of elastic binary collisions, scattering angle, differential and total cross section, momentum transfer cross section, cross sections for the Coulomb interaction potential in case of Debye shielding, mean free path, rate constant)
  • 7. Macroscopic transport equations for one type of particles (moments of the Boltzmann equation, general transport equation, continuity equation, equation of motion, energy transport equation, model of cold and warm plasma)
  • 8. Macroscopic equations for a conducting fluid (macroscopic variables for a plasma as a conducting fluid, continuity equation, equation of motion, energy transport equation, electrodynamic equations for a conducting fluid, generalized Ohm’s law)
  • 9. Plasma conductivity and diffusion (Langevin equation and its linearization, DC conductivity and electron mobility in case of isotropic and anisotropic magnetoplasma, AC conductivity and electron mibility, plasma as a dielectric medium, free electron diffusion, electron diffusion in a magnetic field, ambipolar diffusion)
  • 10. Some basic plasma phenomena (electron plasma oscillations, the Debye shielding problem, plasma sheath)
  • 11. Boltzmann a Fokker-Planck collision integrals (derivation of Boltzmann collision integral, Boltzmann collision integral for a weakly ionized plasma, derivation of Fokker-Planckova collision integral)
Literature
  • BITTENCOURT, Jose Augusto. Fundamentals of plasma physics. 3rd ed. New York, N.Y.: Springer, 2004, xxiii, 678. ISBN 0387209751. info
Teaching methods
The course is composed of lectures explaining the theory of all the topics and class exercises at which the students actively participate by showing solutions of problems. The problems are published in advance and distributed equally among the students. The students prepare the solution of the problems as a homework. Once during the semester, the students will solve a written test composed of the problems not known in advance. Those students that cannot participate personally on the class exercises because of the internship in a foreign country or the combined study mode can show or send the solved problems to the seminar tutor separately. They are not oblique to do the written test of the class exercises. Additionally, all the students are oblique to answer the ROPOTs (Revision, Opinion Poll and Testing) that test basic knowledge attained during the course.
Assessment methods
The course can be finished by examination or colloquium.
Requirements for entering the examination are following:
- active participation in class exercises that must be finished by gaining enough points for solved problems and the written test,
- successful finishing of all the ROPOTs.
The examination itself is composed of:
- written examination and
- oral examination.
In the written part, students will demonstrate their ability to solve independently the problems. The oral part will test their understanding of theory. Only those students that will successfully pass the written part are admitted to the oral one. The final classification is based on standard classification system taking into account the results of both the parts of the examination.
Requirements for gaining credits in case of colloqium:
- participation on 70% of class exercises or written submission of 70% of solved problems,
- successful finishing of all the ROPOTs,
- final discussion of the topic with the teacher.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
Information on completion of the course: V oborech, ve kterych je předmět povinný, je nutné ukončit zkouškou. V jiných oborech lze ukončit i kolokviem.
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.
  • Enrolment Statistics (Autumn 2011, recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2011/F5170