C6300 Optická a hmotnostní spektrometrie s indukčně vázaným plazmatem

Přírodovědecká fakulta
jaro 2020
Rozsah
2/0/0. 2 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
Vyučující
prof. RNDr. Viktor Kanický, DrSc. (přednášející)
Garance
prof. RNDr. Viktor Kanický, DrSc.
Ústav chemie – Chemická sekce – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav chemie – Chemická sekce – Přírodovědecká fakulta
Předpoklady
Předchozí absolvování předmětu Atomová spektrometrie C7031 je výhodou, ale nikoliv podmínkou
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 10 mateřských oborů, zobrazit
Cíle předmětu
Po abslovování přednášky získá student informace o principech, instrumentaci, vlastostech a praktickém použití optické a hmotnostní spektrometrie v indukčně vázaném plazmovém výboji (ICP-AES, ICP-MS). Seznámí se s procesy v plazmatu důležitými pro spektrochemickou analýzu,se zaváděním vzorku do výboje, s optimalizací analytické techniky. K tomu mu poslouží výklad o součástech instrumentace, dějích při tvorbě aerosolu, procesech v plazmatu, generování analytického signálu a jeho selektivitě, zpracování a detekci, a to v následujícím výčtu pojmů: vysokofrekvenční generátory, plazmové hlavice, ionizační a excitační mechanismy, prostorové rozdělení inetnzity emise, koncentrace ekvivalentní pozadí, laterální a axiální pozorování ICP; zavádění vzorku do výboje, zmlžování roztoků, technika generování hydridů, vnášení pecných vzorků, elektrotermická vaporizace, jiskrová a laserová ablace, odpařování v el. oblouku; emisní spektrometry, monochromátory, polychromátory, echelle spektrometry s plošnými polovodičovými detektory,aplikace v analýze materiálů, trendy vývoje plazmové spektrometrie; hmotnostní spektrometrie s ICP zdrojem, instrumentace ICP-MS, spektrální a nespektrální interference v ICP-MS. Na základě informací získaných absolvováním tohoto předmětu bude student umět po praktickém seznámení s instrumentací vyvinout analytickou metodu pro daný typ vzorku, provádět rutinní analýzy i výzkum.
Výstupy z učení
Po absolvování přednášky získá student informace o principech, instrumentaci, vlastnostech a praktickém použití optické a hmotnostní spektrometrie v indukčně vázaném plazmovém výboji (ICP-AES, ICP-MS).
Osnova
  • 1. Úloha a význam plazmové spektrometrie v analytické chemii; princip a fyzikální vlastnosti indukčně vázaného plazmatu (ICP); ICP jako zdroj pro atomovou emisní spektrometrii (AES),atomizační prostředí pro fluorescenční spektrometrii (AFS) a zdroj iontů pro hmotnostní spektrometrii (MS); plazmové hlavice, generátory ICP; přehled zavádění vzorku do ICP. 2. Teploty a termodynamická rovnováha v ICP, excitační a ionizační mechanismy; ICP-AES, atomová a molekulová spektra v ICP, intenzita spektrální čáry, normová teplota, "hard" a "soft" spektrální čáry; analytický signál a pozadí, koncentrace ekvivalentní pozadí, standardní odchylka signálu, standardní odchylka pozadí, mez detekce, mez stanovení; analytické vlastnosti ICP-AES, analytické vlastnosti ICP-MS 3. Axiální, radiální a laterální rozdělení intenzity emise ve výboji ICP, emisivita, oblasti ICP výboje; multiplikativní (nespektrální) interference snadno ionizovatelných prvků, multiplikativní (nespektrální) interference kyselin; vliv frekvence generátoru, příkonu do plazmatu, průtoku plynů a výšky pozorování a rychlosti čerpání vzorku na prostorové rozdělení emise, nespektrálních interferencí a mezí detekce; eliminace nespektrálních interferencí volbou robustních podmínek ICP, kompenzace nespektrálních interferencí pomocí porovnávacího prvku; laterální a axiální pozorování výboje - možnosti a omezení. 4. Původ a klasifikace spektrálních interferencí, selektivita; spektrometr, jeho disperze, rozlišení a rozlišovací schopnost, vliv rozlišovací schopnosti spektrálního přístroje na poměr signálu k pozadí a na velikost spektrálních interferencí; vliv spektrálních interferencí a jejich korekce na přesnost a správnost měření, mez detekce a stanovitelnosti v reálných vzorcích; vliv pracovních podmínek zdroje na velikost spektrálních interferencí; algoritmy korekcí spektrálních interferencí; spektrální atlasy. 5. Šum a jeho zdroje v ICP-AES, výstřelový šum, blikavý šum; šum pozadí, šum signálu, přesnost měření, vliv integrační doby na přesnost měření, vliv velikosti signálu na přesnost měření; přesnost, opakovatelnost (krátkodobá, dlouhodobá), mezilehlá opakovatelnost; reprodukovatelnost; drift přístroje, zdroje driftu a jejich eliminace, kompenzace driftu pomocí různých metod s využitím porovnávacích prvků. 6. Kalibrace ICP-AES, linearita kalibračních závislostí, volba modelu, vliv počtu a rozdělení kalibračních vzorků, pásy spolehlivosti; kalibrace při analýze roztoků, příprava kalibračních roztoků; metoda standardního přídavku. 7. Zavádění roztoků do ICP; pneumatické zmlžovače (koncentrický, úhlový, Babingtonův, žlábkový, síťkový, fritový); ultrazvukový zmlžovač, zmlžovač s přímým vstřikováním, termosprej, vyskotlaký hydraulický zmlžovač; tvorba, modifikace a transport aerosolu, vlastnosti zmlžovačů, vlhký a suchý aerosol; elektrotermické vypařování do ICP. 8. Zavádění pevných vzorků do ICP; práškové a kompaktní vzorky, vodivé a nevodivé vzorky; zmlžování suspenzí, elektrotermická vaporizace; přímé zavádění pevného vzorku (DSID - direct sample insertion device, SET - sample elevator technique); elektroabraze (ablace) elektrickou jiskrou, obloukem; laserová ablace. 9. Zavádění plynných vzorků do ICP; generování těkavých hydridů, ostatní těkavé sloučeniny; "on-line" spojení ICP se separačními technikami; speciační analýza s ICP s hmotnostní spektrometrií a separačními technikami. 10. Metodika měření s ICP-AES, příprava roztoků, určení optimálních podmínek měření, měření při malých a velkých poměrech signál/pozadí, korekce pozadí, korekce spektrálních interferencí, kontrola korekčních faktorů, nejvyšší stanovitelný obsah, normalizace výsledků na celkový obsah při stanovení úplného složení. 11. Diagnostika ICP-AES, poměr intenzit atomové a iontové čáry Mg jako kritérium "robustnosti" ICP, kontrola zmlžování, kontrola přenosu energie do plazmatu, kontrola stavu optického systému, metodika měření, regulační diagram, analýza kontrolního vzorku; obvyklé problémy při měření s ICP. 12. Příprava vzorků a rozklady vzorků pro ICP spektrometrii s analýzou roztoků, příklady metod tavení vzorků a rozpouštění v kyselinách, příčiny systematických chyb při rozkladech; příprava vzorků pro přímou analýzu pevných vzorků s ICP; omezení v přípravě vzorků při použití ICP s hmotnostní spektrometrií. 13. Přehled aplikací ICP-AES a ICP-MS v analýze technických materiálů, surovin, v geologických vědách, v analýze environmentálních vzorků, potravin, biologických a klinických materiálů. 14. Zdroje a vyjádření nejistot při stanovení ICP spektrometrií; hodnocení analytických výsledků. 15. Současný stav a perspektivy plazmové spektrometrie; rozvoj instrumentace, nové excitační zdroje, miniaturizace.
Literatura
  • KANICKÝ, Viktor, Vítězslav OTRUBA, Lumír SOMMER a Jiří TOMAN. Optická emisní spektrometrie v indukčně vázaném plazmatu a vysokoteplotních plamenech. 1. st. Praha: Academia. 152 s. Pokroky chemie 24. ISBN 80-200-0215-4. 1992. info
  • TAYLOR, Howard E. Inductively coupled plasma-mass spectrometry : practices and techniques. San Diego: Academic Press. xi, 294. ISBN 0126838658. 2001. info
  • Inductively coupled plasmas in analytical atomic spectrometry. Edited by Akbar Montaser - D. W. Golightly. 2nd ed. Hoboken, N.J.: Wiley-VCH. xxii, 1017. ISBN 1560815140. 1992. info
  • Inductively coupled plasma mass spectrometry handbook. Edited by Simon M. Nelms. 1st pub. Oxford: Blackwell Publishing. xv, 485. ISBN 1405109165. 2005. info
Výukové metody
přednáška
Metody hodnocení
Ústní zkouška.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.