F7040 Quantum electrodynamics

Faculty of Science
Autumn 2024
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
doc. Franz Hinterleitner, Ph.D. (seminar tutor)
Guaranteed by
doc. Franz Hinterleitner, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Learning outcomes
after absolving the lecture the students • - know the Klein-Gordon and the Dirac equations and the mechanism of quantum field theory • - are able to draw simple Feynman diagrams and calculate the corresponding transition amplitudes • - are familiar with the principle and techniques of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2023
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
doc. Franz Hinterleitner, Ph.D. (seminar tutor)
Guaranteed by
doc. Franz Hinterleitner, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Wed 12:00–12:50 FLenc,03028, Thu 8:00–9:50 FLenc,03028
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Learning outcomes
after absolving the lecture the students • - know the Klein-Gordon and the Dirac equations and the mechanism of quantum field theory • - are able to draw simple Feynman diagrams and calculate the corresponding transition amplitudes • - are familiar with the principle and techniques of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2022
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
doc. Franz Hinterleitner, Ph.D. (seminar tutor)
Guaranteed by
doc. Franz Hinterleitner, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Wed 8:00–10:50 F4,03017
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Learning outcomes
after absolving the lecture the students • - know the Klein-Gordon and the Dirac equations and the mechanism of quantum field theory • - are able to draw simple Feynman diagrams and calculate the corresponding transition amplitudes • - are familiar with the principle and techniques of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
autumn 2021
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
doc. Franz Hinterleitner, Ph.D. (seminar tutor)
Guaranteed by
doc. Franz Hinterleitner, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Learning outcomes
after absolving the lecture the students • - know the Klein-Gordon and the Dirac equations and the mechanism of quantum field theory • - are able to draw simple Feynman diagrams and calculate the corresponding transition amplitudes • - are familiar with the principle and techniques of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2020
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
doc. Franz Hinterleitner, Ph.D. (seminar tutor)
Guaranteed by
doc. Franz Hinterleitner, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Learning outcomes
after absolving the lecture the students • - know the Klein-Gordon and the Dirac equations and the mechanism of quantum field theory • - are able to draw simple Feynman diagrams and calculate the corresponding transition amplitudes • - are familiar with the principle and techniques of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2019
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
doc. Franz Hinterleitner, Ph.D. (seminar tutor)
Guaranteed by
doc. Franz Hinterleitner, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Wed 17:00–18:50 F1 6/1014
  • Timetable of Seminar Groups:
F7040/01: Mon 8:00–8:50 F3,03015
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Learning outcomes
after absolving the lecture the students • - know the Klein-Gordon and the Dirac equations and the mechanism of quantum field theory • - are able to draw simple Feynman diagrams and calculate the corresponding transition amplitudes • - are familiar with the principle and techniques of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2018
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
doc. Franz Hinterleitner, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Jana Musilová, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Mon 17. 9. to Fri 14. 12. Tue 18:00–19:50 F4,03017
  • Timetable of Seminar Groups:
F7040/01: Mon 17. 9. to Fri 14. 12. Wed 9:00–9:50 F3,03015
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Learning outcomes
after absolving the lecture the studentis
- know the Klein-Gordon and the Dirac equations and the mechanism of quantum field theory
- are able to draw simplé Feynman diagrams and calculate the corresponding transition amplitudes
- are familiar with the principle and techniques of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
autumn 2017
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
doc. Franz Hinterleitner, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Jana Musilová, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Mon 18. 9. to Fri 15. 12. Tue 8:00–9:50 Fs2 6/4003, Tue 10:00–10:50 Fs2 6/4003
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Learning outcomes
after absolving the lecture the studentis
- know the Klein-Gordon and the Dirac equations and the mechanism of quantum field theory
- are able to draw simplé Feynman diagrams and calculate the corresponding transition amplitudes
- are familiar with the principle and techniques of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2016
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
doc. Franz Hinterleitner, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Jana Musilová, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Mon 19. 9. to Sun 18. 12. Tue 13:00–15:50 FLenc,03028
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2015
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
doc. Franz Hinterleitner, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Jana Musilová, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Thu 8:00–9:50 F4,03017
  • Timetable of Seminar Groups:
F7040/01: Mon 14:00–14:50 F2 6/2012
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2014
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
doc. Franz Hinterleitner, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Tue 15:00–16:50 F3,03015, Tue 17:00–17:50 F3,03015
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2013
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
Mgr. Michael Krbek, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Thu 8:00–9:50 Fs2 6/4003, Thu 12:00–12:50 Fs2 6/4003
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2012
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
Mgr. Michael Krbek, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Wed 14:00–15:50 F3,03015, Wed 19:00–19:50 F2 6/2012
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2011
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
Mgr. Michael Krbek, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2010
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
Mgr. Michael Krbek, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Timetable
Tue 13:00–14:50 Fs2 6/4003, Fri 16:00–16:50 F4,03017
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2009
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
Mgr. Michael Krbek, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Timetable
Thu 12:00–13:50 Fs2 6/4003
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2008
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
Mgr. Michael Krbek, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Timetable
Thu 8:00–9:50 Fs2 6/4003, Fri 15:00–15:50 F1 6/1014
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2007
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
Mgr. Michael Krbek, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field, coherent states. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization.
Syllabus
  • Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field, coherent states. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization.
Assessment methods (in Czech)
Zkouška se skládá ze samostatně řešených příkladů a z ústní části. Podmínkou ke zkoušce je, aby student vyřešil problémy zadané během kurzu.
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2006
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
Mgr. Michael Krbek, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Timetable
Tue 16:00–17:50 04017, Fri 12:00–12:50 F1 6/1014
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field, coherent states. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization.
Syllabus
  • Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field, coherent states. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization.
Assessment methods (in Czech)
Zkouška se skládá ze samostatně řešených příkladů a z ústní části. Podmínkou ke zkoušce je, aby student vyřešil problémy zadané během kurzu.
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2005
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
Mgr. Pavel Klepáč, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Timetable
Wed 11:00–11:50 Fs3,04018, Wed 12:00–13:50 Fs3,04018
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field, coherent states. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization.
Syllabus
  • Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field, coherent states. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization.
Assessment methods (in Czech)
Zkouška se skládá ze samostatně řešených příkladů a z ústní části. Podmínkou ke zkoušce je, aby student vyřešil problémy zadané během kurzu.
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2004
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
Mgr. Pavel Klepáč, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Timetable
Wed 11:00–11:50 03039
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons - Dirac and Feynman interpretation. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field, coherent states. Invariant perturbation theory. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Ward identities.
Syllabus
  • Relativistic vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons - Dirac and Feynman interpretation. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field, coherent states. Invariant perturbation theory. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Ward identities.
Assessment methods (in Czech)
Zkouška se skládá ze samostatně řešených příkladů a z ústní část. Podmínkou ke zkoušce je, aby student vyřešil problémy zadané během kurzu.
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2003
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. Rikard von Unge, Ph.D. (lecturer)
prof. Rikard von Unge, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. Rikard von Unge, Ph.D.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives (in Czech)
Relativistické rovnice vektorových polí. Druhé kvantování. Kvantová teorie volného elektronu: spinory, Diracova rovnice, elektrony a positrony - Diracova a Feynmanova interpretace. Propagátor v časoprostorové a impulzové representaci. Kvantová teorie volného elektromagnetického pole, koherentní stavy. Invariantní teorie poruch. Kvantová elektrodynamika - obecný formalismus: propagátory, Feynmanovy diagramy a pravidla pro počítání s nimi. Rozptyl v externím potencialu, vytváření párů, Comptonův rozptyl, rozptyl elektronů, polarizace vakua a vlastní energie elektronu. Exaktní propagátory a vrcholová funkce. Renormalisace. Wardovy identity.
Assessment methods (in Czech)
Zkouška se skládá ze samostatně řešených příkladů a z ústní část. Podmínkou ke zkoušce je, aby student vyřešil problémy zadané během kurzu.
Language of instruction
Czech
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2002
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. Rikard von Unge, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. Rikard von Unge, Ph.D.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives (in Czech)
Relativistické rovnice vektorových polí. Druhé kvantování. Kvantová teorie volného elektronu: spinory, Diracova rovnice, elektrony a positrony - Diracova a Feynmanova interpretace. Propagátor v časoprostorové a impulzové representaci. Kvantová teorie volného elektromagnetického pole, koherentní stavy. Invariantní teorie poruch. Kvantová elektrodynamika - obecný formalismus: propagátory, Feynmanovy diagramy a pravidla pro počítání s nimi. Rozptyl v externím potencialu, vytváření párů, Comptonův rozptyl, rozptyl elektronů, polarizace vakua a vlastní energie elektronu. Exaktní propagátory a vrcholová funkce. Renormalisace. Wardovy identity.
Assessment methods (in Czech)
Zkouška se skládá ze samostatně řešených příkladů a z ústní část. Podmínkou ke zkoušce je, aby student vyřešil problémy zadané během kurzu.
Language of instruction
Czech
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2001
Extent and Intensity
2/1/0. 4 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. Rikard von Unge, Ph.D. (lecturer)
Guaranteed by
prof. Rikard von Unge, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. Rikard von Unge, Ph.D.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic wave equations, second quantization, propagators in momentum and space-time representation, quantization of free vector and spinors, coherent states, perturbation theory. QED-general formalism, propagators, Feynman diagram and Feynman rules, scattering in external potential, pair creation, Compton scattering, electron-electron scattering, the polarization of the vacuum and the eigen energy of the electron, exact propagators and vertices, renormalization, Ward identities.
Assessment methods (in Czech)
Zkouška se skládá ze samostatně řešených příkladů a z ústní část. Podmínkou ke zkoušce je, aby student vyřešil problémy zadané během kurzu.
Language of instruction
Czech
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2000
Extent and Intensity
2/1/0. 4 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. Rikard von Unge, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. Rikard von Unge, Ph.D.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives (in Czech)
Relativistické rovnice vektorových polí. Kvantová teorie volného elektronu: spinory, Diracova rovnice, elektrony a positrony - Diracova a Feynmanova interpretace. Propagátor v časoprostorové a impulzové representaci. Kvantová teorie volného elektromagnetického pole, koherentní stavy. Invariantní teorie poruch. Kvantová elektrodynamika - obecný formalismus: propagátory, Feynmanovy diagramy a pravidla pro počítání s nimi. Feynmanovy diagramy prvního a druhého řádu: Comptonův rozptyl, anihilace páru elektron-positron, polarizace vakua a vlastní energie elektronu. Exaktní propagátory a vrcholová funkce. Dysonova rovnice. Wardovy identity.
Language of instruction
Czech
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 1999
Extent and Intensity
4/2/0. 6 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Michal Lenc, Ph.D. (lecturer)
RNDr. Zdeněk Kopecký, Dr. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Michal Lenc, Ph.D.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Syllabus (in Czech)
  • Relativistické rovnice vektorových polí. Kvantová teorie volného elektronu: spinory, Diracova rovnice, elektrony a positrony - Diracova a Feynmanova interpretace. Propagátor v časoprostorové a impulzové representaci. Kvantová teorie volného elektromagnetického pole, koherentní stavy. Invariantní teorie poruch. Kvantová elektrodynamika - obecný formalismus: propagátory, Feynmanovy diagramy a pravidla pro počítání s nimi. Feynmanovy diagramy prvního a druhého řádu: Comptonův rozptyl, anihilace páru elektron-positron, polarizace vakua a vlastní energie elektronu. Exaktní propagátory a vrcholová funkce. Dysonova rovnice. Wardovy identity.
Language of instruction
Czech
Further Comments
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
spring 2012 - acreditation

The information about the term spring 2012 - acreditation is not made public

Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
Mgr. Michael Krbek, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2011 - acreditation

The information about the term Autumn 2011 - acreditation is not made public

Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
Mgr. Michael Krbek, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2010 - only for the accreditation
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
Mgr. Michael Krbek, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization. Aims: knowledge of the scalar and the Dirac wave equation; Fock state of particle states; ability to construct simple Feynman diagrams; basic understanding of the principles of renormalization
Syllabus
  • Relativistic scalar and vector field equations.
  • Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons.
  • Propagator in spacetime and momentum space representation.
  • Quantum theory of the free electromagnetic field.
  • Interaction picture, perturbation theory of interacting quantum fields.
  • Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy.
  • Exact propagators and vertex functions. Renormalization.
Literature
  • PESKIN, Michael E. and Daniel V. SCHROEDER. An introduction to quantum field theory. Cambridge, Mass.: Perseus books, 1995, xxii, 842. ISBN 0-201-50397-2. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum fields. New York: McGraw-Hill Book Company, 1965, xiv, 396. info
  • BJORKEN, James D. and Sidney D. DRELL. Relativistic quantum mechanics. New York: McGraw-Hill Book Company, 1964, ix, 299. info
Teaching methods
lectures
Assessment methods
Solved examples and an oral exam. Solution of the problems handed out in the course of the semester is mandatory.
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F7040 Quantum electrodynamics

Faculty of Science
Autumn 2007 - for the purpose of the accreditation
Extent and Intensity
2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Franz Hinterleitner, Ph.D. (lecturer)
Mgr. Michael Krbek, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: doc. Franz Hinterleitner, Ph.D.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field, coherent states. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization.
Syllabus
  • Relativistic scalar and vector field equations. Second quantization. Quantum theory of the free electron: spinors, Dirac equation, electrons and positrons. Propagator in spacetime and momentum space representation. Quantum theory of the free electromagnetic field, coherent states. Interaction picture, perturbation theory of interacting quantum fields. Quantum electrodynamics - general formalism: propagators, Feynman diagrams and rules how to calculate with them. Scattering in an external potential, pair creation, Compton scattering, electron scattering, vacuum polarization and electron self-energy. Exact propagators and vertex functions. Renormalization.
Assessment methods (in Czech)
Zkouška se skládá ze samostatně řešených příkladů a z ústní části. Podmínkou ke zkoušce je, aby student vyřešil problémy zadané během kurzu.
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.