C2003 Environmental chemistry

Přírodovědecká fakulta
podzim 2020
Rozsah
2/0/1. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
Lisa Emily Melymuk, Ph.D. (přednášející)
prof. RNDr. Jana Klánová, Ph.D. (pomocník)
Garance
prof. RNDr. Jana Klánová, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Lisa Emily Melymuk, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta
Rozvrh
Po 9:00–10:50 D29/252-RCX1
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
After this course, students should be able to:
- understand the global environmental problems
- understand relations between the chemical structure of chemical substances, their physical-chemical properties and their fate in the environment
- understand the impact of environment properties on the fate of chemicals
- interpret the environmental fate of chemical substances, their environmental transport, interphase transport, phase equilibria and environmental biotic and abiotic transformation
- characterize properties of environmental compartments (atmosphere, hydrosphere, pedosphere, biosphere) and combine this knowledge with the presence and fate of chemical compounds in these compartments
- understand problems related to pollution of environmental compartments from natural and anthropogenic sources
- explain the relationships between the pollution sources and primary and secondary types of pollution of environmental compartments
- characterize and discuss environmental and health impacts of pollution
- characterize the main types of highly problematic and harmful chemicals, mainly those that are non-degradable or persistent, have the ability to cumulate in abiotic and biotic compartments, posses a broad range of toxic effects, and can be transported to long distances
- describe basic properties of these chemicals, their occurrence, sources, long-range transport, toxicological and ecotoxicological properties
- describe and discuss legislation and policy of these compounds and international conventions
- describe purposes and principles of the activities focused on screening and monitoring of presence of antropogenic chemicals in the environment
- select the best analytical methods for the individual groups of chemicals
- distinguish between specific sampling methods for determination of volatile, non-volatile, polar and non-polar compounds in air, water, sediment, soil and biota
- review the analytical techniques for the sample preparation, clean-up and fractionation
- compare the separation and identification techniques and their applicability for determination of various organic chemicals in the environmental samples
- define fundamentals of chromatographic and mass spectroscopy methods
- introduce the quality assurance/quality control measures - understand the whole concept of chemical analysis of the environmental samples
Osnova
  • • Global environmental problems. Chemicals in the environment – definitions, basic approaches. Environmental harmful chemicals.
  • • Fate of chemicals in the environment – transport, transformation. Environmental interface and chemical equilibrium. Parameters characterizing the properties of substances and environmental properties. Relationships between chemical structure and reactivity.
  • • Basic characteristics, problems and environmental chemistry of environmental compartments – atmosphere, soil, sediment, water. Air pollution, smog, ozone layer, global warming. Acidification of the environment. Water pollution, waste waters and their treatment. Primary and secondary soil pollution.
  • • Environmental transport of chemicals in air, water, soils and biota. Abiotic environmental equilibria (air-water, air-soil, air-biota, deposition, sorption, water-solid phase, leaching, runoff …).
  • • Biotic environmental equilibria (bioaccumulation, biomagnifications …).
  • • Abiotic transformations of chemicals. Photochemical transformation processes. Biotic transformations of chemicals. Biodegradation. Biotransformation.
  • • Effects of chemical substances - overview, mechanisms.
  • • Models of environmental distribution of chemicals. Multimedia models. Environmental databases and information systems. Integrated register of pollution.
  • • International conventions and activities focused on environmental substances. New approaches in chemistry, green chemistry, sustanaible chemistry.
  • • Environmental contamination. Main groups of environmental pollutants (persistent organic pollutants, toxic metals, volatile organic compounds, detergents, phthalates, pesticides) – basic characteristics, sources, reaction and transport, toxicological and ecotoxicological effects.
  • • Environmental monitoring: purpose and principles, international measures and programs. Conceptual approaches in environmental analytical chemistry.
  • • Sampling methods for air, atmospheric deposition, water, sediment, soil and biota.
  • • Analytical techniques for the sample extraction, clean-up and fractionation of the environmental samples.
  • • Separation and identification techniques with the special focus on chromatography and mass spectroscopy.
  • • Application of the above-discussed techniques for determination of the most important groups of environmental pollutants.
  • • Quality assurance/quality control measures. Interpretation of the analytical data
Literatura
  • BEARD, James M. Environmental chemistry in society. Boca Raton: Taylor & Francis. xvii, 345. ISBN 9781420080254. 2009. info
  • HITES, R. A. Elements of environmental chemistry. Hoboken, N.J.: Wiley-Intersicence. xiii, 204. ISBN 9780471998150. 2007. info
  • IBÁÑEZ, Jorge Guillermo. Environmental chemistry : fundamentals. New York, NY: Springer. xviii, 334. ISBN 9780387260617. 2007. info
  • SCHWARZENBACH, René P., P. M. GSCHWEND a Dieter M. IMBODEN. Environmental organic chemistry. 2nd ed. Hoboken, N.J.: Wiley-Interscience. xiii, 1313. ISBN 0471357502. 2003. info
Výukové metody
Education is performed as lectures (weekly) with Powerpoint presentation. Understanding of mechanisms and consequences is emphasized. Students are frequently asked questions and they are encouraged to disscuss the topics. An interactive seminar is held in the end of the course where the students are invited to apply knowledge and skills gained in the course on selected case study.
Metody hodnocení
Attendance of the lectures is not mandatory but strongly recommended to exploit potential of the interactive approach. Final assessment is by written examination.
Vyučovací jazyk
Angličtina
Informace učitele
http://www.recetox.muni.cz
http://www.recetox.muni.cz
Další komentáře
Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každý semestr.
www.recetox.muni.cz.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2010 - akreditace, podzim 2010, jaro 2011, podzim 2011, jaro 2012, podzim 2011 - akreditace, jaro 2012 - akreditace, podzim 2012, jaro 2013, podzim 2013, jaro 2014, podzim 2014, jaro 2015, podzim 2015, jaro 2016, podzim 2016, jaro 2017, podzim 2017, jaro 2018, podzim 2018, jaro 2019, podzim 2019, jaro 2020, jaro 2021, podzim 2021, jaro 2022.