
Design and Evaluation of HTTP Protocol
Parsers for IPFIX Measurement

Petr Velan, Tomáš Jirśık and Pavel Čeleda

Institute of Computer Science, Masaryk University, Brno
Czech Republic, {velan|jirsik|celeda}@ics.muni.cz

Abstract. In this paper we analyze HTTP protocol parsers that provide
a web traffic visibility to IP flow. Despite extensive work, flow meters
generally fall short of performance goals due to extracting application
layer data. Constructing effective protocol parser for in-depth analy-
sis is a challenging and error-prone affair. We designed and evaluated
several HTTP protocol parsers representing current state-of-the-art ap-
proaches used in today’s flow meters. We show the packet rates achieved
by respective parsers, including the throughput decrease (performance
implications of application parser) which is of the utmost importance
for high-speed deployments. We believe that these results provide re-
searchers and network operators with important insight into application
visibility and IP flow.

Keywords: HTTP, protocol, parser, traffic, measurement, flow, IPFIX

1 Introduction

Flow monitoring technologies, such as NetFlow or IPFIX, are widely used in
large-scale networks to provide situational awareness. They provide information
about who communicates with whom, when, how long, using what protocol and
service and also how much data was transferred. Acquired flow data is based on
IP headers (network and transport layer) and it does not include any payload
information. On the other hand, we observe that HTTP protocol [6] became a
“new Transmission Control Protocol” (TCP). More and more applications rely
on HTTP protocol, e.g. Web 2.0 content, audio and video streaming, instant
messaging etc. HTTP traffic (TCP port 80) can usually pass through most fire-
walls and therefore presents a standard way of transporting/tunneling data. The
versatility, ubiquity and amount of HTTP traffic makes it easy for an attacker
to hide malicious activities. Missing application layer visibility renders standard
NetFlow and IPFIX to be ineffective for HTTP monitoring.

Network and security devices use application layer analysis to provide appli-
cation visibility, monitoring and traffic control. For example, Cisco Application
Visibility and Control (AVC) [4] solution uses next-generation deep packet in-
spection (NBAR2) and flexible NetFlow to identify, classify and report on over
1,000 applications. HTTP information elements are supported by YAF [8] and

2 Petr Velan, Tomáš Jirśık, Pavel Čeleda

nProbe [5] flow meters and are exported in IPFIX format. Most intrusion detec-
tion systems extract application layer data for in-depth analysis.

Deep Packet Inspection (DPI) predominates for application layer analysis.
While it is possible for small and medium sized networks to effectively deploy the
DPI, the amount of traffic in large (10+ Gb/s) networks makes the inspection
of every packet a challenging problem. The performance and results that can
be achieved depend on a number of factors including flow meter configuration
and analyzed traffic distribution. Due to the complexity and sheer number of
application protocols, it is hard to compare different environments/platforms
and derive conclusions on which solution is the best.

Our research attempts to answer following question: What are the impacts
of application layer analysis of HTTP protocol on flow meters and flow moni-
toring process? The contribution of our work is threefold: (i) We designed and
evaluated several HTTP protocol parsers representing current state-of-the-art
approaches used in today’s flow meters. (ii) We introduced a new flex-based
HTTP parser. (iii) We report on the throughput decrease (performance impli-
cations of application parser) which is of the utmost importance for high-speed
deployments.

The paper is organized as follows. Section 2 describes related work. Section 3
contains a description of the HTTP inspection algorithms and the framework
that was used to test the algorithms. Section 4 describes the methodology used
for HTTP parsers performance comparison. Section 5 presents the performance
evaluation of the individual algorithms. Finally, Section 6 contains our conclu-
sions.

2 Related Work

Application layer protocol parsers are an integral part of many network mon-
itoring tools. We explored the source code of the following frameworks to see
how the HTTP parsing is implemented. nProbe uses standard glibc [2] func-
tions like strncmp (compare two strings) and strstr (locate a substring). YAF
uses Perl Compatible Regular Expressions (PCRE) [1] to examine HTTP traffic.
Suricata [14] and Snort [18] are both written in C. Suricata uses LibHTP [17]
library which does HTTP parsing using custom string functions while Snort does
its parsing using glibc functions. httpry [3] is another HTTP logging and infor-
mation retrieval tool which is also written in C and uses its own built-in string
functions. These HTTP parsers are hand-written.

Other approach is taken by Bro [16] authors. They use binpac [15], a declar-
ative language and compiler designed to simplify the task of constructing robust
and efficient semantic analyzers for complex network protocols. They replaced
some of Bro existing analyzers (handcrafted in C++) and demonstrated that
the generated parsers are as efficient as carefully hand-written ones.

In this paper, we try to determine whether these approaches to HTTP parsing
can handle large traffic volumes. Besides the above approaches, we propose to
use the Fast Lexical Analyzer (Flex) [11] to design a new HTTP parser. Flex

Design and Evaluation of HTTP Protocol Parsers for IPFIX Measurement 3

converts expressions into a lexical analyzer that is essentially a deterministic
finite automaton that recognizes any of the patterns. The algorithm that converts
a regular expression directly to deterministic finite automaton is described in [10]
and [13].

There are other works that inspect the HTTP protocol headers. In [19] the
authors use statistical flow analysis to differentiate traditional HTTP traffic and
Web 2.0 applications. In [21] the authors identify HTTP sessions based on flow
information. In both cases a ground truth sample is needed, which is a topic
addressed by [22]. In [7] and [12] the authors use DPI to obtain information
from the HTTP headers. Our approach is orthogonal to these works, since we
are interested in extending IP flow records with HTTP data.

3 Parser Design

HTTP protocol [6] has a number of properties that can be monitored and ex-
ported together with IP flow data. The most commonly monitored ones are
present in almost every HTTP request or response header. Based on the prop-
erties monitored by the state-of-the-art DPI tools we selected the following ones
for our parsers: HTTP method, status code, host, request URI, content type, user
agent and referer. Keeping track of every bidirectional HTTP connection is too
resource consuming on high speed networks, thus we focus on evaluation of each
individual packet. This approach is more common for flow meters since it is more
resistant to resource depletion attacks.

We implemented and evaluated three different types of parsing algorithms.
The first algorithm (strcmp approach) loops the HTTP header line by line and
searches each line for given fields. It uses standard glibc string functions like
memchr, memmem and strncmp. The simplified pseudocode is shown in Algo-
rithm 1. The second algorithm (pcre approach) uses several regular expressions
taken from YAF to search the packet for specific patterns indicating HTTP
header fields. The pseudocode for the pcre algorithm is shown in Algorithm 2.
We designed the third algorithm (flex approach) to handle each packet as a long
string. It uses finite automaton to find required HTTP fields and the Flex lexer
is used to process the packets. The automaton design is shown in Fig. 1.

Since the Flex is a generic tool, its initialization before scanning each packet
is quite an expensive operation. Therefore we decided to remove all unneces-
sary dynamic memory allocations and costly initializations to see whether the
performance can be increased. We named the new version optimized flex. The
disadvantage of Flex is that it has to keep the data in its own writable buffer.
Therefore the received data must be copied to such a buffer, which adds to the
processing costs significantly. The advantage of the flex parser is its simple main-
tenance and extension possibilities. The framework can be modified to parse any
other application layer protocol just by changing the set of regular expression
rules. The strcmp parser would have to be rewritten from a scratch.

The strcmp implementation also offers a space for further improvement. Al-
gorithm 3 shows an optimized strcmp version of the code that features a better

4 Petr Velan, Tomáš Jirśık, Pavel Čeleda

Algorithm 1 strcmp
1: if first line contains “HTTP” then
2: while not end of HTTP header do

3: for every parsed HTTP field do

4: if field matches the line then
5: store the value of the line

6: end if
7: end for

8: move to the next line

9: end while
10: return HTTP packet

11: else

12: return not HTTP packet
13: end if

Algorithm 2 pcre
1: if first line contains “HTTP/x.y” then

2: for all PCRE rules do
3: if rule matches then

4: store the matched value
5: end if

6: end for

7: return HTTP packet
8: else

9: return not HTTP packet

10: end if

Initial
HTTP

Headers

Not
HTTP

End

User-Agent
Content-Type
Referer
Host

HTTP

EOF or \r\n\r\nInvalid character
or \r or \n

HTTP

Protocol parsingProtocol labeling
HTTP Response + status code

Method + URL

HTTPRequest

Invalid chara

ct
er

or \r
or \

n

Start

Fig. 1: flex algorithm schema

processing logic. The optimized version searches for specific strings by comparing
several bytes at once, which is done by casting the character pointer to integer
pointer. The number that is compared to the string is computed from ASCII
codes of the characters and converted to network byte order. The size of the
used integer depends on the length of the string; longer integers offer better
performance.

To focus only on the HTTP parsing algorithms we decided to let the FlowMon
exporter [9] handle the packet preprocessing. We used a benchmarking (input)
plugin that reads packets from PCAP file to memory at start-up. Then it supplies
the same data continuously for further processing. This approach allows us to
focus on benchmarking the algorithms without the necessity of considering the
disk I/O operations. We provide the source code of implemented algorithms and
used packet traces at the paper homepage [20].

Design and Evaluation of HTTP Protocol Parsers for IPFIX Measurement 5

Algorithm 3 optimized strcmp

1: if payload begins with “HTTP” then
2: store status code

3: while not end of HTTP header do

4: for every parsed response HTTP field do
5: if line starts with field name then

6: store the value of the line

7: end if
8: end for

9: move to the next line

10: end while
11: return HTTP response packet

12: end if
13: if payload begins with one of GET, HEAD, POST, PUT,

DELETE, TRACE, CONNECT then

14: store request URI
15: while not end of HTTP header do

16: for every parsed request HTTP field do

17: if line starts with field name then
18: store the value of the line

19: end if

20: end for
21: move to the next line

22: end while

23: return HTTP request packet
24: end if

25: return not HTTP packet

4 Evaluation Methodology

In this section we define a methodology of HTTP protocol parsers evaluation.
We focus on parsing performance (number of processed packets per second) of
the algorithms described in Section 3 from several different perspectives.

The first perspective focuses on the performance comparison with respect
to analyzed traffic structure. The second perspective covers the impact of the
number of HTTP fields supported by parser. The third perspective describes the
effect of a Carriage Return (CR or ’\r’) and a Line Feed (LF or ’\n’) control
characters distribution in packet payload.

A common technique of increasing network data processing performance is
processing only important part of each packet. Therefore, we perform each of
the tests in two configurations. In the first configuration the parsers are given
whole packets. This is achieved by setting limit on packet size to 1500 bytes,
which is the most common maximum transmission unit value on most Ethernet
networks. In the second configuration the parsers are provided with truncated
packets of length 384 bytes, which is the minimum packet length recommended
for DPI by authors of the YAF exporter [8].

To test the performance of the parsers, we created an HTTP traffic trace
(testing data set). Our requirements on the data set were as follows: preserve

6 Petr Velan, Tomáš Jirśık, Pavel Čeleda

the characteristics of HTTP protocol, reflect various HTTP traffic structures
and have no side effects on the flow meter. In order to meet these requirements
we decided to create synthetic trace.

The HTTP protocol is a request/response protocol. To preserve the charac-
teristics of HTTP protocol during the testing a random request, response and
binary payload packet was captured from the network. To omit the undesirable
bias of the measurement only these three packets were used to synthesize test
trace. The final test trace consists of 200 packets. In order to reflect various
traffic structures, we suggested following ratio:

r =
#request packets + #response packets

#all packets
∗ 100 (1)

where r ∈ [0, 100] and created a test set for each integer ratio from the
interval. Further, we created two packets with modified payload. One packet
contained the CR and LF control characters only at the very beginning of the
packet payload, the other one only at the end. For both of the modified packets
and for the unchanged packet the test trace for each integer ratio was created.

Having defined the test trace, we propose the following case studies to cover
all evaluation perspectives. The case studies are carried out for both full and
truncated packets. Moreover, we measure the performance of the flow meter
without an HTTP parser (no HTTP parser). This way we can estimate the
performance decline caused by increased application layer visibility.

1. Performance Comparison: This case study compares the parsing perfor-
mance of implemented parsers. Moreover, we report on the flow meter per-
formance without an HTTP parser (no HTTP parser).

2. Parsed HTTP Fields Impact : This case study shows a parser performance
with respect to the number of supported HTTP fields. We incrementally
add support for new HTTP fields and observe the impact on the parser
performance.

3. Packet Content Effect : The result of this study presents the influence of the
CR and LF control characters position in a packet payload on the parser
performance. The test traces containing modified payload packets are used
to perform the measurement.

The performance evaluation process employs the benchmarking input plugin
(see Section 3) to obtain the number of processed packets per second. In order
to avoid influencing the results, the plugin uses separate thread and CPU core
for the accounting. The plugin counts the number of the processed packets in
ten second interval and then computes the packets per second rate. We have
operated the benchmark plugin for fifty seconds for each test trace and computed
a number of packets processed and a standard error of the measurement. The
parsed HTTP header fields impact and packet content effect was assessed in a
similar way. All measurements were conducted on a server with the following
configuration: Intel Xeon E5410 CPU at 2.33 GHz, 12 GB 667 MHz DDR2 RAM
and Linux kernel 2.6.32 (64 bit).

Design and Evaluation of HTTP Protocol Parsers for IPFIX Measurement 7

5 Parser Evaluation

In this section, we present results of HTTP parser evaluation. First we describe
the parser performance comparison, then we investigate the impact of supported
HTTP header fields. Finally, the effect of the packet content on HTTP parsing
performance is shown.

Performance Comparison. This case study uses the standard version of each
parser that supports seven HTTP fields. The data set containing the unmodified
payload packets is used and the parsers are tested both on full and truncated
packets. Fig. 2 shows the result for full packets case study and Fig. 3 shows
performance evaluation for truncated packets.

First we discuss the Fig. 2. The no HTTP meter is capable of parsing more
than 11 million packets per second. This result is not influenced by the applica-
tion data carried in the packet, since the data is not accessed by the no HTTP
parser. Employing event the fastest of the HTTP parsing algorithms the per-
formance drops to the nearly one half of parsed packets per second. All of the
HTTP parsers show the decrease in the performance as the ratio r increases since
the amount of request and response packets, which are more time demanding to
parse, grows.

0

1

2

3

4

5

6

11

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
a

c
k
e

ts
/s

 (
x
 1

0
6
)

no HTTP

optimized strcmp

strcmp

optimized flex

flex

pcre

Fig. 2: Parser performance comparison with respect to HTTP proportion (0 % -
no HTTP, 100 % - only HTTP headers) in the traffic - full packets 1500 B.

The best performance is achieved by optimized strcmp parser, which uses
application protocol and code level optimizations. The parser takes into account
the HTTP header structure, the difference between HTTP request and response

8 Petr Velan, Tomáš Jirśık, Pavel Čeleda

headers and looks only for header fields that can be found in the specific header
type. The code level optimizations include converting static strings into integers
and matching them against several characters at once, which can be done in
one processor instruction. The strcmp parser performance is the second best,
although the throughput is less than half of the optimized strcmp parser.

The main difference between flex and optimized flex parsers is in the automa-
ton initialization process. By rewriting the initialization process we achieved
slight performance improvement, which is noticeable mainly in the 〈 0 %, 20 % 〉
interval, where the actual HTTP parsing time is short. There is one other impor-
tant factor affecting the flex parser performance. The flex automaton is designed
to work with its own writable buffer, since it marks end of individual parsed to-
kens directly into the buffer. For this reason a copy of the packet payload must
be created before the actual parsing can start. To measure the impact of the
copying, we created another two parser plugins called empty and copy. First we
measured the flow meter throughput with empty plugin which performs no data
parsing, then with copy plugin which only copies packet payload to static buffer.
From the results we estimate the throughput the optimized flex parser would
have without the memory copying. The performance of the optimized flex parser
would be about 2.4 million packets per second for 0 % and 0.33 million packets
per second for 100 % HTTP packets. This shows that the actual HTTP parsing,
when compared to strcmp parser, is slightly faster for binary payload packets
and slower for HTTP header packets.

The performance of the pcre parser is the lowest. The PCRE algorithm con-
verts the regular expression to a tree structure and then performs a depth-first
search while reading the input string. In case there is no match in current tree
branch, the algorithm backs up and tries another one. Therefore, for a complex
regular expression the pattern matching is not that fast as simple string search
using functions like strcmp. Another reason why the pcre parser is not fast is
that it performs all searches on whole packet payload. The other algorithms are
processing the data sequentially.

Fig. 3 shows the results for truncated packets. The optimized strcmp and no
HTTP are only slightly faster since the truncating of the packets has positive
impact on CPU data cache utilization. The strcmp algorithm is flawed since its
throughput on HTTP packets deteriorates rapidly. This shows the disadvantage
of hand-written parsers, as they are more error-prone than the generated ones.
The pcre parser performance is almost doubled, as the repeatedly processed
data are truncated. Flex based parser also achieve performance increase, since
the memory copying costs are reduced for smaller data.

Parsed HTTP Header Fields Impact. This case study was designed to show
the impact of a number of parsed HTTP header fields on the parser performance.

When payload packets are detected, they do not have their content parsed
for additional HTTP header fields. Therefore, a test set containing only HTTP
request and response packets was used. The case study starts with an empty
plugin, that does not parse HTTP header fields and just labels the HTTP pack-

Design and Evaluation of HTTP Protocol Parsers for IPFIX Measurement 9

0

1

2

3

4

5

6

12

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
a

c
k
e

ts
/s

 (
x
 1

0
6
)

no HTTP

optimized strcmp

strcmp

optimized flex

flex

pcre

Fig. 3: Parser performance comparison with respect to HTTP proportion (0 % -
no HTTP, 100 % - only HTTP headers) in the traffic - truncated packets 384 B.

ets. In the next steps we cumulatively add an additional header field to parse
until we parse all of the seven supported fields. We run the tests for both full
and truncated packets. The average performance of the parsers for each of the
added field is shown in Fig. 4.

Only the request and response packets are parsed, thus the values for the
seven fields parsed in the Fig. 4 correspond to the 100 % packet/s values in the
Fig. 2 and Fig. 3. For the same reason the parsed packets per second numbers
are lower in comparison with the Fig. 2 and Fig. 3. The performance of strcmp
and pcre parsers drops with each additional parsed HTTP header field. The
optimized strcmp parser implementation details attentional fluctuation affect on
performance shown in Fig. 4. An example is the performance increase when
adding a (4) request URI or a (3) status code. It is caused by extra code snippet
that extracts the URI so that this line is not processed by the more generic code
designed for parsing other header fields. Due to the usage of finite automaton
the data is always processed in one pass by the flex-based algorithms. Therefore,
they retain the same level of performance for all additional fields. This feature
could be used to automatically build powerful parsers, when the large number of
parsed application fields would make it ineffective to create hand-written parsers.

Same as in the previous case study, the parsers processing truncated packets
show better performance than the parsers working on full packets.

Packet Content Effect. This case study investigates the possible effects of
the position of the CR and LF control characters in the packet payload on the
parser performance. The mentioned ASCII characters represent the end of line
in the HTTP header. Some of the proposed algorithms use these characters as

10 Petr Velan, Tomáš Jirśık, Pavel Čeleda

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7

P
a

c
k
e

ts
/s

 (
x
 1

0
6
)

optimized strcmp

strcmp

optimized flex

flex

pcre

Fig. 4: An HTTP parser throughput for 1500 B packets; supported fields - (0)
none - HTTP protocol labeling, (1) +host, (2) +method, (3) +status code, (4)
+request URI, (5) +content type, (6) +referer, (7) +user agent.

the trigger to stop parsing. Therefore the position of these characters affects
the parsers performance. The packets with the CRLF characters at the very
beginning should be parsed faster than the packets having the CRLF at the
end since the algorithm terminates as soon as it identifies the CRLF characters.
The test sets with modified binary payload packets (see Section 4) enables us to
compare the algorithms taking in account this perspective.

 0

 1

 2

 3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
a

c
k
e

ts
/s

 (
x
 1

0
6
) beginning end unchanged

Fig. 5: Packet content effect - packet length 1500 B.

We used the modified binary payload packets to test the parsers. The parsing
algorithms, except the strcmp algorithm, show insignificant difference in their
performance for all variants of the modified packets. The pcre and optimized str-
cmp parsers do not search for end of line characters in order to label the packet,
therefore this test does not affect them. The flex-based algorithms are not signif-
icantly affected since they stop parsing on first character that is not expected in
HTTP header and therefore stop at the first character in any case. The strcmp
parser depends on the search for end of line characters, which is confirmed by
Fig. 5. The sooner the characters are found, the faster the algorithm terminates.

Design and Evaluation of HTTP Protocol Parsers for IPFIX Measurement 11

The scenario with truncated packets is different, since the performance on end
data set is greater than on unchanged data. This is caused by removing the end
of packet payload together with the end of line character. When the strcmp
algorithm cannot find the character, it terminates immediately without trying
to search the data. Therefore it terminates sooner than on unchanged data set,
where the end of line character is found and the search continues.

6 Conclusions

This paper has assessed the impacts of HTTP protocol analysis on flow moni-
toring performance. We implemented the state-of-the-art approaches to HTTP
protocol parsing. Moreover, the new flex-based HTTP parser was designed and
its performance was compared to the other approaches.

The evaluation shows that in our case the hand-written and carefully op-
timized parser performs significantly better than implementations with auto-
mated parsing. It also shows that the new flex-based implementations handles
the increasing number of parsed HTTP fields without significant performance
loss. Truncating the packets prior to HTTP protocol parsing can increase the
parser throughput. The performance comparison of no HTTP parser with HTTP
parsers shows that providing an application visibility is a demanding task. Cur-
rent approaches to the application protocol parsing may not be effective enough
to process a high-speed network traffic.

Although we focused on HTTP header parsing in this paper, measuring over-
all performance of flow meters is also essential. We will address performance eval-
uation and runtime requirements of entire flow meter frameworks in our future
work. This research will allow us to compare existing frameworks and new pro-
totypes under equal conditions. Monitoring HTTP application protocol expose
new challenges for flow meters. In particular, an increased number of exported
fields, large flow record length and their impact on transport protocol requires
further research.

Acknowledgments. This material is based upon work supported by Cyber-
netic Proving Ground project (VG20132015103) funded by the Ministry of the
Interior of the Czech Republic.

References

1. PCRE - Perl Compatible Regular Expressions (Nov 2012), http://www.pcre.org/
2. The GNU C Library (glibc) (Dec 2012), http://www.gnu.org/software/libc/
3. Bittel, J.: httpry - HTTP logging and information retrieval tool (Apr 2013), http:

//github.com/jbittel/httpry

4. Cisco Systems, Inc.: Application Visibility and Control (Apr 2013), http://www.
cisco.com/go/avc

5. Deri, L.: nProbe: an Open Source NetFlow probe for Gigabit Networks. In: In
Proc. of Terena TNC 2003 (2003)

http://www.pcre.org/
http://www.gnu.org/software/libc/
http://github.com/jbittel/httpry
http://github.com/jbittel/httpry
http://www.cisco.com/go/avc
http://www.cisco.com/go/avc

12 Petr Velan, Tomáš Jirśık, Pavel Čeleda

6. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard)
(Jun 1999), http://www.ietf.org/rfc/rfc2616.txt, updated by RFCs 2817,
5785, 6266, 6585

7. Gehlen, V., Finamore, A., Mellia, M., Munafò, M.M.: Uncovering the big players
of the web. In: Proceedings of the 4th international conference on Traffic Monitor-
ing and Analysis. pp. 15–28. TMA’12, Springer-Verlag, Berlin, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-28534-9_2

8. Inacio, C.M., Trammell, B.: YAF: Yet Another Flowmeter. In: Proceedings of the
24th international conference on Large installation system administration. pp. 1–
16. LISA’10, USENIX Association, Berkeley, CA, USA (2010), http://dl.acm.

org/citation.cfm?id=1924976.1924987

9. INVEA-TECH: FlowMon Exporter – Community Program (Apr 2013), http://
www.invea-tech.com

10. Lesk, M.E., Schmidt, E.: Lex – a Lexical Analyzer Generator. Tech. rep., Bell
Laboratories (1975), Computing Science Technical Report No. 39

11. Levine, J., John, L.: Flex & Bison. O’Reilly Media, Inc., 1st edn. (2009)
12. Mahanti, A., Williamson, C., Carlsson, N., Arlitt, M., Mahanti, A.: Characterizing

the file hosting ecosystem: A view from the edge. Perform. Eval. 68(11), 1085–1102
(Nov 2011), http://dx.doi.org/10.1016/j.peva.2011.07.016

13. McNaughton, R., Yamada, H.: Regular Expressions and State Graphs for Au-
tomata. Electronic Computers, IRE Transactions on EC-9(1), 39–47 (1960)

14. Open Information Security Foundation: Suricata – network IDS, IPS and network
security monitoring engine (Apr 2013), http://www.suricata-ids.org

15. Pang, R., Paxson, V., Sommer, R., Peterson, L.: binpac: A yacc for Writing Appli-
cation Protocol Parsers. In: Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement. pp. 289–300. IMC ’06, ACM, New York, NY, USA (2006),
http://doi.acm.org/10.1145/1177080.1177119

16. Paxson, V.: Bro: a system for detecting network intruders in real-time. Com-
put. Netw. 31(23-24), 2435–2463 (Dec 1999), http://dx.doi.org/10.1016/S1389-
1286(99)00112-7

17. Qualys, Inc.: LibHTP – security-aware parser for the HTTP protocol (Apr 2013),
http://github.com/ironbee/libhtp

18. Roesch, M.: Snort - Lightweight Intrusion Detection for Networks. In: Proceedings
of the 13th USENIX conference on System administration. pp. 229–238. LISA ’99,
USENIX Association, Berkeley, CA, USA (1999), http://dl.acm.org/citation.
cfm?id=1039834.1039864

19. Schneider, F., Agarwal, S., Alpcan, T., Feldmann, A.: The new web: characterizing
AJAX traffic. In: Proceedings of the 9th international conference on Passive and
active network measurement. pp. 31–40. PAM’08, Springer-Verlag, Berlin, Heidel-
berg (2008), http://dl.acm.org/citation.cfm?id=1791949.1791955

20. Š́ıma T., Velan P., Čeleda P.: FlowMon - Plugins for HTTP Monitoring (Apr 2013),
http://dior.ics.muni.cz/~velan/flowmon-input-http/

21. Torres, L., Magana, E., Izal, M., Morato, D.: Identifying sessions to websites as
an aggregation of related flows. In: Telecommunications Network Strategy and
Planning Symposium (NETWORKS), 2012 XVth International. pp. 1–6 (2012)

22. Torres, L.M., Magana, E., Izal, M., Morato, D.: Strategies for automatic labelling
of web traffic traces. 37th Annual IEEE Conference on Local Computer Networks
0, 196–199 (2012)

http://www.ietf.org/rfc/rfc2616.txt
http://dx.doi.org/10.1007/978-3-642-28534-9_2
http://dl.acm.org/citation.cfm?id=1924976.1924987
http://dl.acm.org/citation.cfm?id=1924976.1924987
http://www.invea-tech.com
http://www.invea-tech.com
http://dx.doi.org/10.1016/j.peva.2011.07.016
http://www.suricata-ids.org
http://doi.acm.org/10.1145/1177080.1177119
http://dx.doi.org/10.1016/S1389-1286(99)00112-7
http://dx.doi.org/10.1016/S1389-1286(99)00112-7
http://github.com/ironbee/libhtp
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dl.acm.org/citation.cfm?id=1791949.1791955
http://dior.ics.muni.cz/~velan/flowmon-input-http/

	Design and Evaluation of HTTP Protocol Parsers for IPFIX Measurement
	1 Introduction
	2 Related Work
	3 Parser Design
	4 Evaluation Methodology
	5 Parser Evaluation
	6 Conclusions

