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Abstract—In this paper, we present Stream4Flow, a framework
for cyber situational awareness based on Apache Spark Stream-
ing. We demonstrate utilization of Stream4Flow for real-time IP
flow host monitoring in a large campus network. Contemporary
IP flow analysis systems are not designed for the continuous
host monitoring. Gaining the detailed overview of each host is
not straightforward with these systems due to connection-based
paradigm and performance challenges. We show that distributed
stream processing is a natural solution for detailed IP flow host
monitoring. Moreover, we describe a real-time host monitoring
workflow in data streams in detail and present advantages of
flow-based host monitoring in Apache Spark including real-time
host profiling, dynamic level of detail and granularity.

I. INTRODUCTION

Cyber situational awareness (CSA) aims to provide a com-
plex understanding of a cyber system. IP flow monitoring
is essential for achieving of CSA in computer networks. IP
flows and associated monitoring infrastructure are designed to
provide a holistic macro view over a network, which enables
us to comprehend a network as a whole. Latest trends in
CSA, however, show the necessity of providing not only macro
view but also detailed micro view over a network [1], e.g.
due to uprise of IoT. A security manager requires data on
both a whole network and individual hosts in a network. The
micro view, i.e. information on all hosts in a network, can be
provided by IP flow monitoring to some extent, but it is not
straightforward and faces several issues resulting from original
purpose - holistic network monitoring.

Major issues of IP flow monitoring hindering a creation
micro view over each host are:

o Connection-based data paradigm — data are provided per
connection and stored into five-minute bins. A trans-
formation to host-based view is time-consuming and
includes aggregation and filtration for each bin of data.

o Detection oriented analyses — the goal of the majority
of the analyses in IP flow monitoring is to identify a
traffic of interest, e.g., malicious one. Considering this
goal, we comprehend the traffic of interest, but we have
only limited information about the other network traffic,
which prevents us from a complex understanding of the
network.

e Analysis delay — the majority of current IP flow mon-
itoring tools analyses data in five-minute intervals. The
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information of hosts is then available with a five-minute
aggregation. The aggregation level needs to be reduced
as important behavior characteristics are lost due to the
aggregation [2].

Our previous research [3] proved that distributed stream-
based IP flow monitoring is a promising approach to achieve
the micro view in CSA. This paper demonstrates the utilization
of open-source stream processing Stream4Flow! framework
for real-time IP flow monitoring in the large campus network.
We briefly outline the framework architecture and focus on
host monitoring workflow description along with advantages
associated with our approach. We show that distributed stream-
based approach can overcome the above-mentioned issues and
provide the micro (and macro) view straightforward.

II. SYSTEM OVERVIEW

Stream4Flow is a prototype open-source framework based
on a general workflow for stream-based IP flow analysis
described in [2]. The core of the framework is Apache
Spark Streaming, a system for real-time high throughput data
processing. Stream4Flow architecture is depicted on Fig. 1.
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Fig. 1. Stream4Flow architecture [2].

Spark Streaming introduces Resilient Distributed Datasets
(RDD), fault-tolerant collections of data elements in D-
Streams, to achieve a sub-second latency in computations [4].
Such a solution in combination with its distributed nature,
Map-Reduce programming principle, and integration with IP
flow monitoring tools makes the detailed host monitoring at
large scale possible even in real time.

In our approach, normalized IP flows are collected in
message broker Apache Kafka. Kafka serves as a data stream
producer for main application in Apache Spark. The host
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monitoring application takes advantage of distributed stream-
based data processing and performs real-time transformation
of connection-based information in IP flows to host-based
view. First, the application reduces incoming data stream by
filtering only the connections of interest (i.e. source IP address
belonging to a monitored network). Second, data analysis
windows for statistics are created. Next, the data stream
is cleaned from unnecessary IP flow keys to contain only
information relevant for analyses. During an analysis, data
streams are multiplied so that several analyses run in parallel.
This way of processing reduces the analysis time.

The transformation from the connection- to host-based view
is done in each data stream by using map-reduce principle.
Source IP address serves as a map key. The map is then
reduced by the key and various statistics (e.g., number of
flows) are computed for each IP address. The multiplied data
streams are united into a single data stream containing host-
based records. Next, a reduce operation is applied to the data
stream to obtain a collection of statistics for a host. The data
stream now contains one record of all computed statistics per
host for a given analysis window. The data stream is passed
back to Kafka. From there host-based records are stored in
Elasticsearch or further analyzed for host profile generation.

III. REAL-TIME IP FLOW HOST MONITORING

The demonstrated advantages of stream-based IP flow mon-
itoring in Stream4Flow are following: dynamic level of detail
and granularity, ability to create a host profile, and a possibil-
ity to enrich host profile with additional types of information.
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Fig. 2. Example of zoomed heatmap visualization of /16 networks.

To illustrate the dynamic level of view detail, we present
a zoomable heat map for IP address space (see Fig. 2). The
zoomable map allows us to focus both on a whole network
and individual hosts. Axis of a heat map represent coordinates
of particular CIDR network block. A zoom function allows
us to visualize different CIDR blocks. Color scale of a map
represents a characteristic of a given host or network, e.g.,
the number of flows, assigned administrator, etc. A network
topology can be displayed using this map, e.g., by using same
colors of hosts connected to the same switch. This map also
serves as an access point to information on an individual host.

The real-time data processing enables us to acquire infor-
mation of all hosts in a sub-second granularity. Less detailed

statistics are available through statistics aggregation. Our ap-
plication provides 10s, 30s, 1- and 5-minute data granularity
for all host computed statistics. For each host, we compute
a number of flows, packet, and bytes transferred, the average
duration of a connection, a number of distinct peers and ports,
and distribution of TCP flags. This information is instantly
available in plots after a host is selected in a heat map (Fig. 3).
Based on these statistics, we create a long-term profile of a
host and define its expected behavior. A deviation from the
expected behavior can be monitored and instantly highlighted
via the heat map. Moreover, a host profile can be extended by
log information received from central logging via Kafka.
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Fig. 3. Distinct peers statistics of a host.

IV. SUMMARY

In this paper, we demonstrate a real-world implementation
of real-time IP flow host monitoring. Described application
overcomes the issues of traditional IP flow monitoring related
to host monitoring and provides real-time cyber situational
awareness. Our demonstration? displays a dynamic level of
detail and granularity of several behavior characteristics com-
puted from IP flows for each host in a monitored network.
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