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Abstract—In this paper, we present an empirical evaluation of
an approach to predict attacker’s activities based on information
exchange and data mining. We gathered the cyber security alerts
shared within the SABU platform, in which around 220,000
alerts from heterogeneous geographically distributed sensors
(intrusion detection systems and honeypots) are shared every day.
Subsequently, we used the methods of sequential rule mining
to identify common attack patterns and to derive rules for
predicting attacks. As we illustrate in this paper, a collaborative
environment allows attack prediction in multiple dimensions.
First, we can predict what will the attacker do next and when.
Second, we can predict where will the attack hit, e.g., when
an attacker is targeting several networks at once. In a week-
long experiment, we processed in total over 1 million alerts,
from which we mined predictive rules every day. Our findings
show that most of the rules display stable values of support and
confidence and, thus, can be used to predict cyber attacks in
consecutive days after mining without a need to actualize the
rules every day.

Keywords—Attack prediction, Collaborative security, Informa-
tion exchange, Data mining

I. INTRODUCTION

Collaboration has become an important topic in cyber
security. Sharing the knowledge, experience, and timely in-
formation on current threats and attacks is regarded as a
crucial part of operations of cybersecurity teams. Sharing of
timely information on current threats and attacks seems as a
promising form of early warning, which can be used to take
preemptive measures to defend a network. It is no surprise
that both researchers [1-3] and practitioners [4,5] have taken
the initiative to create methods and build tools that would
allow automated security information exchange and use them
to increase the protection of the networks.

One of the promising use cases of security information
exchange is predicting cyber attacks [3]. In the past, we have
seen many attempts to predict the upcoming attacks or attack
steps [6]. However, the majority of such methods faced serious
problems that caused these methods to never reach a deploy-
ment in production. For example, they required a library of
attack descriptions or an observation point with very detailed
visibility into the network traffic and highly precise intrusion
detection. It was, and still is, highly demanding to have a single
observation point in the network that could provide every piece
of information needed to detect and successfully predict the
next event in an ongoing attack. However, collaboration seems
to make the problem potentially easier to approach. First,

many attacks, such as malware infections, were observed to
happen in the same fashion in close time and spanning multiple
networks [1]. Thus, we can use observations from a neighbor
network to predict upcoming events in our network, instead
of relying solely on own intrusion detection systems. Second,
heterogeneity of intrusion detection systems may provide a
complex view on an attack even though the individual intrusion
detection systems do not have complete detection capabilities
and, thus, may complement each other [2].

To formalize the scope of our work, we state three research
questions which we shall answer: i) How to learn about cyber
attacks from shared alerts? ii) Which attacks or attack steps
can be predicted with sufficient accuracy? iii) Are the attack
patterns stable over time? First, we need to learn about the
cyber attacks and common patterns in them, so that we may
adequately represent them and set up rules for predicting
the next move of an attacker. For this purpose, we briefly
introduce the security alert sharing platform SABU [7], where
partners from academia and industry may share alerts from
their intrusion detection systems. We then apply data mining
(specifically, sequential rule mining) methods on these data to
obtain the attack patterns. The outputs, referred as sequential
rules, can be immediately used for predicting future cyber
attacks. Second, we discuss the accuracy of attack prediction
that we can also infer from the sequential rules. Finally, we
are interested whether the findings from a single data mining
session may be applied in consecutive days.

The contribution of this paper is an introduction of cyber
attack predictions into the domain of collaborative environ-
ment and illustration of unique traits that such environment
offers for this task. Our experiment demonstrates how does
the state-of-the-art data mining methods perform on real-
world cybersecurity alerts regarding the soundness of results
and outlines the foundations for future work and practical
implementations.

This paper is organized into seven sections. After the
introduction, we sum up the related work in Section II. The
SABU alert sharing platform is described in Section III
Section IV discusses mining patterns in the attacks observed
in the collaborative environment. The experiment setup is
outlined Section V and the results are presented and discussed
in Section VI. Finally, Section VII concludes the paper and
outlines future work.



II. RELATED WORK

Collaboration and information exchange has become a cru-
cial part of cybersecurity practice. Research and development
have focused on automating the process so that timely and
important pieces of information would be exchanged in order
to provide early warning, increase the precision of intrusion
detection or simply to announce a threat. From a research
perspective, a lot of attention was dedicated to collabora-
tive intrusion detection, which is essentially a low-level in-
formation sharing between intrusion detection systems. The
theoretical background to this topic was described in details
by Fung and Boutaba [2], and surveyed by Zhou et al. [1]
and Vasilomanolakis et al. [3], who also state collaborative
attack prediction as an open problem. From the practitioner’s
perspective, many implementations of security information
sharing platform exist as surveyed by ENISA [4,5]. Real-
world information exchange platforms focus rather on high-
level pieces of information such as security alerts, formal rep-
resentations of security events reported by intrusion detection
systems. An overview of formats and protocols for exchange
of such information was presented by Steinberger et al. [8].

Formalization of security alerts allowed a whole new field
of research to emerge, the security alert correlation [9]. The
task of alert correlation is to put together corresponding alerts,
find relations between alerts, and reconstruct the progress of
an attack, but also to recognize the focus of an attacker and
analyze the impact of potential security incidents. The detailed
tasks and processes of security alert correlation were proposed
by Valeur et al. [10], while Cuppens and Miege [11] discussed
the problem from the perspective of collaborative intrusion
detection. Briefly, the alerts from sensors need to normalized,
fused (aggregated), and verified first. Subsequently, the attack
session can be reconstructed for the purposes of attack focus
recognition, multi-stage attack correlation, and impact analy-
sis [10]. The three later stages of alert correlation overlap with
the task of attack prediction.

When the security alerts are correlated, and certain relations
between them are observed, we can use this knowledge to
predict the behavior of future attackers and progress of future
attacks. In the past, we have seen attempts to predict the
attack progression or the desired goal of an adversary (this
is often referenced in literature as attack projection and focus
recognition). Early approaches used predefined models of
attack scenarios. Such models could be attack graphs [12-
14], Bayesian networks [6], or Markov models [15,16], to
cite the most relevant contributions. If a series of detected
events corresponds to a part of an attack scenario in the
model, the remaining parts of the scenario can be predicted.
However, due to high demands on creating such models man-
ually and continuously changing threat landscape, researchers
started using methods of data mining to (semi-)automatically
create the patterns and models to match and project running
attacks [13,14,16—18]. Farhadi et al. [16] proposed a real-
time approach, Kim and Park [17] proposed using continuous
data mining, and Jiang et al. [18] combined data mining with

similarity search. Simultaneously, attack prediction methods
based on machine learning were proposed [19,20].

Although the attempts to predict attacks originate in the
early 2000s, they still mostly focus on predicting the events for
a single observation point or a single network and were rarely
combined with collaborative approaches to cyber security and
intrusion detection. Only a few works were found to approach
the problem, although with rather simple approaches. For ex-
ample, collaborative predictive blacklisting has been a subject
of research [21,22] with promising results against specific
attacks. However, a generic approach similar to early attempts
to attack prediction is still an open research problem [3].
Further, many of the proposed attack prediction methods have
only been evaluated using the datasets, but we know little
about running such methods on data from real networks [23].
In a related domain of threat intelligence, Fachkha et al. [24]
used data mining on darknet data to predict cyber threats in
the global scope.

III. SABU ALERT SHARING PLATFORM

To describe the requirements and operational environment
of our approach to attack prediction, we briefly describe the
alert sharing platform SABU [7], which we used as a frame-
work for our experimental evaluation. SABU is a platform for
sharing and analysis of security alerts developed by CESNET
and Masaryk University. The intended scope of its usage is the
network of CESNET, Czech national research and education
network, and its partners. Currently, CESNET operates a
backbone network and connects 27 campus networks. The
backbone and campus networks are monitored by heteroge-
neous intrusion detection systems, which generate alerts shared
in SABU. The majority of detectors use flow-based network
monitoring [25] and flow-based intrusion detection [26], which
can be deployed in campus networks as well as on the
backbone. SABU also receives many alerts from honeypots
deployed in the participating networks. Warden [27], a hub
for alert sharing and a key component of SABU platform, is
published as open-source, along with SABU connectors for
popular honeypots, such as Dionaea, Kippo, and Cowrie. The
analytical components, however, are yet to be published.

A typical life-cycle of a shared security event looks as
follows. A sensor, i.e., any intrusion detection system or a
honeypot, in a participating network detects a security event
and raises an alert. Since the sensor is connected to SABU
platform, the alert is sent to the central hub, Warden [27],
which allows sharing the alert with other peers and also passes
the alert to the centralized alert processing facilities, where the
alerts are processed. The processing consists of syntactic and
semantic checks, alert aggregation and correlation [28], visu-
alization [29], and other analytics, such as attack prediction,
which is proposed in this paper.

The SABU platform uses Intrusion Detection Extensible
Alert (IDEA) format for exchanging data [30]. IDEA is
inspired by IDMEF [31], but is customized to reflect operation
needs, includes a taxonomy of security events, and prefers data
serialization in JSON. The most important items in an IDEA



record, for the purpose of this paper, are Category, Source.IP,
Node.Name, and DetectTime. Category lists the type of an
event, e.g., network scanning or exploitation attempt. The full
list of data entries and event categories is available at the IDEA
website [30]. Source.IP is an IP address of an event originator,
typically the attacker. In the field of network security, we
mostly work with IP addresses only, so we did not consider
other Source fields to be applicable for this paper. Node.Name
tells us the name of a sensor, e.g., an intrusion detection system
or a honeypot that observed and shared the event described in
the alert. The naming conventions in SABU platform allows us
to easily distinguish sensors from different networks. Finally,
DetectTime is a mandatory field that describes the timestamp
of the event’s detection (contrary to event’s starting time,
which is not always discoverable).

IV. MINING THE ATTACK PREDICTION RULES

To successfully predict the next step of an attack, we first
need to know which attacks are there in the network that can be
observed, formalized, matched, and projected. The main dis-
advantage of previous attempts to attack prediction discussed
in related work (e.g., [6,12,15]) was their reliance on an attack
library, i.e., a database of possible attacks described in details
in machine-readable format. Such library is very hard to create
and maintain manually as the threat landscape is continuously
evolving in a rapid pace, the detection capabilities in the
network might be insufficient to capture all the security events,
and even the set of expected attacks may not overlap with the
set of actual ongoing attacks. However, data mining has been
shown to be a suitable method of getting an insight into what is
actually happening in the network and to (semi)automatically
build the prediction models [13-17].

In our previous work [23], we have discussed sequential
pattern and rule mining methods applied to the analysis of
cyber security alerts. The literature search and experimental
evaluation led us to the conclusion that sequential pattern
mining is applicable in the correlation of security alerts, while
sequential rule mining can also be applied in attack prediction.
Herein, we extend our previous findings considering the attack
prediction use case.

To run sequential rule mining, we first need to create a
sequence database, that stores all the sequences found in the
input data [32]. Throughout this papers, the database entries
are inferred from IDEA records shared within SABU using
Source.IP as a key. Items in a sequence consist of a structure
containing Node.Name, Category, and Target.Port. DetectTime
is used for sorting the items in a sequence. As we can see, the
sequences describe actions of an attacker behind a single IP
address. Other combinations of keys and items were discussed
in the previous work [23]. It is worth noting that sequential
rule mining does not, by default, work with time differences
between items.

By running sequential rule mining over security alerts
obtained from SABU, we obtained numerous sequential rules
that can be used for attack prediction. Herein, we show two ex-
amples of mined rules to illustrate commonly found rules and

their important parameters, support and confidence. Briefly,
support (herein referenced as #SUPP) indicates how many
times the sequence has been observed in the dataset, divided
by the total number of sequences. Confidence (referenced as
#CONF in the examples) indicates how often the rule has been
found to be true, which can be directly used as a probability
value for future predictions. The items in the sequences consist
of three parts, identifier of the intrusion detection system, type
of an event (according to IDEA taxonomy [30]), and TCP port
number, if available. The intrusion detection system identifier
usually includes the name of the software and the name of the
organization, where is it deployed. Due to privacy reasons, we
anonymized the organization names throughout the paper.

The first example illustrates spread of an attack as captured
by popular SSH honeypots Kippo and Cowrie on TCP port 22
in the networks of three distinct organizations:
Organization_A.kippo:Attempt.Login:22,
Organization_B.cowrie:Attempt.Login:22
=> Organization_C.kippo:Attempt.Login:22
#SUPP: 0.00367 #CONF: 0.54545
The mined sequential rule indicates that if an attacker at-
tempted brute-force attack (Attempt.Login) on a honeypot in
organizations A and B, the attacker will also brute-force a hon-
eypot in organization C with approximately 54 % confidence
(distilled from #CONF value). Such sequences hold for 0.37 %
of all sequences in the dataset (distilled from #SUPP value).
Similar rules were found for other combinations of honey-
pots from these organizations, although with lower support
and confidence values. Thus, we can infer that the attackers
typically follow an order of targets given by the rule in the
example.

The second example illustrates the steps of an attack against
a single target in two mined rules:

1) Organization_A.dionaea2:Recon.Scanning:139
=> Organization_A.dionaea2:Attempt.Exploit:
#SUPP: 0.00613 #CONF: 0.83333

2) Organization_A.dionaeal:Recon.Scanning:139
=> Organization_A.dionaeal:Attempt.Exploit:
#SUPP: 0.00551 #CONF: 0.9

445

445

Both rules describe a situation, where an attacker scans the
TCP port 139 and subsequently attempts to exploit a network
service on port 445. Both events are captured by a Dionaea
honeypot. This is a common scenario of exploitation of
SMB/NetBIOS network services. Very high confidence value
suggests that the exploitation attempts are very likely once
a network scanning is observed. Similar confidence values
in rules mined from outputs of two distinct honeypots also
suggest that the rule can be generalized for any similar target.

V. EXPERIMENT SETUP

As we have seen in the examples in the previous section,
sequential rule mining can discover various attack patterns. In
practice, however, the results may be influenced by misleading
inputs, such as duplicated entries and false positives [28].
Thus, we designed an experiment to empirically evaluate the
use of sequential rule mining for attack prediction. The Top-K
rules are the ones with confidence value higher than a thresh-
old and with the highest support value. In the experiment, we



TABLE I
ToP-10 SEQUENTIAL RULES FROM THE FIRST DAY WITH SUPPORT, CONFIDENCE, AND MINIMAL AND AVERAGE TIME DIFFERENCES (IN SECONDS)

Rule | Input Output Support | Confidence | Min. At | Avg. At
1 Org_A tarpit:Recon.Scanning:2323, = Org_A.tarpit:Recon.Scanning:23 0.00438 0.88386 12 1,530
Org_A.nemea.hoststats:Recon.Scanning::None
2 Org_A .nemea.bruteforce: Attempt.Login:23 = Org_A tarpit:Recon.Scanning:23 0.00824 0.53465 121 7,539
3 Org_A .nemea.hoststats:Recon.Scanning:None =- Org_A hoststats:Recon.Scanning:None 0.01987 0.68214 1 401
4 Org_A tarpit:Recon.Scanning:2323 = Org_A tarpit:Recon.Scanning:23 0.06655 0.70099 901 5,882
5 Org_A tarpit:Recon.Scanning:2222 = Org_A tarpit:Recon.Scanning:22 0.00834 0.58155 914 7,041
6 Org_A tarpit:Recon.Scanning:2323, = Org_A tarpit:Recon.Scanning:23 0.00487 0.89071 21 2,019
Org_A .hoststats:Recon.Scanning:None
7 Org_A .nemea.hoststats:Recon.Scanning:None, = Org_A hoststats:Recon.Scanning:None 0.00544 0.80088 4 735
Org_B.nemea.hoststats:Recon.Scanning:None
8 Org_A .hoststats:Recon.Scanning:None, = Org_A. tarpit:Recon.Scanning:80 0.00289 0.90000 35 22,754
Org_A .tarpit:Recon.Scanning:443
9 Org_A hoststats:Recon.Scanning:None, = Org_A.nemea.hoststats:Recon.Scanning: | 0.00411 0.60284 1 2,698
Org_B.nemea.hoststats:Recon.Scanning:None None
10 Org_A tarpit:Recon.Scanning:2323, = Org_A tarpit:Recon.Scanning:23 0.00266 0.83962 12 1,528
Org_A .hoststats:Recon.Scanning:None,
Org_A.nemea.hoststats:Recon.Scanning:None

used real data from the SABU alert sharing platform presented
earlier in this paper.

Top-K sequential rule mining algorithm TopKRules [32],
implemented in the SPMF library [33], was used to mine
the rules. Two parameters were applied to filter the results.
First, we set K = 10 to get the Top-10 rules with the highest
support. Second, we set a threshold to the confidence value
to 0.5. Otherwise, we followed the data processing procedure
presented in Section IV.

The plan of the experiment goes as follow. First, we run
sequential rule mining over the security alerts reported in one
day and keep the Top-10 rules. Subsequently, we repeat Top-
10 sequential rule mining in several consecutive days and
compare the results with the findings from the first day. If the
same rule was found in several consecutive days, we analyze
its support and confidence values to see if they appear to be
stable over time, or if there are anomalous rules appearing in
only a few days. Further, we use the confidence values of the
same rule from different days to estimate the success rate of
attack predictions based on that rule.

VI. RESULTS AND DISCUSSION

In this section, we present and discuss the results of
the proposed experiment. The data retrieval lasted for five
days. In total, we processed 1,108,204 security alerts, around
220,000 alerts per day. Each day, we retrieved around 130,000
sequences from the alerts reported that day.

Table I shows the Top 10 rules mined during the first day
of the experiment. These rules are left deliberately unfiltered
to illustrate the actual results of data mining over real-world
security alerts, including any potential false positives and
distortions. It is apparent that most of the rules contain
alerts of network scanning generated by a small number of
intrusion detection systems from only two organizations. The
explanation behind this fact is that these two organizations are
running large backbone networks with numerous distributed
intrusion detection systems. Given the number of network

scanning alerts compared to other types of alerts, e.g., brute-
forcing, it is no surprise that the rules containing network
scanning alerts are in the Top 10. Since the sequential rule
mining does not work with time, the minimal and average time
differences between the rules are taken from events matching
the rules. This illustrates how much time would be left to
mitigate a predicted attack.

Closer inspection of the mined rules shows common situ-
ations reflected in the rules. First, we would like to pinpoint
rules 7 and 9. In these rules, we can see a network scanning
event reported by two intrusion detection systems from two
separate networks of different organizations. Similar situations
can be seen in rules 1 and 2, where the same network event is
detected and reported by different intrusion detection systems
from the same organization’s network. However, in such
cases, one intrusion detection system is typically host-based,
while the other is network-based. Thus, the first intrusion
detection system observes events related to just one target IP
address and the second oversees the whole IP address space,
including the IP address of the host-based system. In such
cases, we can receive a report of a single attack from multiple
intrusion detection systems. Such alerts should be a subject
of aggregation to avoid influencing the analysis [28] unless
the intrusion detection systems complement each other. For
example, in rule 1, one intrusion detection system reports
network scanning without specifying the port, while the second
intrusion detection system adds information about the ports.

Other interesting observations are related to sequences of
actions performed by the attackers. For example, in rule 4, we
can see the implications that if an attacker scans the networks
on port 2323, the scan of port 23 will follow in order of
minutes. Similar port combinations in Top-10 rules can be seen
in rules 5 and 8. In general, we can see common combinations
of port numbers that are often scanned together [23]. Another
example of attack progression can be seen in rule 2, where we
can see two distinct attack steps, scanning and brute-forcing.
Scanning would intuitively take place before brute-force, but



TABLE II
SUPPORT AND CONFIDENCE VALUES OF TOP-10 SEQUENTIAL RULES DURING THE EXPERIMENT

Day 1 (133,785 seq.)

Day 2 (129,180 seq.)

Day 3 (137,364 seq.)

Day 4 (140,093 seq.)

Day 5 (140,844 seq.)

Rule Support | Confidence | Support | Confidence | Support | Confidence | Support | Confidence | Support | Confidence
1 0.00438 | 0.88386 0.00544 | 0.89453 0.00468 | 0.86909 0.00595 | 0.90554 0.00580 | 0.90476
2 0.00824 | 0.53465 0.00955 | 0.54844 0.00750 | 0.57953 0.00733 | 0.59387 0.00655 | 0.56178
3 0.01987 0.68214 0.02789 0.76877 0.02637 0.77863 0.02558 0.74947 0.02641 0.74415
4 0.06655 | 0.70099 0.06864 | 0.71114 0.06246 | 0.71855 0.06838 | 0.74378 0.06551 0.75104
5 0.00834 | 0.58155 0.00818 | 0.58045 0.00708 | 0.59474 0.00758 | 0.55777 0.00930 | 0.58606
6 0.00487 | 0.89071 0.00557 | 0.87378 0.00537 | 0.86925 0.00727 | 0.89938 0.00739 | 0.89356
7 0.00544 | 0.80088 0.00587 | 0.89504 0.00546 | 0.89618 0.00524 | 0.88341 0.00559 | 0.89545
8 0.00289 | 0.9 0.00129 | 0.78403 0.00138 | 0.86758 0.00119 | 0.59011 0.00130 | 0.77542
9 0.00411 0.60284 0.00414 | 0.62941 0.00397 | 0.64311 0.00369 | 0.60023 0.00401 0.62431
10 0.00266 | 0.83962 0.00412 | 0.87070 0.00355 | 0.83022 0.00478 | 0.88859 0.00427 | 0.875
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Fig. 1. Evolution of support (left) and confidence (right) values in sequential rules in consecutive day.

in the situation reflected by the rule, we see brute-forcing
reported by a network-based intrusion detection system and
scanning reported by a honeypot. Thus, the order can appear
counterintuitive but makes sense with the knowledge of the
deployment details. This only underlines the practical impli-
cations of different deployment strategies and architectures of
distributed intrusion detection systems [2].

Table II shows support and confidence values of the rules
mined during the experiment. From the left, there are the
Top-10 rules mined on the first day with their support and
confidence values. The remaining columns show support and
confidence values of the same rules in the consecutive days,
under the condition that the rules were mined again on these
days. The number of sequences, from which the rules were
mined, is displayed in parentheses next to captions of the days.
The gray background in Table II indicates rules that previously
appeared in Top-10 rules, but were not present in Top-10 rules
at the day of mining.

To better reflect the evolution of support and confidence
values over time, we plotted two graphs as can be seen in
Fig. 1. We can see that support values were stable for all rules
during the experiment. The confidence values are stable as
well, although there is an exception in rule 8, which fluctuates
a lot. However, we consider rule 8 as an anomaly, as it was

observed on the first day of the experiment in Top-10 rules, but
it did not appear in Top-10 rules any other day. Nevertheless,
the results suggest that most of the rules are applicable for
predicting the attacks at least during the following days after
they are mined.

VII. CONCLUSION

In this paper, we have empirically evaluated the possibilities
of cyber attack prediction based on information exchange
and supported by data mining. We used real-world security
alerts shared within SABU, an alert sharing platform to run
our experiment. Data mining methods, namely sequential rule
mining, were used to infer prediction rules for later use. We
discussed our empirical experience in obtaining and filtering
the predictive rules for their practical usability and evaluated
the rules in an experiment. We found out that it is possible
to predict the continuation of an attack, i.e., the following
event caused by an attacker and the assumed target. Numerous
attack patterns are recurring, and their continuations can be
predicted with high accuracy, although a significant amount of
prediction rules were found to be unfit for practical use. Thus,
proper filtering and even manual inspection of the results of
data mining should be considered for deployment. On the other
hand, if a prediction rule is inferred one day, it is very likely to



be applicable in the consecutive days with similar parameters.
Thus, predictions based on a certain rule are likely to succeed
at least during the following days or weeks.

We are going to further develop the sharing platform
SABU and include the prediction framework as one of its
components. Based on our empirical experience, the prediction
framework will have to include tools for automated filtering
and updating of the sequential rules, as well as a user interface
for their manual inspection and filtering. Proper engineering of
the framework, visualization of the attack patterns, and further
research into attack prediction are left for future work. We
also hope in encouraging other researchers and developers into
creating similar frameworks in other collaborative platforms,
as the capability of predicting the next target of an attack
in a larger scope illustrates the possible options of attack
predictions in collaborative environment [3].
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