C5060 Methods of Chemical Research

Faculty of Science
Autumn 2024
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Taught in person.
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Mgr. Jaromír Literák, Ph.D. (lecturer)
Mgr. Zdeněk Moravec, Ph.D. (lecturer)
Guaranteed by
doc. Mgr. Petr Táborský, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: Mgr. Zdeněk Moravec, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Learning outcomes
Students will know about basic principles of these methods: IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Syllabus
  • Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotacho-electrophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal specialist in the respective areas.
Assessment methods
The final examination has a written form (examiner: Dr. Petr Táborský). In the case of distance learning is possible also an oral exam
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023.

C5060 Methods of Chemical Research

Faculty of Science
Autumn 2023
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Taught in person.
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Mgr. Jaromír Literák, Ph.D. (lecturer)
Mgr. Zdeněk Moravec, Ph.D. (lecturer)
Guaranteed by
doc. Mgr. Petr Táborský, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: Mgr. Zdeněk Moravec, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Fri 8:00–9:50 A08/309
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Learning outcomes
Students will know about basic principles of these methods: IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Syllabus
  • Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotacho-electrophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal specialist in the respective areas.
Assessment methods
The final examination has a written form (examiner: Dr. Petr Táborský). In the case of distance learning is possible also an oral exam
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2024.

C5060 Methods of Chemical Research

Faculty of Science
Autumn 2022
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Taught in person.
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Mgr. Jaromír Literák, Ph.D. (lecturer)
Mgr. Zdeněk Moravec, Ph.D. (lecturer)
Guaranteed by
doc. Mgr. Petr Táborský, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: Mgr. Zdeněk Moravec, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Fri 8:00–9:50 B11/305
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Learning outcomes
Students will know about basic principles of these methods: IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Syllabus
  • Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotacho-electrophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal specialist in the respective areas.
Assessment methods
The final examination has a written form (examiner: Dr. Petr Táborský). In the case of distance learning is possible also an oral exam
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research

Faculty of Science
autumn 2021
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Taught in person.
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Mgr. Jaromír Literák, Ph.D. (lecturer)
Mgr. Zdeněk Moravec, Ph.D. (lecturer)
Guaranteed by
doc. Mgr. Petr Táborský, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: Mgr. Zdeněk Moravec, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Fri 8:00–9:50 C12/311
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Learning outcomes
Students will know about basic principles of these methods: IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Syllabus
  • Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotacho-electrophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal specialist in the respective areas.
Assessment methods
The final examination has a written form (examiner: Dr. Petr Táborský). In the case of distance learning is possible also an oral exam
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research

Faculty of Science
Autumn 2020
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Mgr. Jaromír Literák, Ph.D. (lecturer)
Mgr. Zdeněk Moravec, Ph.D. (lecturer)
Guaranteed by
doc. Mgr. Petr Táborský, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: Mgr. Zdeněk Moravec, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Fri 8:00–9:50 prace doma
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Learning outcomes
Students will know about basic principles of these methods: IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Syllabus
  • Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotacho-electrophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal specialist in the respective areas.
Assessment methods
The final examination has a written form (examiner: Dr. Petr Táborský). In the case of distance learning is possible also an oral exam
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research

Faculty of Science
Autumn 2019
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
Mgr. Zdeněk Moravec, Ph.D. (lecturer)
Guaranteed by
doc. Mgr. Petr Táborský, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: Mgr. Zdeněk Moravec, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Fri 8:00–9:50 C12/311
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Learning outcomes
Students will know about basic principles of these methods: IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Syllabus
  • Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotacho-electrophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal specialist in the respective areas.
Assessment methods
The final examination has a written form (examiner: Dr. Petr Táborský).
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research

Faculty of Science
Autumn 2018
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Mgr. Miroslava Bittová, Ph.D. (lecturer)
prof. Mgr. Jan Preisler, Ph.D. (lecturer)
prof. RNDr. Libuše Trnková, CSc. (lecturer)
prof. RNDr. Přemysl Lubal, Ph.D. (lecturer)
Mgr. Iva Benešová, Ph.D. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
prof. RNDr. Petr Klán, Ph.D. (lecturer)
Mgr. Jaromír Literák, Ph.D. (lecturer)
doc. RNDr. Ctibor Mazal, CSc. (lecturer), prof. RNDr. Viktor Kanický, DrSc. (deputy)
Mgr. Zdeněk Moravec, Ph.D. (lecturer)
doc. Mgr. Karel Novotný, Ph.D. (lecturer)
Mgr. Ing. Lubomír Prokeš, Ph.D. (lecturer)
prof. RNDr. Jiří Sopoušek, CSc. (lecturer)
doc. Mgr. Tomáš Vaculovič, Ph.D. (lecturer)
Guaranteed by
doc. Mgr. Petr Táborský, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: Mgr. Zdeněk Moravec, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Mon 17. 9. to Fri 14. 12. Fri 8:00–9:50 C12/311
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Syllabus
  • Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotacho-electrophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal specialist in the respective areas.
Assessment methods
The final examination has a written form (examiner: Dr. Petr Táborský).
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research

Faculty of Science
autumn 2017
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Mgr. Miroslava Bittová, Ph.D. (lecturer)
prof. Mgr. Jan Preisler, Ph.D. (lecturer)
prof. RNDr. Libuše Trnková, CSc. (lecturer)
prof. RNDr. Přemysl Lubal, Ph.D. (lecturer)
Mgr. Iva Benešová, Ph.D. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
prof. RNDr. Petr Klán, Ph.D. (lecturer)
Mgr. Jaromír Literák, Ph.D. (lecturer)
doc. RNDr. Ctibor Mazal, CSc. (lecturer), prof. RNDr. Viktor Kanický, DrSc. (deputy)
Mgr. Zdeněk Moravec, Ph.D. (lecturer)
doc. Mgr. Karel Novotný, Ph.D. (lecturer)
Mgr. Ing. Lubomír Prokeš, Ph.D. (lecturer)
prof. RNDr. Jiří Sopoušek, CSc. (lecturer)
doc. Mgr. Tomáš Vaculovič, Ph.D. (lecturer)
Guaranteed by
doc. Mgr. Petr Táborský, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: Mgr. Zdeněk Moravec, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Mon 18. 9. to Fri 15. 12. Fri 8:00–9:50 C12/311
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Syllabus
  • Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotacho-electrophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal specialist in the respective areas.
Assessment methods
The final examination has a written form (examiner: Dr. Petr Táborský).
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research

Faculty of Science
Autumn 2016
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Mgr. Miroslava Bittová, Ph.D. (lecturer)
prof. Mgr. Jan Preisler, Ph.D. (lecturer)
prof. RNDr. Libuše Trnková, CSc. (lecturer)
prof. RNDr. Přemysl Lubal, Ph.D. (lecturer)
Mgr. Iva Benešová, Ph.D. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
prof. RNDr. Petr Klán, Ph.D. (lecturer)
Mgr. Jaromír Literák, Ph.D. (lecturer)
doc. RNDr. Ctibor Mazal, CSc. (lecturer), prof. RNDr. Viktor Kanický, DrSc. (deputy)
Mgr. Zdeněk Moravec, Ph.D. (lecturer)
doc. Mgr. Karel Novotný, Ph.D. (lecturer)
Mgr. Ing. Lubomír Prokeš, Ph.D. (lecturer)
prof. RNDr. Jiří Sopoušek, CSc. (lecturer)
doc. Mgr. Tomáš Vaculovič, Ph.D. (lecturer)
Guaranteed by
doc. Mgr. Petr Táborský, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: Mgr. Zdeněk Moravec, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Mon 19. 9. to Sun 18. 12. Tue 14:00–15:50 A08/309
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Syllabus
  • Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotacho-electrophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal specialist in the respective areas.
Assessment methods
The final examination has a written form (examiner: Dr. Petr Táborský).
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research

Faculty of Science
Autumn 2015
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Mgr. Miroslava Bittová, Ph.D. (lecturer)
prof. Mgr. Jan Preisler, Ph.D. (lecturer)
prof. RNDr. Libuše Trnková, CSc. (lecturer)
prof. RNDr. Přemysl Lubal, Ph.D. (lecturer)
Mgr. Iva Benešová, Ph.D. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
prof. RNDr. Petr Klán, Ph.D. (lecturer)
Mgr. Jaromír Literák, Ph.D. (lecturer)
doc. RNDr. Ctibor Mazal, CSc. (lecturer), prof. RNDr. Viktor Kanický, DrSc. (deputy)
Mgr. Zdeněk Moravec, Ph.D. (lecturer)
doc. Mgr. Karel Novotný, Ph.D. (lecturer)
Mgr. Ing. Lubomír Prokeš, Ph.D. (lecturer)
prof. RNDr. Jiří Sopoušek, CSc. (lecturer)
doc. Mgr. Tomáš Vaculovič, Ph.D. (lecturer)
Guaranteed by
doc. Mgr. Petr Táborský, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: Mgr. Zdeněk Moravec, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Wed 9:00–10:50 A08/309
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Syllabus
  • Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotacho-electrophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal specialist in the respective areas.
Assessment methods
The final examination has a written form (examiner: Dr. Petr Táborský).
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research

Faculty of Science
Autumn 2014
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Mgr. Miroslava Bittová, Ph.D. (lecturer)
prof. Mgr. Jan Preisler, Ph.D. (lecturer)
prof. RNDr. Libuše Trnková, CSc. (lecturer)
prof. RNDr. Přemysl Lubal, Ph.D. (lecturer)
Mgr. Iva Benešová, Ph.D. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
prof. RNDr. Petr Klán, Ph.D. (lecturer)
Mgr. Jaromír Literák, Ph.D. (lecturer)
doc. RNDr. Ctibor Mazal, CSc. (lecturer), prof. RNDr. Viktor Kanický, DrSc. (deputy)
Mgr. Zdeněk Moravec, Ph.D. (lecturer)
doc. Mgr. Karel Novotný, Ph.D. (lecturer)
Mgr. Ing. Lubomír Prokeš, Ph.D. (lecturer)
prof. RNDr. Jiří Sopoušek, CSc. (lecturer)
doc. Mgr. Tomáš Vaculovič, Ph.D. (lecturer)
Guaranteed by
doc. Mgr. Petr Táborský, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: Mgr. Zdeněk Moravec, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Wed 9:00–10:50 C14/207
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Syllabus
  • Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotacho-electrophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal specialist in the respective areas.
Assessment methods
The final examination has a written form (examiner: Dr. Petr Táborský).
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research

Faculty of Science
Autumn 2013
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Mgr. Miroslava Bittová, Ph.D. (lecturer)
prof. Mgr. Jan Preisler, Ph.D. (lecturer)
doc. RNDr. Jiří Toužín, CSc. (lecturer)
prof. RNDr. Libuše Trnková, CSc. (lecturer)
prof. RNDr. Přemysl Lubal, Ph.D. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
prof. RNDr. Petr Klán, Ph.D. (lecturer)
Mgr. Jaromír Literák, Ph.D. (lecturer)
doc. RNDr. Ctibor Mazal, CSc. (lecturer), prof. RNDr. Viktor Kanický, DrSc. (deputy)
doc. Mgr. Karel Novotný, Ph.D. (lecturer)
Mgr. Ing. Lubomír Prokeš, Ph.D. (lecturer)
prof. RNDr. Jiří Sopoušek, CSc. (lecturer)
Ing. Blanka Vrbková, Ph.D. (lecturer)
Guaranteed by
doc. Mgr. Petr Táborský, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Fri 8:00–9:50 A08/309
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Syllabus
  • Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotacho-electrophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal specialist in the respective areas.
Assessment methods
The final examination has a written form (examiner: Dr. Petr Táborský).
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research

Faculty of Science
Autumn 2012
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Mgr. Miroslava Bittová, Ph.D. (lecturer)
prof. Mgr. Jan Preisler, Ph.D. (lecturer)
doc. RNDr. Jiří Toužín, CSc. (lecturer)
prof. RNDr. Libuše Trnková, CSc. (lecturer)
prof. RNDr. Přemysl Lubal, Ph.D. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
prof. RNDr. Petr Klán, Ph.D. (lecturer)
Mgr. Jaromír Literák, Ph.D. (lecturer)
doc. RNDr. Ctibor Mazal, CSc. (lecturer), prof. RNDr. Viktor Kanický, DrSc. (deputy)
doc. Mgr. Karel Novotný, Ph.D. (lecturer)
Mgr. Ing. Lubomír Prokeš, Ph.D. (lecturer)
prof. RNDr. Jiří Sopoušek, CSc. (lecturer)
Ing. Blanka Vrbková, Ph.D. (lecturer)
Guaranteed by
doc. Mgr. Petr Táborský, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Fri 8:00–9:50 A08/309
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotachophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Syllabus
  • Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotacho-electrophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal specialist in the respective areas.
Assessment methods
The final examination has a written form (examiner: Dr. Petr Táborský).
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research

Faculty of Science
Autumn 2011
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Mgr. Miroslava Bittová, Ph.D. (lecturer)
prof. Mgr. Jan Preisler, Ph.D. (lecturer)
doc. RNDr. Jiří Toužín, CSc. (lecturer)
prof. RNDr. Libuše Trnková, CSc. (lecturer)
prof. RNDr. Přemysl Lubal, Ph.D. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
prof. RNDr. Petr Klán, Ph.D. (lecturer)
Mgr. Jaromír Literák, Ph.D. (lecturer)
doc. RNDr. Ctibor Mazal, CSc. (lecturer), prof. RNDr. Viktor Kanický, DrSc. (deputy)
doc. Mgr. Karel Novotný, Ph.D. (lecturer)
prof. RNDr. Jiří Sopoušek, CSc. (lecturer)
Ing. Blanka Vrbková, Ph.D. (lecturer)
Guaranteed by
doc. Mgr. Petr Táborský, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Fri 8:00–9:50 A08/309
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotacho-electrophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Syllabus
  • Electronic Spectroscopy IR Spectroscopy Raman Spectroscopy Interpretation of MS spectra Luminiscence spectroscopy Electrophoresis and Isotacho-electrophoresis Anorganic analysis Electrochemical methods Thermal analysis Gas Chromatography HPLC-MS
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal specialist in the respective areas.
Assessment methods
The final examination has a written form (examiner: Dr. Petr Táborský).
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research I.

Faculty of Science
Autumn 2010
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
RNDr. Aleš Kroupa, CSc. (lecturer)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
doc. RNDr. Jaromír Marek, Ph.D. (lecturer)
prof. Mgr. Jan Preisler, Ph.D. (lecturer)
doc. RNDr. Jiří Toužín, CSc. (lecturer)
prof. RNDr. Libuše Trnková, CSc. (lecturer)
prof. RNDr. Michaela Vorlíčková, DrSc. (lecturer)
prof. RNDr. Zdirad Žák, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Timetable
Tue 10:00–11:50 C12/311
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
Electron microscopy. Symmetry of molecules. X-ray structural analysis. Protein crystallography. Raman and IR spectroscopy. NIR spectroscopy. Cyclic voltammetry. Optical rotation (ORD, CD) in structural analysis. Electron paramagnetic resonance. Luminescence.
Syllabus
  • 1. Electron microscopy. Interaction of electrons with solid phase. Electro microscope (electromagnetic lenses, electron jet, vacuum system), building of the picture, creation of contrast. Diffraction on singlecrystal and polycrystal. Sample preparation etching.
  • 2. Roentgen diffraction. Elementary crystallography symmetry of the structure, space group symmetry, diffraction of Roentgen radiation, structural factor. Basis of structural analysis data collection, data reduction, phase problem and its solution, improvement of the structural model, structure evaluation.
  • 3. Crystallography of proteins. Macromolecular techniques of crystallization, methods of sitting and hanging drop, seedings. Diffraction experiment:sources of X-ray, detectors, cryo-crystallography. Methods of solving phase problem in proteins. Method of molecular replacement. Methods of heavy atom derivatives (SIR, MIR, MIRAS), MAD and Se-proteins. Maps of electron density. Building of structural model and model refinement.
  • 4. Fluorescence spectroscopy. Fluorescence and other luminescence methods, life time, quantum yield. Fluorescence intensity. Switch-out and selfquenching. Excitation and emission spectra. Quasiline fluorescence and fluorescence in solid phase. Spectrometer and measurement procedure.
  • 5. Techniques of Raman spectroscopy. Elastic and non-elastic dispersion of irradiation (Rayleigh, Stokes and anti-Stokes lines); selection rules - polarisability and transition integral, polarization of Raman lines; electronic, resonance and surface enhanced Raman effects; nonlinear effects – stimulated-, inverse-, hyper-Raman effects, coherent anti-Stokes Raman spectroscopy.
  • 6. Methods of IR spectroscopy. Origin of IR bands, selection rules – dipole moment and transition integral; basic and overtones, combination lines; experimental technique of IR spectroscopy, materials and solvents used, sample preparation. Application in qualitative, structural, and quantitative analysis, study of binding characteristics (bond order and strength).
  • 7. Near-infrared spectroscopy. NIR as a method without sample preparation: low sensitivity and low resolution. Mathematic methods for qualitative and quantitative analysis. Industrial analytic transfer of signal by glass fiber. Quality control at automatic production.
  • 8. Circular bichroism. Absorption of irradiation in monomers and polymers; absorption in nucleic acids. Advantages end disadvantages of the method. Vibration circular bichroism and linear bichroism.
  • 9. Modern electrochemical methods: fundamentals and applications Electrode system and electrode reaction. Voltammetry and coulometry. Potentiostatic and galvanostatic regime. Trends and hyphenated methods.
  • 10. Electron Paramagnetic Resonance as the method for study of systems with non-zero electron spin. Nature of the effect and the experiment, characteristics of EPR signals, hyperfine structure. Use of EPR in structural and analytical chemistry.
  • 11. Symmetry of molecules. Elements and operations of point symmetry. Applications of symmetry in chemistry.
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal or external specialist in the respective areas.
Assessment methods
The final examination has a oral form (examiner: prof. Holík).
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research I.

Faculty of Science
Autumn 2009
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
RNDr. Aleš Kroupa, CSc. (lecturer)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
doc. RNDr. Jaromír Marek, Ph.D. (lecturer)
prof. Mgr. Jan Preisler, Ph.D. (lecturer)
doc. RNDr. Jiří Toužín, CSc. (lecturer)
prof. RNDr. Libuše Trnková, CSc. (lecturer)
prof. RNDr. Michaela Vorlíčková, DrSc. (lecturer)
prof. RNDr. Zdirad Žák, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Timetable
Tue 12:00–13:50 C12/311
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
Electron microscopy. Symmetry of molecules. X-ray structural analysis. Protein crystallography. Raman and IR spectroscopy. NIR spectroscopy. Cyclic voltammetry. Optical rotation (ORD, CD) in structural analysis. Electron paramagnetic resonance. Luminescence.
Syllabus
  • 1. Electron microscopy. Interaction of electrons with solid phase. Electro microscope (electromagnetic lenses, electron jet, vacuum system), building of the picture, creation of contrast. Diffraction on singlecrystal and polycrystal. Sample preparation etching.
  • 2. Roentgen diffraction. Elementary crystallography symmetry of the structure, space group symmetry, diffraction of Roentgen radiation, structural factor. Basis of structural analysis data collection, data reduction, phase problem and its solution, improvement of the structural model, structure evaluation.
  • 3. Crystallography of proteins. Macromolecular techniques of crystallization, methods of sitting and hanging drop, seedings. Diffraction experiment:sources of X-ray, detectors, cryo-crystallography. Methods of solving phase problem in proteins. Method of molecular replacement. Methods of heavy atom derivatives (SIR, MIR, MIRAS), MAD and Se-proteins. Maps of electron density. Building of structural model and model refinement.
  • 4. Fluorescence spectroscopy. Fluorescence and other luminescence methods, life time, quantum yield. Fluorescence intensity. Switch-out and selfquenching. Excitation and emission spectra. Quasiline fluorescence and fluorescence in solid phase. Spectrometer and measurement procedure.
  • 5. Techniques of Raman spectroscopy. Elastic and non-elastic dispersion of irradiation (Rayleigh, Stokes and anti-Stokes lines); selection rules - polarisability and transition integral, polarization of Raman lines; electronic, resonance and surface enhanced Raman effects; nonlinear effects – stimulated-, inverse-, hyper-Raman effects, coherent anti-Stokes Raman spectroscopy.
  • 6. Methods of IR spectroscopy. Origin of IR bands, selection rules – dipole moment and transition integral; basic and overtones, combination lines; experimental technique of IR spectroscopy, materials and solvents used, sample preparation. Application in qualitative, structural, and quantitative analysis, study of binding characteristics (bond order and strength).
  • 7. Near-infrared spectroscopy. NIR as a method without sample preparation: low sensitivity and low resolution. Mathematic methods for qualitative and quantitative analysis. Industrial analytic transfer of signal by glass fiber. Quality control at automatic production.
  • 8. Circular bichroism. Absorption of irradiation in monomers and polymers; absorption in nucleic acids. Advantages end disadvantages of the method. Vibration circular bichroism and linear bichroism.
  • 9. Modern electrochemical methods: fundamentals and applications Electrode system and electrode reaction. Voltammetry and coulometry. Potentiostatic and galvanostatic regime. Trends and hyphenated methods.
  • 10. Electron Paramagnetic Resonance as the method for study of systems with non-zero electron spin. Nature of the effect and the experiment, characteristics of EPR signals, hyperfine structure. Use of EPR in structural and analytical chemistry.
  • 11. Symmetry of molecules. Elements and operations of point symmetry. Applications of symmetry in chemistry.
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal or external specialist in the respective areas.
Assessment methods
The final examination has a oral form (examiner: prof. Holík).
Language of instruction
Czech
Further Comments
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research I.

Faculty of Science
Autumn 2008
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
RNDr. Aleš Kroupa, CSc. (lecturer)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
doc. RNDr. Jaromír Marek, Ph.D. (lecturer)
prof. Mgr. Jan Preisler, Ph.D. (lecturer)
doc. RNDr. Jiří Toužín, CSc. (lecturer)
prof. RNDr. Libuše Trnková, CSc. (lecturer)
prof. RNDr. Michaela Vorlíčková, DrSc. (lecturer)
prof. RNDr. Zdirad Žák, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Timetable
Tue 11:00–12:50 C12/311
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
Electron microscopy. Symmetry of molecules. X-ray structural analysis. Protein crystallography. Raman and IR spectroscopy. NIR spectroscopy. Cyclic voltammetry. Optical rotation (ORD, CD) in structural analysis. Electron paramagnetic resonance. Luminescence.
Syllabus
  • 1. Electron microscopy
  • Interaction of electrons with solid phase. Electro microscope (electromagnetic lenses, electron jet, vacuum system), building of the picture, creation of contrast. Diffraction on singlecrystal and polycrystal. Sample preparation etching.

    2. Roentgen diffraction
  • Elementary crystallography symmetry of the structure, space group symmetry, diffraction of Roentgen radiation, structural factor. Basis of structural analysis data collection, data reduction, phase problem and its solution, improvement of the structural model, structure evaluation.

    3. Crystallography of proteins
  • Macromolecular techniques of crystallization, methods of sitting and hanging drop, seedings. Diffraction experiment:sources of X-ray, detectors, cryo-crystallography. Methods of solving phase problem in proteins. Method of molecular replacement. Methods of heavy atom derivatives (SIR, MIR, MIRAS), MAD and Se-proteins. Maps of electron density. Building of structural model and model refinement.

    4. Fluorescence spectroscopy
  • Fluorescence and other luminescence methods, life time, quantum yield. Fluorescence intensity. Switch-out and selfquenching. Excitation and emission spectra. Quasiline fluorescence and fluorescence in solid phase. Spectrometer and measurement procedure.

    5. Techniques of Raman spectroscopy.
  • Elastic and non-elastic dispersion of irradiation (Rayleigh, Stokes and anti-Stokes lines); selection rules - polarisability and transition integral, polarization of Raman lines; electronic, resonance and surface enhanced Raman effects; nonlinear effects – stimulated-, inverse-, hyper-Raman effects, coherent anti-Stokes Raman spectroscopy.

    6. Methods of IR spectroscopy
  • Origin of IR bands, selection rules – dipole moment and transition integral; basic and overtones, combination lines; experimental technique of IR spectroscopy, materials and solvents used, sample preparation. Application in qualitative, structural, and quantitative analysis, study of binding characteristics (bond order and strength).

    7. Near-infrared spectroscopy
  • NIR as a method without sample preparation: low sensitivity and low resolution. Mathematic methods for qualitative and quantitative analysis. Industrial analytic transfer of signal by glass fiber. Quality control at automatic production.

    8. Circular bichroism
  • Absorption of irradiation in monomers and polymers; absorption in nucleic acids. Advantages end disadvantages of the method. Vibration circular bichroism and linear bichroism.

    9. Modern electrochemical methods: fundamentals and applications Electrode system and electrode reaction. Voltammetry and coulometry. Potentiostatic and galvanostatic regime. Trends and hyphenated methods.

    10. EPR nature of the method
  • Electron Paramagnetic Resonance method for study of systems with non-zero electron spin. Nature of the effect, experimental method, and characteristics of EPR signals hyperfine structure.

    11. EPR in structural analysis
  • Use of EPR in structural and analytical chemistry.

    12. Symmetry of molecules
  • Elements and operations of point symmetry. Applications of symmetry in chemistry.
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Assessment methods
The two-hour lectures will be given by internal or external specialist in the respective areas.
The final examination has a written form.
Language of instruction
Czech
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research I.

Faculty of Science
Autumn 2007
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
RNDr. Aleš Kroupa, CSc. (lecturer)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
doc. RNDr. Jaromír Marek, Ph.D. (lecturer)
prof. Mgr. Jan Preisler, Ph.D. (lecturer)
doc. RNDr. Jiří Toužín, CSc. (lecturer)
prof. RNDr. Michaela Vorlíčková, DrSc. (lecturer)
prof. RNDr. Zdirad Žák, CSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Timetable
Mon 12:00–13:50 C12/311
Prerequisites
Passing out lectures Physical Chemistry I and II. Parallel hearing of the lectures from Chemical Structure.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
Techniques of electron microscopy. Symmetry of molecules and crystals. X-ray diffraction and structural analysis. Raman and IR spectroscopy. NIR spectroscopy. Cyclic voltametry. Optical rotation (ORD, CD) in structural analysis. Electron paramagnetic resonance.
Syllabus
  • 1. Electron microscopy Interaction of electrons with solid phase. Electro microscope (electromagnetic lenses, electron jet, vacuum system), building of the picture, creation of contrast. Diffraction on singlecrystal and polycrystal. Sample preparation etching.

    2. Roentgen diffraction Elementary crystallography symmetry of the structure, space group symmetry, diffraction of Roentgen radiation, structural factor. Basis of structural analysis data collection, data reduction, phase problem and its solution, improvement of the structural model, structure evaluation.

    3. Crystallography of proteins Macromolecular techniques of crystallization, methods of sitting and hanging drop, inoculation. Experiments of diffraction sources of rtg. irradiation, detectors, cryo-crystallography. Methods of phase problem solution in proteins. Method of molecular transfer. Methods of metal derivatives (SIR, MIR, MIRAS), MAD and selenoproteins. Maps of electron density. Building of structural model and its refinement.

    4. Fluorescence spectroscopy Fluorescence and other luminescence methods, life time, quantum yield. Fluorescence intensity. Switch-out and selfquenching. Excitation and emission spectra. Quasiline fluorescence and fluorescence in solid phase. Spectrometer and measurement procedure.

    5. Techniques of Raman spectroscopy. Elastic and non-elastic dispersion of irradiation (Stokes and anti-Stokes lines). Transition integral and induced polarization. Electronic, resonance and surface increase. Coherent anti-Stokes Raman spectroscopy. Nonlinear effects stimulated, inverse, and hyper-effect.

    6. Methods of IR spectroscopy Origin of IR bands basic and overtones, combination lines. IR materials and solvents. Sample preparation. Application in qualitative, structural, and quantitative analysis. Study of binding characteristics (bond order, bond strength). Thermodynamics in IR spectroscopy.

    7. Near-infrared spectroscopy NIR as a method without sample preparation: low sensitivity and low resolution. Mathematic methods for qualitative and quantitative analysis. Industrial analytic transfer of signal by glass fiber. Quality control at automatic production.

    8. Circular bichroism Absorption of irradiation in monomers and polymers; absorption in nucleic acids. Advantages end disadvantages of the method. Vibration circular bichroism and linear bichroism.

    9. Cyclic voltametry Voltametry with linear pulse and cyclic voltametry. Mechanism of electrode reductions. Polarography and its use for study of redox systems and surface-active materials.

    10. EPR nature of the method Electron Paramagnetic Resonance method for study of systems with non-zero electron spin. Nature of the effect, experimental method, and characteristics of EPR signals hyperfine structure.

    11. EPR in structural analysis Use of EPR in structural and analytical chemistry.

    12. Symmetry of molecules and crystals Elements and operations of symmetry (closed and open). Mathematical expression of symmetry operations by matrix calculus.
Assessment methods (in Czech)
Výuka je organizována po dvouhodinových lekcích přednášených specialisty - fakultními i externími - v daném oboru. Závěrečná zkouška má písemnou část - test a ústní část.
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
Teacher's information
http://cheminfo.chemi.muni.cz/ktfch/janderka/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research I.

Faculty of Science
Autumn 2006
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
doc. RNDr. Pavel Janderka, CSc. (lecturer)
RNDr. Aleš Kroupa, CSc. (lecturer)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
doc. RNDr. Jaromír Marek, Ph.D. (lecturer)
prof. Mgr. Jan Preisler, Ph.D. (lecturer)
doc. RNDr. Jiří Toužín, CSc. (lecturer)
prof. RNDr. Michaela Vorlíčková, DrSc. (lecturer)
prof. RNDr. Zdirad Žák, CSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Timetable
Mon 9:00–10:50 02004
Prerequisites
Passing out lectures Physical Chemistry I and II. Parallel hearing of the lectures from Chemical Structure.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
Techniques of electron microscopy. Symmetry of molecules and crystals. X-ray diffraction and structural analysis. Raman and IR spectroscopy. NIR spectroscopy. Cyclic voltametry. Optical rotation (ORD, CD) in structural analysis. Electron paramagnetic resonance.
Syllabus
  • 1. Electron microscopy Interaction of electrons with solid phase. Electro microscope (electromagnetic lenses, electron jet, vacuum system), building of the picture, creation of contrast. Diffraction on singlecrystal and polycrystal. Sample preparation etching.

    2. Roentgen diffraction Elementary crystallography symmetry of the structure, space group symmetry, diffraction of Roentgen radiation, structural factor. Basis of structural analysis data collection, data reduction, phase problem and its solution, improvement of the structural model, structure evaluation.

    3. Crystallography of proteins Macromolecular techniques of crystallization, methods of sitting and hanging drop, inoculation. Experiments of diffraction sources of rtg. irradiation, detectors, cryo-crystallography. Methods of phase problem solution in proteins. Method of molecular transfer. Methods of metal derivatives (SIR, MIR, MIRAS), MAD and selenoproteins. Maps of electron density. Building of structural model and its refinement.

    4. Fluorescence spectroscopy Fluorescence and other luminescence methods, life time, quantum yield. Fluorescence intensity. Switch-out and selfquenching. Excitation and emission spectra. Quasiline fluorescence and fluorescence in solid phase. Spectrometer and measurement procedure.

    5. Techniques of Raman spectroscopy. Elastic and non-elastic dispersion of irradiation (Stokes and anti-Stokes lines). Transition integral and induced polarization. Electronic, resonance and surface increase. Coherent anti-Stokes Raman spectroscopy. Nonlinear effects stimulated, inverse, and hyper-effect.

    6. Methods of IR spectroscopy Origin of IR bands basic and overtones, combination lines. IR materials and solvents. Sample preparation. Application in qualitative, structural, and quantitative analysis. Study of binding characteristics (bond order, bond strength). Thermodynamics in IR spectroscopy.

    7. Near-infrared spectroscopy NIR as a method without sample preparation: low sensitivity and low resolution. Mathematic methods for qualitative and quantitative analysis. Industrial analytic transfer of signal by glass fiber. Quality control at automatic production.

    8. Circular bichroism Absorption of irradiation in monomers and polymers; absorption in nucleic acids. Advantages end disadvantages of the method. Vibration circular bichroism and linear bichroism.

    9. Cyclic voltametry Voltametry with linear pulse and cyclic voltametry. Mechanism of electrode reductions. Polarography and its use for study of redox systems and surface-active materials.

    10. EPR nature of the method Electron Paramagnetic Resonance method for study of systems with non-zero electron spin. Nature of the effect, experimental method, and characteristics of EPR signals hyperfine structure.

    11. EPR in structural analysis Use of EPR in structural and analytical chemistry.

    12. Symmetry of molecules and crystals Elements and operations of symmetry (closed and open). Mathematical expression of symmetry operations by matrix calculus.
Assessment methods (in Czech)
Výuka je organizována po dvouhodinových lekcích přednášených specialisty - fakultními i externími - v daném oboru. Závěrečná zkouška má písemnou část - test a ústní část.
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
Teacher's information
http://cheminfo.chemi.muni.cz/ktfch/janderka/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research I.

Faculty of Science
Autumn 2005
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
doc. RNDr. Pavel Janderka, CSc. (lecturer)
RNDr. Aleš Kroupa, CSc. (lecturer)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
doc. RNDr. Jaromír Marek, Ph.D. (lecturer)
prof. RNDr. Vítězslav Otruba, CSc. (lecturer)
doc. RNDr. Jiří Toužín, CSc. (lecturer)
prof. RNDr. Michaela Vorlíčková, DrSc. (lecturer)
prof. RNDr. Zdirad Žák, CSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Timetable
Tue 16:00–17:50 03021
Prerequisites
Passing out lectures Physical Chemistry I and II. Parallel hearing of the lectures from Chemical Structure.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
Techniques of electron microscopy. Symmetry of molecules and crystals. X-ray diffraction and structural analysis. Raman and IR spectroscopy. NIR spectroscopy. Cyclic voltametry. Optical rotation (ORD, CD) in structural analysis. Electron paramagnetic resonance.
Syllabus
  • 1. Electron microscopy Interaction of electrons with solid phase. Electro microscope (electromagnetic lenses, electron jet, vacuum system), building of the picture, creation of contrast. Diffraction on singlecrystal and polycrystal. Sample preparation etching.

    2. Roentgen diffraction Elementary crystallography symmetry of the structure, space group symmetry, diffraction of Roentgen radiation, structural factor. Basis of structural analysis data collection, data reduction, phase problem and its solution, improvement of the structural model, structure evaluation.

    3. Crystallography of proteins Macromolecular techniques of crystallization, methods of sitting and hanging drop, inoculation. Experiments of diffraction sources of rtg. irradiation, detectors, cryo-crystallography. Methods of phase problem solution in proteins. Method of molecular transfer. Methods of metal derivatives (SIR, MIR, MIRAS), MAD and selenoproteins. Maps of electron density. Building of structural model and its refinement.

    4. Fluorescence spectroscopy Fluorescence and other luminescence methods, life time, quantum yield. Fluorescence intensity. Switch-out and selfquenching. Excitation and emission spectra. Quasiline fluorescence and fluorescence in solid phase. Spectrometer and measurement procedure.

    5. Techniques of Raman spectroscopy. Elastic and non-elastic dispersion of irradiation (Stokes and anti-Stokes lines). Transition integral and induced polarization. Electronic, resonance and surface increase. Coherent anti-Stokes Raman spectroscopy. Nonlinear effects stimulated, inverse, and hyper-effect.

    6. Methods of IR spectroscopy Origin of IR bands basic and overtones, combination lines. IR materials and solvents. Sample preparation. Application in qualitative, structural, and quantitative analysis. Study of binding characteristics (bond order, bond strength). Thermodynamics in IR spectroscopy.

    7. Near-infrared spectroscopy NIR as a method without sample preparation: low sensitivity and low resolution. Mathematic methods for qualitative and quantitative analysis. Industrial analytic transfer of signal by glass fiber. Quality control at automatic production.

    8. Circular bichroism Absorption of irradiation in monomers and polymers; absorption in nucleic acids. Advantages end disadvantages of the method. Vibration circular bichroism and linear bichroism.

    9. Cyclic voltametry Voltametry with linear pulse and cyclic voltametry. Mechanism of electrode reductions. Polarography and its use for study of redox systems and surface-active materials.

    10. EPR nature of the method Electron Paramagnetic Resonance method for study of systems with non-zero electron spin. Nature of the effect, experimental method, and characteristics of EPR signals hyperfine structure.

    11. EPR in structural analysis Use of EPR in structural and analytical chemistry.

    12. Symmetry of molecules and crystals Elements and operations of symmetry (closed and open). Mathematical expression of symmetry operations by matrix calculus.
Assessment methods (in Czech)
Výuka je organizována po dvouhodinových lekcích přednášených specialisty - fakultními i externími - v daném oboru. Závěrečná zkouška má písemnou část - test a ústní část.
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research I.

Faculty of Science
Autumn 2004
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
doc. RNDr. Pavel Janderka, CSc. (lecturer)
doc. RNDr. Jiří Toužín, CSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Timetable
Fri 10:00–11:50 Cpm,02016
Prerequisites
Passing out lectures Physical Chemistry I and II. Parallel hearing of the lectures from Chemical Structure.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
Techniques of electron microscopy. Symmetry of molecules and crystals. X-ray diffraction and structural analysis. Raman and IR spectroscopy. NIR spectroscopy. Cyclic voltametry. Optical rotation (ORD, CD) in structural analysis. Electron paramagnetic resonance.
Syllabus (in Czech)
  • Metody chemického výzkumu I 1. Elektronová mikroskopie Interakce elektronů s pevnou látkou, vlnové vlastnosti elektronu. Elektronový mikroskop (elektromagnetické čočky, elektronová tryska, vakuová soustava), tvorba obrazu a vznik kontrastu. Difrakce na monokrystalu a na polykrystalu. Příprava vzorků - leptání. 2. Difrakce rentgenova záření Elementární krystalografie: symetrie struktury, prostorové grupy symetrie, difrakce rtg. záření, strukturní faktor. Základy strukturní analýzy: sběr dat, jejich redukce, fázový problém a jeho řešení, zpřesnění strukturního modelu, interpretace struktury. 3. Krystalografie proteinů Makromolekulární krystalizační techniky, metoda sedící a visící kapky, očkování. Difrakční experiment: zdroje rtg. záření, detektory, kryokrystalografie. Metody řešení fázového problému u proteinů, metoda molekulárního přemístění, metody kovových derivátů (SIR, MIR, MIRAS), MAD a selenoproteiny. Mapy elektronové hustoty, Výstavba strukturního modelu a jeho zpřesňování. 4. Fluorescenční spektroskopie Fluorescence a další luminiscenční spektroskopie, doba života, kvantový výtěžek. Intenzita fluorescence, zhášení a samozhášení. Spektra excitační a emisní. Kvazičarová fluorescence a fluorescence v pevné fázi. Spektrometr a postup měření. 5. Techniky Ramanovy spektroskopie Pružný a nepružný rozptyl záření (stokesovy a antistokesovy čáry). Tranzitní integrál a indukovaná polarizace. Elektronická, rezonanční, povrchově zesílená a koherentní antistokesova Ramanova spektroskopie. Nelineární efekty: stimulovaný, inverzní a hyperefekt. 6. IR spektroskopické metody Vznik IR pásů: základní, vyšší harmonické a kombinační přechody. IR materiály a rozpouštědla, příprava vzorku. Aplikace v kvalitativní, strukturní a kvantitativní analýze. Studium vazebných poměrů (řády vazeb, pevnost vazeb) a spektroskopická termodynamika. 7. Blízkoinfračervená spektroskopie NIR spektroskopie jako metoda bez úpravy vzorku, nízká citlivost, nízké rozlišení. Matematické metody pro kvantitativní a kvalitativní analýzu. Provozní analytika - přenos signálu skleněnými vlákny, kontrola stejnosti produktu při automatické výrobě. 8. Cirkulární dichroizmus Absorpce záření u monomerů a polymerů; absorpce u nukleových kyselin.Výhody a nevýhody metody. Vibrační cirkulární dichroismus a lineární dichroismus. 9. Cyklická voltametrie Voltametrie s lineárním pulsem a cyklická voltametrie. Mechanismus elektrodových redukcí. Polarografie a její využití pro studium redox systémů a povrchově aktivních látek. 10. EPR - podstata metody Elektronová paramagnetická rezonance jako metoda studia soustav s nenulovým elektronovým spinem. Podstata jevu a metody a charakteristiky EPR signálů - hyperjemná struktura. 11. EPR ve strukturní analýze Aplikace elektronové paramagnetické rezonance ve strukturní a analytické chemii. 12. Symetrie molekul a krystalů Prvky a operace symetrie v molekule a v krystalu (operace symetrie uzavřené a otevřené). Matematické vyjádření operací symetrie v souřadném systému maticovým násobením.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research I.

Faculty of Science
Autumn 2003
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Prerequisites
Passing out lectures Physical Chemistry I and II. Parallel hearing of the lectures from Chemical Structure.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
Techniques of electron microscopy. Symmetry of molecules and crystals. X-ray diffraction and structural analysis. Raman and IR spectroscopy. NIR spectroscopy. Cyclic voltametry. Optical rotation (ORD, CD) in structural analysis. Electron paramagnetic resonance.
Syllabus (in Czech)
  • Metody chemického výzkumu I 1. Elektronová mikroskopie Interakce elektronů s pevnou látkou, vlnové vlastnosti elektronu. Elektronový mikroskop (elektromagnetické čočky, elektronová tryska, vakuová soustava), tvorba obrazu a vznik kontrastu. Difrakce na monokrystalu a na polykrystalu. Příprava vzorků - leptání. 2. Difrakce rentgenova záření Elementární krystalografie: symetrie struktury, prostorové grupy symetrie, difrakce rtg. záření, strukturní faktor. Základy strukturní analýzy: sběr dat, jejich redukce, fázový problém a jeho řešení, zpřesnění strukturního modelu, interpretace struktury. 3. Krystalografie proteinů Makromolekulární krystalizační techniky, metoda sedící a visící kapky, očkování. Difrakční experiment: zdroje rtg. záření, detektory, kryokrystalografie. Metody řešení fázového problému u proteinů, metoda molekulárního přemístění, metody kovových derivátů (SIR, MIR, MIRAS), MAD a selenoproteiny. Mapy elektronové hustoty, Výstavba strukturního modelu a jeho zpřesňování. 4. Fluorescenční spektroskopie Fluorescence a další luminiscenční spektroskopie, doba života, kvantový výtěžek. Intenzita fluorescence, zhášení a samozhášení. Spektra excitační a emisní. Kvazičarová fluorescence a fluorescence v pevné fázi. Spektrometr a postup měření. 5. Techniky Ramanovy spektroskopie Pružný a nepružný rozptyl záření (stokesovy a antistokesovy čáry). Tranzitní integrál a indukovaná polarizace. Elektronická, rezonanční, povrchově zesílená a koherentní antistokesova Ramanova spektroskopie. Nelineární efekty: stimulovaný, inverzní a hyperefekt. 6. IR spektroskopické metody Vznik IR pásů: základní, vyšší harmonické a kombinační přechody. IR materiály a rozpouštědla, příprava vzorku. Aplikace v kvalitativní, strukturní a kvantitativní analýze. Studium vazebných poměrů (řády vazeb, pevnost vazeb) a spektroskopická termodynamika. 7. Blízkoinfračervená spektroskopie NIR spektroskopie jako metoda bez úpravy vzorku, nízká citlivost, nízké rozlišení. Matematické metody pro kvantitativní a kvalitativní analýzu. Provozní analytika - přenos signálu skleněnými vlákny, kontrola stejnosti produktu při automatické výrobě. 8. Cirkulární dichroizmus Absorpce záření u monomerů a polymerů; absorpce u nukleových kyselin.Výhody a nevýhody metody. Vibrační cirkulární dichroismus a lineární dichroismus. 9. Cyklická voltametrie Voltametrie s lineárním pulsem a cyklická voltametrie. Mechanismus elektrodových redukcí. Polarografie a její využití pro studium redox systémů a povrchově aktivních látek. 10. EPR - podstata metody Elektronová paramagnetická rezonance jako metoda studia soustav s nenulovým elektronovým spinem. Podstata jevu a metody a charakteristiky EPR signálů - hyperjemná struktura. 11. EPR ve strukturní analýze Aplikace elektronové paramagnetické rezonance ve strukturní a analytické chemii. 12. Symetrie molekul a krystalů Prvky a operace symetrie v molekule a v krystalu (operace symetrie uzavřené a otevřené). Matematické vyjádření operací symetrie v souřadném systému maticovým násobením.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research I.

Faculty of Science
Autumn 2002
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Prerequisites
Passing out lectures Physical Chemistry I and II. Parallel hearing of the lectures from Chemical Structure.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
Techniques of electron microscopy. Symmetry of molecules and crystals. X-ray diffraction and structural analysis. Raman and IR spectroscopy. NIR spectroscopy. Cyclic voltametry. Optical rotation (ORD, CD) in structural analysis. Electron paramagnetic resonance.
Syllabus (in Czech)
  • Metody chemického výzkumu I 1. Elektronová mikroskopie Interakce elektronů s pevnou látkou, vlnové vlastnosti elektronu. Elektronový mikroskop (elektromagnetické čočky, elektronová tryska, vakuová soustava), tvorba obrazu a vznik kontrastu. Difrakce na monokrystalu a na polykrystalu. Příprava vzorků - leptání. 2. Difrakce rentgenova záření Elementární krystalografie: symetrie struktury, prostorové grupy symetrie, difrakce rtg. záření, strukturní faktor. Základy strukturní analýzy: sběr dat, jejich redukce, fázový problém a jeho řešení, zpřesnění strukturního modelu, interpretace struktury. 3. Krystalografie proteinů Makromolekulární krystalizační techniky, metoda sedící a visící kapky, očkování. Difrakční experiment: zdroje rtg. záření, detektory, kryokrystalografie. Metody řešení fázového problému u proteinů, metoda molekulárního přemístění, metody kovových derivátů (SIR, MIR, MIRAS), MAD a selenoproteiny. Mapy elektronové hustoty, Výstavba strukturního modelu a jeho zpřesňování. 4. Fluorescenční spektroskopie Fluorescence a další luminiscenční spektroskopie, doba života, kvantový výtěžek. Intenzita fluorescence, zhášení a samozhášení. Spektra excitační a emisní. Kvazičarová fluorescence a fluorescence v pevné fázi. Spektrometr a postup měření. 5. Techniky Ramanovy spektroskopie Pružný a nepružný rozptyl záření (stokesovy a antistokesovy čáry). Tranzitní integrál a indukovaná polarizace. Elektronická, rezonanční, povrchově zesílená a koherentní antistokesova Ramanova spektroskopie. Nelineární efekty: stimulovaný, inverzní a hyperefekt. 6. IR spektroskopické metody Vznik IR pásů: základní, vyšší harmonické a kombinační přechody. IR materiály a rozpouštědla, příprava vzorku. Aplikace v kvalitativní, strukturní a kvantitativní analýze. Studium vazebných poměrů (řády vazeb, pevnost vazeb) a spektroskopická termodynamika. 7. Blízkoinfračervená spektroskopie NIR spektroskopie jako metoda bez úpravy vzorku, nízká citlivost, nízké rozlišení. Matematické metody pro kvantitativní a kvalitativní analýzu. Provozní analytika - přenos signálu skleněnými vlákny, kontrola stejnosti produktu při automatické výrobě. 8. Cirkulární dichroizmus Absorpce záření u monomerů a polymerů; absorpce u nukleových kyselin.Výhody a nevýhody metody. Vibrační cirkulární dichroismus a lineární dichroismus. 9. Cyklická voltametrie Voltametrie s lineárním pulsem a cyklická voltametrie. Mechanismus elektrodových redukcí. Polarografie a její využití pro studium redox systémů a povrchově aktivních látek. 10. EPR - podstata metody Elektronová paramagnetická rezonance jako metoda studia soustav s nenulovým elektronovým spinem. Podstata jevu a metody a charakteristiky EPR signálů - hyperjemná struktura. 11. EPR ve strukturní analýze Aplikace elektronové paramagnetické rezonance ve strukturní a analytické chemii. 12. Symetrie molekul a krystalů Prvky a operace symetrie v molekule a v krystalu (operace symetrie uzavřené a otevřené). Matematické vyjádření operací symetrie v souřadném systému maticovým násobením.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research I.

Faculty of Science
Autumn 2001
Extent and Intensity
2/0/0. 3 credit(s). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
Techniques of electron microscopy.
Symmetry of molecules and crystals.
X-ray diffraction and structural analysis.
Raman and IR spectroscopy. NIR spectroscopy.
Cyclic voltametry.
Optical rotation (ORD, CD) in structural analysis.
Electron paramagnetic resonance.
Language of instruction
Czech
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research I.

Faculty of Science
Autumn 2000
Extent and Intensity
2/0/0. 3 credit(s). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
Techniques of electron microscopy.
Symmetry of molecules and crystals.
X-ray diffraction and structural analysis.
Raman and IR spectroscopy. NIR spectroscopy.
Cyclic voltametry.
Optical rotation (ORD, CD) in structural analysis.
Electron paramagnetic resonance.
Language of instruction
Czech
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research I.

Faculty of Science
Autumn 1999
Extent and Intensity
2/0/0. 3 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Syllabus
  • Techniques of electron microscopy.
  • Symmetry of molecules and crystals.
  • X-ray diffraction and structural analysis.
  • Raman and IR spectroscopy. NIR spectroscopy.
  • Cyclic voltametry.
  • Optical rotation (ORD, CD) in structural analysis.
  • Electron paramagnetic resonance.
Language of instruction
Czech
Further Comments
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research

Faculty of Science
Autumn 2011 - acreditation

The information about the term Autumn 2011 - acreditation is not made public

Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Mgr. Miroslava Bittová, Ph.D. (lecturer)
prof. Mgr. Jan Preisler, Ph.D. (lecturer)
doc. RNDr. Jiří Toužín, CSc. (lecturer)
prof. RNDr. Libuše Trnková, CSc. (lecturer)
prof. RNDr. Přemysl Lubal, Ph.D. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
prof. RNDr. Petr Klán, Ph.D. (lecturer)
Mgr. Jaromír Literák, Ph.D. (lecturer)
doc. RNDr. Ctibor Mazal, CSc. (lecturer), prof. RNDr. Viktor Kanický, DrSc. (deputy)
doc. Mgr. Karel Novotný, Ph.D. (lecturer)
prof. RNDr. Jiří Sopoušek, CSc. (lecturer)
Ing. Blanka Vrbková, Ph.D. (lecturer)
Guaranteed by
doc. Mgr. Petr Táborský, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
Electron microscopy. Symmetry of molecules. X-ray structural analysis. Protein crystallography. Raman and IR spectroscopy. NIR spectroscopy. Cyclic voltammetry. Optical rotation (ORD, CD) in structural analysis. Electron paramagnetic resonance. Luminescence.
Syllabus
  • 1. Electron microscopy. Interaction of electrons with solid phase. Electro microscope (electromagnetic lenses, electron jet, vacuum system), building of the picture, creation of contrast. Diffraction on singlecrystal and polycrystal. Sample preparation etching.
  • 2. Roentgen diffraction. Elementary crystallography symmetry of the structure, space group symmetry, diffraction of Roentgen radiation, structural factor. Basis of structural analysis data collection, data reduction, phase problem and its solution, improvement of the structural model, structure evaluation.
  • 3. Crystallography of proteins. Macromolecular techniques of crystallization, methods of sitting and hanging drop, seedings. Diffraction experiment:sources of X-ray, detectors, cryo-crystallography. Methods of solving phase problem in proteins. Method of molecular replacement. Methods of heavy atom derivatives (SIR, MIR, MIRAS), MAD and Se-proteins. Maps of electron density. Building of structural model and model refinement.
  • 4. Fluorescence spectroscopy. Fluorescence and other luminescence methods, life time, quantum yield. Fluorescence intensity. Switch-out and selfquenching. Excitation and emission spectra. Quasiline fluorescence and fluorescence in solid phase. Spectrometer and measurement procedure.
  • 5. Techniques of Raman spectroscopy. Elastic and non-elastic dispersion of irradiation (Rayleigh, Stokes and anti-Stokes lines); selection rules - polarisability and transition integral, polarization of Raman lines; electronic, resonance and surface enhanced Raman effects; nonlinear effects – stimulated-, inverse-, hyper-Raman effects, coherent anti-Stokes Raman spectroscopy.
  • 6. Methods of IR spectroscopy. Origin of IR bands, selection rules – dipole moment and transition integral; basic and overtones, combination lines; experimental technique of IR spectroscopy, materials and solvents used, sample preparation. Application in qualitative, structural, and quantitative analysis, study of binding characteristics (bond order and strength).
  • 7. Near-infrared spectroscopy. NIR as a method without sample preparation: low sensitivity and low resolution. Mathematic methods for qualitative and quantitative analysis. Industrial analytic transfer of signal by glass fiber. Quality control at automatic production.
  • 8. Circular bichroism. Absorption of irradiation in monomers and polymers; absorption in nucleic acids. Advantages end disadvantages of the method. Vibration circular bichroism and linear bichroism.
  • 9. Modern electrochemical methods: fundamentals and applications Electrode system and electrode reaction. Voltammetry and coulometry. Potentiostatic and galvanostatic regime. Trends and hyphenated methods.
  • 10. Electron Paramagnetic Resonance as the method for study of systems with non-zero electron spin. Nature of the effect and the experiment, characteristics of EPR signals, hyperfine structure. Use of EPR in structural and analytical chemistry.
  • 11. Symmetry of molecules. Elements and operations of point symmetry. Applications of symmetry in chemistry.
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal or external specialist in the respective areas.
Assessment methods
The final examination has a oral form (examiner: prof. Holík).
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research I.

Faculty of Science
Autumn 2010 - only for the accreditation
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
RNDr. Aleš Kroupa, CSc. (lecturer)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
doc. RNDr. Jaromír Marek, Ph.D. (lecturer)
prof. Mgr. Jan Preisler, Ph.D. (lecturer)
doc. RNDr. Jiří Toužín, CSc. (lecturer)
prof. RNDr. Libuše Trnková, CSc. (lecturer)
prof. RNDr. Michaela Vorlíčková, DrSc. (lecturer)
prof. RNDr. Zdirad Žák, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Prerequisites
Passing out lectures C4660 and C4020.
Parallel hearing of the lectures from Chemical Structure recommended.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
By the end of the course, students should be able to understand principle and basic applications of the following methods.
Electron microscopy. Symmetry of molecules. X-ray structural analysis. Protein crystallography. Raman and IR spectroscopy. NIR spectroscopy. Cyclic voltammetry. Optical rotation (ORD, CD) in structural analysis. Electron paramagnetic resonance. Luminescence.
Syllabus
  • 1. Electron microscopy. Interaction of electrons with solid phase. Electro microscope (electromagnetic lenses, electron jet, vacuum system), building of the picture, creation of contrast. Diffraction on singlecrystal and polycrystal. Sample preparation etching.
  • 2. Roentgen diffraction. Elementary crystallography symmetry of the structure, space group symmetry, diffraction of Roentgen radiation, structural factor. Basis of structural analysis data collection, data reduction, phase problem and its solution, improvement of the structural model, structure evaluation.
  • 3. Crystallography of proteins. Macromolecular techniques of crystallization, methods of sitting and hanging drop, seedings. Diffraction experiment:sources of X-ray, detectors, cryo-crystallography. Methods of solving phase problem in proteins. Method of molecular replacement. Methods of heavy atom derivatives (SIR, MIR, MIRAS), MAD and Se-proteins. Maps of electron density. Building of structural model and model refinement.
  • 4. Fluorescence spectroscopy. Fluorescence and other luminescence methods, life time, quantum yield. Fluorescence intensity. Switch-out and selfquenching. Excitation and emission spectra. Quasiline fluorescence and fluorescence in solid phase. Spectrometer and measurement procedure.
  • 5. Techniques of Raman spectroscopy. Elastic and non-elastic dispersion of irradiation (Rayleigh, Stokes and anti-Stokes lines); selection rules - polarisability and transition integral, polarization of Raman lines; electronic, resonance and surface enhanced Raman effects; nonlinear effects – stimulated-, inverse-, hyper-Raman effects, coherent anti-Stokes Raman spectroscopy.
  • 6. Methods of IR spectroscopy. Origin of IR bands, selection rules – dipole moment and transition integral; basic and overtones, combination lines; experimental technique of IR spectroscopy, materials and solvents used, sample preparation. Application in qualitative, structural, and quantitative analysis, study of binding characteristics (bond order and strength).
  • 7. Near-infrared spectroscopy. NIR as a method without sample preparation: low sensitivity and low resolution. Mathematic methods for qualitative and quantitative analysis. Industrial analytic transfer of signal by glass fiber. Quality control at automatic production.
  • 8. Circular bichroism. Absorption of irradiation in monomers and polymers; absorption in nucleic acids. Advantages end disadvantages of the method. Vibration circular bichroism and linear bichroism.
  • 9. Modern electrochemical methods: fundamentals and applications Electrode system and electrode reaction. Voltammetry and coulometry. Potentiostatic and galvanostatic regime. Trends and hyphenated methods.
  • 10. Electron Paramagnetic Resonance as the method for study of systems with non-zero electron spin. Nature of the effect and the experiment, characteristics of EPR signals, hyperfine structure. Use of EPR in structural and analytical chemistry.
  • 11. Symmetry of molecules. Elements and operations of point symmetry. Applications of symmetry in chemistry.
Literature
  • Toužín, Jiří-Příhoda, Jiří. Spektrální a magnetické metody studia anorganických sloučenin. 1.vyd.Praha:Státní pedagogické nakladatelství, 1986
Teaching methods
The two-hour lectures will be given by internal or external specialist in the respective areas.
Assessment methods
The final examination has a oral form (examiner: prof. Holík).
Language of instruction
Czech
Further Comments
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C5060 Methods of Chemical Research I.

Faculty of Science
Autumn 2007 - for the purpose of the accreditation
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
doc. RNDr. Pavel Janderka, CSc. (lecturer)
RNDr. Aleš Kroupa, CSc. (lecturer)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
doc. RNDr. Jaromír Marek, Ph.D. (lecturer)
prof. Mgr. Jan Preisler, Ph.D. (lecturer)
doc. RNDr. Jiří Toužín, CSc. (lecturer)
prof. RNDr. Michaela Vorlíčková, DrSc. (lecturer)
prof. RNDr. Zdirad Žák, CSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Prerequisites
Passing out lectures Physical Chemistry I and II. Parallel hearing of the lectures from Chemical Structure.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
Techniques of electron microscopy. Symmetry of molecules and crystals. X-ray diffraction and structural analysis. Raman and IR spectroscopy. NIR spectroscopy. Cyclic voltametry. Optical rotation (ORD, CD) in structural analysis. Electron paramagnetic resonance.
Syllabus
  • 1. Electron microscopy Interaction of electrons with solid phase. Electro microscope (electromagnetic lenses, electron jet, vacuum system), building of the picture, creation of contrast. Diffraction on singlecrystal and polycrystal. Sample preparation etching.

    2. Roentgen diffraction Elementary crystallography symmetry of the structure, space group symmetry, diffraction of Roentgen radiation, structural factor. Basis of structural analysis data collection, data reduction, phase problem and its solution, improvement of the structural model, structure evaluation.

    3. Crystallography of proteins Macromolecular techniques of crystallization, methods of sitting and hanging drop, inoculation. Experiments of diffraction sources of rtg. irradiation, detectors, cryo-crystallography. Methods of phase problem solution in proteins. Method of molecular transfer. Methods of metal derivatives (SIR, MIR, MIRAS), MAD and selenoproteins. Maps of electron density. Building of structural model and its refinement.

    4. Fluorescence spectroscopy Fluorescence and other luminescence methods, life time, quantum yield. Fluorescence intensity. Switch-out and selfquenching. Excitation and emission spectra. Quasiline fluorescence and fluorescence in solid phase. Spectrometer and measurement procedure.

    5. Techniques of Raman spectroscopy. Elastic and non-elastic dispersion of irradiation (Stokes and anti-Stokes lines). Transition integral and induced polarization. Electronic, resonance and surface increase. Coherent anti-Stokes Raman spectroscopy. Nonlinear effects stimulated, inverse, and hyper-effect.

    6. Methods of IR spectroscopy Origin of IR bands basic and overtones, combination lines. IR materials and solvents. Sample preparation. Application in qualitative, structural, and quantitative analysis. Study of binding characteristics (bond order, bond strength). Thermodynamics in IR spectroscopy.

    7. Near-infrared spectroscopy NIR as a method without sample preparation: low sensitivity and low resolution. Mathematic methods for qualitative and quantitative analysis. Industrial analytic transfer of signal by glass fiber. Quality control at automatic production.

    8. Circular bichroism Absorption of irradiation in monomers and polymers; absorption in nucleic acids. Advantages end disadvantages of the method. Vibration circular bichroism and linear bichroism.

    9. Cyclic voltametry Voltametry with linear pulse and cyclic voltametry. Mechanism of electrode reductions. Polarography and its use for study of redox systems and surface-active materials.

    10. EPR nature of the method Electron Paramagnetic Resonance method for study of systems with non-zero electron spin. Nature of the effect, experimental method, and characteristics of EPR signals hyperfine structure.

    11. EPR in structural analysis Use of EPR in structural and analytical chemistry.

    12. Symmetry of molecules and crystals Elements and operations of symmetry (closed and open). Mathematical expression of symmetry operations by matrix calculus.
Assessment methods (in Czech)
Výuka je organizována po dvouhodinových lekcích přednášených specialisty - fakultními i externími - v daném oboru. Závěrečná zkouška má písemnou část - test a ústní část.
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Teacher's information
http://cheminfo.chemi.muni.cz/ktfch/janderka/
The course is also listed under the following terms Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.