CLABUREDB: Classified Bug-Reports Database

Tool for developers of program analysis tools

Jiri Slaby, Jan Strejcek, and Marek Trtik

Faculty of Informatics, Masaryk University
Botanicka 68a, 60200 Brno, Czech Republic
{slaby,strejcek,trtik}@fi.muni.cz

Abstract. We present a database that can serve as a tool for tuning
and evaluation of miscellaneous program analysis tools. The database
contains bug-reports produced by various tools applied to various source
codes. The bug-reports are classified as either real errors or false pos-
itives. The database currently contains more than 800 bug-reports de-
tected in the Linux kernel 2.6.28. Support of other software projects
written in various programming languages is planned. The database can
be downloaded and manipulated by SQL queries, or accessed via a web
frontend.

1 Introduction

Many successful bug-finding tools based on various program analysis methods
appeared during the last ten years. None of them is perfect. Each tool either
reports both real errors and false positives, or it discovers only a part of real
errors. To improve or evaluate such a tool, one needs to run the tool on some
source codes and then analyze the obtained bug-reports', i.e. classify them as
false positives or real errors, and find errors in the sources that were missed by
the tool. This work is usually tedious and time consuming, especially when one
tunes or studies performance of a tool for real software projects. The tedious
work can be avoided if suitable benchmarks, i.e. programs with information
about their errors, are available.

There exist benchmark suites consisting of small synthetic programs [1, 2, 4, 6,
7] and those consisting of real-world programs [2, 3, 5]. In benchmark suites [1, 4,
6], relevant program locations in small synthetic programs are explicitly marked
as either erroneous or safe. The benchmark suite [2] marks only known real
errors. The situation is different for benchmarks with real-world programs: [5]
contains marked test cases triggering/non-triggering errors, while [3] provides
bug-reports (both real errors and false positives mixed together) produced by
FINDBUGS and sorted according to priority levels assigned to the reports by the
tool. The benchmark suites discussed so far consider different error types and

! We deliberately use term “bug” in the paper. It stems from the need of the database
to comprehend for example coding style violations. In those cases, commonly used
terms like “failure” or “fault” fail to apply.

provide their own error taxonomies with exception of suites [1, 2], where errors
types are linked to Common Weakness Enumeration (CWE) [10].

As far as we know, there is no benchmark suite containing big real-life
projects with a significant list of uniformly described bug-reports classified as
real errors or false positives. Our benchmark suite CLABUREDB should fill this
gap.

CLABUREDB currently contains only a single project, namely the Linux ker-
nel 2.6.28. We have collected about 850 bug-reports of 11 error types produced
by several bug-detection tools run on the kernel. The reports have been manually
classified as either real errors or false positives by skilled programmers with a
help of Linux kernel developers. In fact, it would be sufficient to store only real
errors assuming that we know all of them (and thus we can assume that all other
bug-reports are false positives). As this assumption is completely unrealistic for
a real-life project, we store both real errors and false positives.

The database is still developing in several directions: we plan to add more
bug-reports for the Linux kernel, to support other software projects, and to
augment the web interface to allow other users to add and maintain the database
content.

The database can be downloaded in the SQLITE 3 format for local use under
the Open Database License v1.0 [11] or accessed via a web interface at:

http://claburedb.fi.muni.cz/

The paper is organized as follows. The following section introduces the basic
structure of the database and our web interface. Section 3 describes the current
content of the database including considered kinds of errors and an overview
of collected bug-reports and their sources. Section 4 suggests possible use of
the database for evaluation of a program analysis tool. Finally, the last section
presents our future plans with CLABUREDB.

2 Database Structure

The database is designed to accommodate various kinds of errors from diverse
projects and project versions. As projects can be written in arbitrary program-
ming languages, can contain very specific kinds of errors, can be maintained
by different teams, and can be interesting for distinct user groups, we decided
to have each project in a separate sub-database. A sub-database comprises in-
formation about considered error types, bug-reports, users, tools, and relations
between them. There are two main tables in each sub-database:

error_type This table keeps a specification of considered kinds of errors. We
will outline some of possible types later in Section 3.2. The table contains a
name of the type, short description and a reference CWE number if exists
(see later).

r Type (Subtype

Marking

User: iri Slaby

Error type description: There is a try to return some resource to the system twice
Project: Linux Kernel

Project version: 2.6.28

Tools: Stanse (1.2)

Entered: 2011-11-07 22:20:28 UTC

Source code:

Zoy

261 VAl

262 * PITX4

263 */

264 dev = pci_get_subsys(PCI_VENDOR ID_INTEL,

265 PCI_DEVICE ID INTEL 82371AB 3, PCI_ANY ID,

266 PCI_ANY_ID, NULL);

267 if (dev) {

268 result = acpi processor_errata_piix4(dev);
pci_dev_put(dev);

276 }

271

272 return result;

273}

Double Resource Put
Double Resource Put
Double Resource Put

- Real error
- Real error
- Real error

Fig. 1. List of seven bug-reports with one record expanded showing detailed informa-
tion about the bug-report.

error Each line in this table corresponds to one bug-report. It is specified
by the error type, location (usually file and line), URL for reference (to pro-
vide more information), classification (false positive, real error, unclassified),
confirmation (an argument supporting the validity of the bug-report classi-
fication, e.g. a commit ID of the corresponding bug-fix), user who inserted
the entry, and timestamp of the moment of insertion.

Figure 1 depicts a list of seven bug-reports of type Double Resource Put as
presented in the CLABUREDB’s web interface at http://claburedb.fi.muni.
cz/. Four of these reports are false positives (green), the other three are real
errors (orange). One of the reports is expanded, so that we can see its details
and a highlighted source code with a marked error line.

Recall that the database can be also downloaded in the SQLITE 3 format
for local use under the Open Database License v1.0 [11].

3 Current Contents of the Database

CLABUREDB currently contains only bug-reports produced for the Linux kernel
2.6.28. We have chosen Linux kernel for several reasons: it is a big (20484 files
with nearly 9 millions LOC in total), real-life, self-contained, and open-source
project with several public sources of information about errors. Moreover, the
kernel contains many distinct parts (core, hardware drivers, filesystems, net-
working etc.) that cover some standard application areas of program analysis
tools.

3.1 Sources of Bug-Reports

We used three program analysis tools to gather bug-reports for the kernel:
CLANG 3 [9], STANSE 1.2 [8], and one commercial tool which wanted to stay in
anonymity. Note that CLANG does not natively detect locking errors in the Linux
kernel. Hence, we slightly modified experimental.unix.PthreadLock checker
just to understand kernel locking functions. The database also comprises bug-
reports from kernel and Novell bug tracking systems and mailing lists. For that
purpose we implemented our own web crawler. Finally, there are few bug-reports
detected manually.

3.2 Linux Kernel Error Types

We have analyzed output of available tools applicable to the Linux kernel and we
have decided to focus on the following 11 error types. Nine of these error types
are present in Common Weakness Enumeration (CWE) [10] and we provide
their CWE identification numbers. The two remaining error types are specific
for the Linux kernel (they can be seen as a violation of the kernel coding policy)
and thus they are not covered by CWE.

The list of considered error types follows. For each error type we explicitly
describe the program location associated with an error of this type. This is to
evade misinterpretation, because diverse tools can associate the same error with
different program locations. For example, an error present at an outgoing edge
of a function may be associated to the opening brace of the function, the closing
brace, or to the corresponding return statement.

BUG/WARNING (CWE 617) Developers often inject asserts to their code,
e.g. to ensure that their function is given a correct input. For example, a
destroy function of an object obj can contain a line assert (!obj->active)
to check that the object to be destroyed is inactive. An error occurs if a
condition of some assert is violated.

Error location: the line with the violated assertion.

Division by Zero (CWE 369) The code contains a division instruction but
the actual value of the divisor is zero.
Error location: the line with the division.

Double Lock (CWE 764) Some lock is locked by a thread twice in a row and
it leads to an inconsistent lock state. Note that we ignore double locks of
semaphores as this may be their intentional application.

Error location: the line with the second call of lock.

Double Unlock (CWE 765) Some lock is unlocked by a thread twice in a row
and it leads to an inconsistent lock state. Again, we ignore double unlocks
of semaphores.

Error location: the line with the second call of unlock.

Double Free (CWE 415) A freeing function is called twice on the same address
while no reassignment to the passed pointer occurred between the two calls.
Most allocators can detect this and usually kill the program.

Error location: the line of the invalid (second) free.

Memory Leak (CWE 401) Some code omits to free a memory which was
allocated previously.

Error location: the line with the allocation statement.

Invalid Pointer Dereference (CWE 465) The code tries to access some
memory, but the pointer used is invalid. It may become invalid in many
ways. For example, the pointer may point to a released memory (known as
dangling pointer or use after free) or it can be set to NULL (known as NULL
pointer dereference) or uninitialized. Another source of the problem may be
accessing an array out of bounds.

Error location: the line of the dereference.

Double Resource Put (CWE 763) The code requests one copy of a resource
(e.g. a structure holding hardware status) from a system, but there is more
than one attempt to put that resource back to the system. Like in this
example:

struct pci_dev *pdev = pci_get_device(vendor, device, NULL); // get
if (pdev) {
work_with_pdev (pdev)
pci_dev_put (pdev); // first put
;ci_dev_put(pdev); // second (illegal) put of the same
Error location: the line of the second put.

Resource Leak (CWE 404) The code requests a resource from a system, but
omits to return that back. For example, the error occurs in the previous
example if we remove both pci_dev_put calls.

Error location: the line of the request/get.

Calling Function from Invalid Context (not in CWE, Linux kernel specific)
Some function is called at an inappropriate place or within an invalid context.
This includes calling functions like sleep or wait inside spin-lock critical
sections or in interrupt handlers. This is considered to be an error because
results of such a call are undefined: the system may become unresponsive or
may crash for instance.

Error location: the line of the inappropriate call.

Leaving Function in Locked State (not in CWE, Linux kernel specific)
This error type originates from the kernel requirements that a process has
to release all locks before returning control to userspace. This error occurs if

Error Type Real Err. |False Pos. | Unclassified | Total
BUG/WARNING 8 0 0 8
Division by Zero 2 0 0 2
Double Lock 16 95 4 115
Double Unlock 22 90 9 121
Double Free 0 1 0 1
Memory Leak 7 13 0 20
Invalid Pointer Dereference 17 17 0 34
NULL Pointer Dereference 17 14 0 31
Use After Free 0 3 0 3
Double Resource Put 3 4 0 7
Resource Leak 13 51 24 88
Calling function from invalid context 16 19 0 35
Leaving function in locked state 30 352 37 419
Overall Count 134 642 74 850

Table 1. Reports in CLABUREDB.

a function has an execution path where some lock is locked and left locked
when leaving the function. It is considered to be an error (violation of the
kernel coding policy) as such an execution may lead to a deadlock on the
next invocation of any function wanting to take the same lock.

Error location: the line of the corresponding return statement or closing
brace if there is no return.

3.3 Bug-Reports in the Database

Currently the database comprises 850 reports: 134 real errors, 642 false positives,
and 74 entries which are unclassified. Many of the unclassified entries were added
even recently and are about to be classified soon. Table 1 depicts how each kind
of bug-reports is represented in the database. As seen from the table, most of
the bug-reports in the database are related to locking errors.

4 Intended Use of the Database

Typical use of CLABUREDB is tuning and evaluation of a bug-finding program
analysis tool. To evaluate such a tool, one chooses a project (or its part) from
our benchmark suite and run the tool on these source codes. As the second step,
the sub-database of classified bug-reports corresponding to the chosen project
is downloaded from CLABUREDB. The installation and local database usage is
described in the CLABUREDB documentation.

The bug-reports produced by the tool are compared to the downloaded data.
This way, one immediately gets a classification (real error/false positive) of all the
reports matched in the database and also information about missed real errors if

there are any. It remains to manually classify the bug-reports unmatched with the
database content. The numbers of produced false positives, detected and missed
real errors can be further statistically processed according to methodologies of [2,
3] which produce several metrics including accuracy and precision. The missed
errors and false positives are valuable inputs for tuning the tool.

Finally, the user is kindly asked to insert newly discovered bug-reports with
their classification into the database.

5 Conclusion and Future Plans

We have presented CLABUREDB: the database of classified bug-reports. It is
intended as an open platform for sharing valuable benchmarks for developers
of program analysis tools. The database already contains a large collection of
uniformly described bug-reports produced by various tools on a large real-life
project, namely the Linux kernel 2.6.28.

We plan to extend the database in several directions. Namely, we intend to
collect more bug-reports and to support more error types in the Linux kernel
project. For example, we plan to add error types connected to deadlock and
livelock. Further, we plan to add other real-life projects. We also plan to extend
the web interface to enable developers of program analysis tools to maintain and
augment the database.

In general, the future of CLABUREDB depends on a feedback from the pro-
gram analysis community. At this point, we would like to encourage you to con-
tact us at claburedb@fi.muni.cz if you have any comments, suggestions (for
example which projects should be added to the database), questions, or sources
of bug-reports for the Linux kernel or other interesting projects. We would es-
pecially welcome people willing to participate on creating and maintaining the
database content for another project.

Acknowledggments All authors have been supported by The Czech Science Foun-
dation (GACR), grant No. P202/12/G061.

References

1. G. Chatzieleftheriou and P. Katsaros. Test-driving static analysis tools in search
of C code vulnerabilities. In Proceedings of COMPSACW, pages 96-103. IEEE
Computer Society, 2011.

2. C. Cifuentes, Ch. Hoermann, N. Keynes, S. Long L. Li, E. Mealy, M. Mounteney,
and B. Scholz. BegBunch — Benchmarking for C Bug Detection Tools. In Proceed-
ings of DEFECTS, pages 16-20. ACM, 2009.

3. S. Heckman and L. Williams. On establishing a benchmark for evaluating static
analysis alert prioritization and classification techniques. In Proceedings of ESEM,
pages 41-50. ACM, 2008.

4. K. Kratkiewicz. Using a diagnostic corpus of C programs to evaluate buffer overflow
detection by static analysis tools. In Proceedings of BUGS, 2005.

10.
11.

. S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench: Benchmarks for
evaluating bug detection tools. In In Workshop on ESDDT, 2005.

T. Newsham and B. Chess. ABM: A prototype for benchmarking source code
analyzers. In Proceedings of SSATTM, pages 52-59. NIST Special Publication,
2005.

NIST. Samate reference dataset project. http://samate.nist.gov/SRD/.

J. Obdrzdlek, J. Slaby, and M. Trtik. STANSE: Bug-finding Framework for C
Programs. In Proceeding of MEMICS, LNCS, pages 167-178, 2011.

. Clang: a C language family frontend for LLVM. http://clang.llvm.org/.
Common Weakness Enumeration (CWE). http://cwe.mitre.org/.

Open Database License 1.0. http://opendatacommons.org/licenses/odbl/1.0/.

