G8561 Systematic Mineralogy

Faculty of Science
Spring 2023
Extent and Intensity
1/1. 3 credit(s). Type of Completion: zk (examination).
Taught in person.
Teacher(s)
prof. RNDr. Milan Novák, CSc. (lecturer)
doc. RNDr. Zdeněk Losos, CSc. (lecturer)
Guaranteed by
doc. RNDr. Zdeněk Losos, CSc.
Department of Geological Sciences – Earth Sciences Section – Faculty of Science
Contact Person: doc. Mgr. Martin Ivanov, Dr.
Supplier department: Department of Geological Sciences – Earth Sciences Section – Faculty of Science
Timetable
Fri 17. 3. 9:00–12:00 G1,01004, Fri 5. 5. 10:00–16:00 G2,02003, Fri 19. 5. 9:00–10:00 G2,02003
Prerequisites
! G8560 Special mineralogy
This course is for students of the Magister program of Geology focused on mineralogy. Termination of the course Mineralogy II is required.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 38 fields of study the course is directly associated with, display
Course objectives
The course is focused on the explanation of basic problems in systematic mineralogy.
Learning outcomes
At the end of this course, students should be able to understand and be able to explain basic problems of systematic mineralogy.
Syllabus
  • 1/ Crystal chemistry of elements, the closed packing in structures of metals (Cu,Ag,Au,Fe), details of structures (S, graphite, diamond). Relations between structures and properties of elements. Description of elements - minerals, their minerogenesis and occurrences. 2/ Crystal chemistry of sulphides (tetrahedral structure type: sphalerite, wurtzite, chalcopyrite, bornite; octahedral structure type: galena, pyrrhotite, nickeline; combinated octahedral and tetrahedral structure type: pentlandite; other structure types: molybdenite, millerite, cinnabar, covellite, chalcocite, argentite; compex structure type: pyrite, marcasite, arsenopyrite, löllingite, cobaltite, skutterudite, stibnite, boulangerite, jamesonite, tetrahedrite, proustite, pyrargyrite, realgar, orpiment). Minerogenesis of sulphides and occurrences. Sulphide thermomethers and barometers. 3/ Halides - their structures, crystal chemistry, minerogenesis, occurrences. 4/ Oxides. Tetrahedral structure type: SiO2 group, zincite, periklas; octahedral structures: hematite, corundum, ilmenite, rutile, anatas, brookit, cassiterite, pyrolusite, columbite; combinated tetrahedral and octahedral structures: spinelides (magnetite, spinel, chromite, gahnite, franklinite), chrysoberyl; cubic structure: uraninite; other structure types: cuprite. Minerogenesis and occurrences. Oxide thermomethers and barometers. 5/ Pyroxene group: crystal chemistry, classification and natural occurences of minerals in magmatic and metamorphic rocks Pt -stability fields, phase relations (diopside, hedenbergite, jadeite, enstatite, augite, omfacite). 6/ Amphibole group: crystal chemistry, classification and natural occurences of minerals in magmatic and metamorphic rocks Pt -stability fields, phase relations (tremolite, actinolite, antophylite, hornblend, alkali amphiboles ). 7/ Mica group: crystal chemistry, classification and natural occurences of minerals in magmatic and metamorphic rocks Pt -stability fields, phase relations (muskovit, biotit, lepidolite). 8/ Minerals Al2SiO5 (kyanite, sillimanite, andalusite) and Al-rich minerals (corundum, diaspore, kaolinite, pyrophylite), crystal chemistry, classification and natural occurences of minerals in magmatic and metamorphic rocks Pt - stability fields, phase relations. 9/ Zeolite group: crystal chemistry, classification and natural occurences of minerals in magmatic, metamorphic and hydrothermal rocks, Pt - stability fields, phase relations, using in industry (natrolite, heulandite, stilbite, laumontite, chabazite, analcim). 10/ Cyklosilicates (beryl, cordierite, sekaninaite) crystal chemistry, classification and natural occurences of minerals in magmatic and metamorphic rocks Pt - stability fields, phase relations.
Literature
  • KLEIN, Cornelis and Cornelius S. HURLBUT. Manual of mineralogy : (after James D. Dana). 21st ed. New York: John Wiley & Sons. xii, 681 s. ISBN 0-471-57452-X. 1993. info
  • OKRUSCH, Martin and Hartwig E. FRIMMEL. Mineralogy : an introduction to minerals, rocks, and mineral deposits. Berlin: Springer. xi, 719. ISBN 9783662573143. 2020. info
  • Nesse, William D. Introduction to Mineralogy: Oxford University Press, 2000, 442 s. ISBN 0-19-510691-1
  • ZOLTAI, Tibor and James H. STOUT. Mineralogy :concepts and principles. Minneapolis, Minnesota: Burgess publishing company. x, 505 s. ISBN 0-8087-2606-4. 1985. info
Teaching methods
lectures, class exercises.
Assessment methods
Oral examination.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course can also be completed outside the examination period.
The course is taught once in two years.
Information on the per-term frequency of the course: Bude otevřeno v jarním semestru 2020/2021.
Teacher's information
The course is intended mainly for students of master's geology with a focus on mineralogy.
The course is also listed under the following terms Spring 2011 - only for the accreditation, Spring 2004, Spring 2005, Spring 2007, Spring 2009, Spring 2011, spring 2012 - acreditation, Spring 2013, Spring 2015, Spring 2017.
  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/sci/spring2023/G8561