C6060 Advanced Methods of Chemical Research

Faculty of Science
Spring 2013
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation.

C6060 Methods of Chemical Research II

Faculty of Science
Spring 2006
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
doc. RNDr. Pavel Janderka, CSc. (lecturer)
prof. RNDr. Jan Vřešťál, DrSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Timetable
Wed 13:00–14:50 03021
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, spring 2012 - acreditation, Spring 2013.

C6060 Methods of Chemical Research II

Faculty of Science
Spring 2005
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
doc. RNDr. Pavel Janderka, CSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • 1. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 2. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 3. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 4. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 5. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem. 6. Molekulový ion Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 7. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 8. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 9. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 10. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 11. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 12. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Methods of Chemical Research II

Faculty of Science
Spring 2004
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • 1. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 2. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 3. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 4. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 5. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem. 6. Molekulový ion Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 7. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 8. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 9. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 10. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 11. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 12. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Methods of Chemical Research II

Faculty of Science
Spring 2003
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • 1. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 2. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 3. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 4. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 5. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem. 6. Molekulový ion Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 7. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 8. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 9. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 10. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 11. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 12. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Methods of Chemical Research II

Faculty of Science
Spring 2002
Extent and Intensity
2/0/0. 3 credit(s). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Methods of Chemical Research II

Faculty of Science
Spring 2001
Extent and Intensity
2/0/0. 3 credit(s). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Methods of Chemical Research II

Faculty of Science
Spring 2000
Extent and Intensity
2/1/0. 4 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Syllabus
  • Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Advanced Methods of Chemical Research

Faculty of Science
Spring 2024

The course is not taught in Spring 2024

Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Taught in person.
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Advanced Methods of Chemical Research

Faculty of Science
Spring 2025

The course is not taught in Spring 2025

Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Taught in person.
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Advanced Methods of Chemical Research

Faculty of Science
Spring 2023

The course is not taught in Spring 2023

Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Taught in person.
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Advanced Methods of Chemical Research

Faculty of Science
Spring 2022

The course is not taught in Spring 2022

Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Taught in person.
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Advanced Methods of Chemical Research

Faculty of Science
Spring 2021

The course is not taught in Spring 2021

Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Advanced Methods of Chemical Research

Faculty of Science
Spring 2020

The course is not taught in Spring 2020

Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Advanced Methods of Chemical Research

Faculty of Science
Spring 2019

The course is not taught in Spring 2019

Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Advanced Methods of Chemical Research

Faculty of Science
spring 2018

The course is not taught in spring 2018

Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Advanced Methods of Chemical Research

Faculty of Science
Spring 2017

The course is not taught in Spring 2017

Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Advanced Methods of Chemical Research

Faculty of Science
Spring 2016

The course is not taught in Spring 2016

Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Advanced Methods of Chemical Research

Faculty of Science
Spring 2015

The course is not taught in Spring 2015

Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Advanced Methods of Chemical Research

Faculty of Science
Spring 2014

The course is not taught in Spring 2014

Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. Mgr. Petr Táborský, Ph.D. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Advanced Methods of Chemical Research

Faculty of Science
Spring 2012

The course is not taught in Spring 2012

Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Methods of Chemical Research II

Faculty of Science
Spring 2011

The course is not taught in Spring 2011

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
doc. RNDr. Pavel Janderka, CSc. (lecturer)
prof. RNDr. Jan Vřešťál, DrSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Methods of Chemical Research II

Faculty of Science
Spring 2010

The course is not taught in Spring 2010

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
doc. RNDr. Pavel Janderka, CSc. (lecturer)
prof. RNDr. Jan Vřešťál, DrSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Methods of Chemical Research II

Faculty of Science
Spring 2009

The course is not taught in Spring 2009

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
doc. RNDr. Pavel Janderka, CSc. (lecturer)
prof. RNDr. Jan Vřešťál, DrSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Methods of Chemical Research II

Faculty of Science
Spring 2008

The course is not taught in Spring 2008

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
doc. RNDr. Pavel Janderka, CSc. (lecturer)
prof. RNDr. Jan Vřešťál, DrSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Methods of Chemical Research II

Faculty of Science
Spring 2007

The course is not taught in Spring 2007

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
doc. RNDr. Pavel Janderka, CSc. (lecturer)
prof. RNDr. Jan Vřešťál, DrSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Advanced Methods of Chemical Research

Faculty of Science
spring 2012 - acreditation

The information about the term spring 2012 - acreditation is not made public

Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Pavel Kubáček, CSc.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2013.

C6060 Methods of Chemical Research II

Faculty of Science
Spring 2011 - only for the accreditation

The course is not taught in Spring 2011 - only for the accreditation

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
doc. RNDr. Pavel Janderka, CSc. (lecturer)
prof. RNDr. Jan Vřešťál, DrSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.

C6060 Methods of Chemical Research II

Faculty of Science
Spring 2008 - for the purpose of the accreditation

The course is not taught in Spring 2008 - for the purpose of the accreditation

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Miroslav Holík, CSc. (lecturer)
doc. RNDr. Pavel Janderka, CSc. (lecturer)
prof. RNDr. Jan Vřešťál, DrSc. (lecturer)
Guaranteed by
prof. RNDr. Miroslav Holík, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Miroslav Holík, CSc.
Prerequisites
Passing out the lecture Chemical structure C5020 and seminar C5030.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
Nuclear magnetic resonance in structural and quantitative analysis (screening constant, spin-spin coupling, signal integration, relaxation, pulse methods). Mass spectrometry (methods and instrumentation, analysis of molecular peaks, main fragmentation paths, quantitative analysis, combination with chromatographic methods). Solving of the structural problems by joint use of NMR, mass, IR and UV-vis spectra.
Syllabus (in Czech)
  • Metody chemického výzkumu II. 1. Hmotnostní spektrometrie. Molekulový ion. Postup při interpretaci hmotnostního spektra. Spektrální zápis, výpis m/z hodnot a relativních četností, pík hlavní a molekulový. Přirozené zastoupení některých isotopů - skupina molekulového píku. Vzhled skupiny molekulového píku při více atomech Br a Cl v molekule. 2. Fragmentace Fragmentace na kationradikály a kationty. Typy fragmentace, určení místa větvení alkanů. alfa-štěpení za atomem sousedícím s heteroatomem. beta-štěpení: McLaffertyho přesmyk u ketosloučenin. Fragmentace metastabilních iontů. Vícenábojové ionty. 3. Způsoby ionizace molekul Ionizace elektrony (EI), závislost množství vytvořených iontů na energii ionizujících elektronů. Ionizace polem (FI), chemická ionizace (CI), ionizace při atmosférickém tlaku (API). 4. Desorpce jako zdroj iontů v hmotnostní spektrometrii Desorpce laserem (LD), bombardování rychlými atomy (FAB), desorpce plazmou (PD). 5. Analyzátory v hmotnostní spektrometrii Magnetické sektorové přístroje. Přístroje s dvojí fokusací. Dynamické hmotnostní spektrometry. Kvadrupólový a monopólový analyzátor. Iontová past, průletový hmotnostní analyzátor (TOF).Radiofrekvenční hmotnosní analyzátor 6. Detektory v hmotnostní spektrometrii Faradayova komůrka, elektronový násobič, elektro-optický detektor. 7. Kvantitativní hmotnostní spektrometrie SIM - selected ion monitoring. Multiparametrová kalibrace. Metoda singulárního rozkladu - cílové testování. Isotopové ředení. 8. Nukleární magnetická resonance. Počet signálů Symetrie polekuly a počet signálů ve spektru. Chirální a prochirální centrum (myšlenková substituce v CH2 skupině, rovina půlící úhel H-C-H). Prochirální CH2 skupina v planárních a neplanárních systémech. Podmínky pro pozorování neekvivalence - náhodná isochronie. Intramolekulární pochody - rotace kolem vazby, pyramidální inverse, vazebné isomerace. 9. Poloha signálů - chemický posun Magnetické vlastnosti jader atomů - spin, magnetický moment, magnetogyrický poměr. Chování jádra v magnetickém poli - podmínka resonance, chemický posun. Složky stínící konstanty - substituční, sterická a solvatační. Diamagnetická anisotropie dvojné a trojné vazby a aromatického kruhu. Sterická složka stínění - ortho, gama (gauche) a syn-axiální efekt. Solvatační složka stínění, rozpouštědlový efekt, posuvová činidla 10. Štěpení signálů - interakční konstanta Vliv orientace spinu sousedního jádra na polohu signálu ve spektru. Velikost interakční konstanty u aromátů, olefinů a alkyl derivátů. Srovnání experimentálního a simulovaného spektra. Redukce multipletů. Označování spinových systémů. 11. Intenzita signálů - kvantitativní analýza. NMR v kvantitativní analýze - výpočetní rovnice a příklady využití. Vliv relaxace na amplitudu signálu. 13C NMR v přítomnosti relaxačního činidla. 12. NMR v pevné fázi a NQR Energetické hladiny v pevném stavu. Rotace vzorku pod magickým úhlem a pulsní metody - 13C CP-MAS-NMR spektrum. Dipol-dipolová interakce. Kvadrupólový moment halogenů. NQR bez vnějšího magnetického pole a s vnějším magnetickým polem.
Literature
  • HOLÍK, Miroslav. Čtyři lekce z NMR spektroskopie. 1. vyd. Brno: Universita J.E. Purkyně, 1983, 113 s. info
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, spring 2012 - acreditation, Spring 2013.
  • Enrolment Statistics (recent)