
Modifying Hamming Spaces for Efficient Search

Vladimir Mic
Faculty of Informatics

Masaryk university
Brno, Czech republic

xmic@fi.muni.cz

David Novak
Faculty of Informatics

Masaryk university
Brno, Czech republic

david.novak@fi.muni.cz

Pavel Zezula
Faculty of Informatics

Masaryk university
Brno, Czech republic

zezula@fi.muni.cz

Abstract—We focus on the efficient search for the most
similar bit strings to a given query in the Hamming space. The
Hamming distance can be lower-bounded by the difference of
the “number of ones” in the compared strings, i.e. of their
weights. Recently, such property has been successfully used
by the Hamming Weight Tree (HWT) indexing structure. We
propose modifications of the bit strings that preserve pairwise
Hamming distances but improve the tightness of these lower
bounds, so the query evaluation with the HWT is several
times faster. We also show that the unbalanced bit strings,
recently reported to provide similar quality of search as the
traditionally used balanced bit strings, can be more efficiently
indexed with the HWT. Combined with the distance preserving
modifications, the HWT query evaluation can be more than one
order of magnitude faster than the HWT baseline.

Keywords-Similarity search, Hamming space, Hamming
Weight Tree, Lower bound in the Hamming space

I. INTRODUCTION

The goal of the similarity search is to find objects that are
close to a given query object considering a specific similar-
ity function. Many applications require efficient similarity
search and volumes of current data make this task difficult
to solve. Recently proposed approaches include those that
substitute original data objects with bit strings [1], [2], [3],
[4], [5], [6], [7]. The (dis)similarity of a pair of these bit
strings is usually expressed by the Hamming distance h [8],
which evaluates the number of different bits.

We consider a query bit string q and dataset X . The goal
of the k nearest neighbour query (kNN) is to find the k bit
strings in X that are the closest to q. Despite the efficiency
of Hamming distance evaluation, sequential evaluation of
all distances h(q, o), o ∈ X on big datasets can take even
minutes [9], which is not acceptable for many applications.
Therefore, there is a need for well-scaling indexes.

Recently, authors of the Hamming weight tree (HWT)
proposed to lower bound the Hamming distance using the
number of 1s in the bit strings and to use this lower bound
to prune the Hamming search space during evaluation of
similarity queries [10]. The efficiency of query evaluations
depends on the tightness of the provided lower bounds. The
main contribution of this paper is a proposal of bit string
modifications that preserve pairwise Hamming distances

Figure 1: Structure of the Hamming Weight Tree (HWT)

and tighten these lower bounds that are crucial to HWT
efficiency.

The HWT suffers from the phenomenon called the curse
of dimensionality [11], [12], [13]: the efficiency of query
evaluation degrades rapidly with the increasing distance
h(q, ok) between query bit string q and its kth nearest
neighbour ok. We show that the HWT is up to an order
of magnitude slower than the sequential evaluation of the
Hamming distances using our real-life data to illustrate this
feature. Beside the bit string modifications that preserve
Hamming distances, we propose to further speed up the
HWT by combining these modifications with unbalanced bit
strings1. We conduct experiments with real-life datasets of
image visual descriptors, and we show that query evaluations
with the HWT are speeded up to 6 times when we apply
the distance preserving modifications on balanced bit strings,
and up to 30 times with unbalanced bit strings. The notation
used throughout this paper is provided by table I.

The rest of the paper is organised as follows. Section II
contains a description of the HWT, Section III contains
a study of data modifications to make the HWT lower
bounds tighter while preserving pairwise Hamming distances
between bit strings and investigation of bit strings with un-
balanced bits. Section IV provides experiments to show the
influence of the proposed data modifications on the tightness
of the lower bounds, Section V contains measurements of
the HWT efficiency, and Section VI provides conclusions
and description of the future work.

1i.e. bit strings with bits set to 1 in a different ratio then a half of bit
strings o ∈ X

A. Related work

Embedding to the Hamming space is often used in sim-
ilarity search to reduce the volume of processed data and
to speed up query processing [14], [1], [6]. The speed
up is also enabled by the efficiency of Hamming distance
evaluation, but the sequential evaluation of all distances
h(q, o), o ∈ X is not efficient enough for many applica-
tions [9], [10]. Indexing of the Hamming space is difficult
due to the dimensionality curse which says that efficiency
of indexes degrades towards sequential scan with increasing
data complexity [11], [12].

For instance, Norouzi et al. [15] propose to split indexed
bit strings to sub-parts of the same length. Then limits for
Hamming distances between substrings of q and its nearest
neighbours are derived, considering a given query radius
h(q, ok). These limits are utilised to efficiently identify can-
didate bit strings o for which the precise Hamming distance
h(q, o) is evaluated. Then the kNN queries are processed
using an incremental search strategy, so the efficiency of
this approach decreases with increasing query radius.

Pagh et al. [16] focus on the Jaccard similarity and
improve a concept of min-hashing [17], [18]. They transform
the original vectors to short bit strings called the odd
sketches. These bit strings are compared by the Hamming
distance, and they are proved to approximate the Jaccard
similarity of original sets.

Besides direct indexing of bit strings, some authors pro-
pose techniques that combine more approaches to boost
the efficiency of the similarity search. For instance, Jegou
et al. [19] speed up the similarity search based on local
descriptors [20]. They provide binary signatures to refine
the matching based on the visual words [19]. A similar
paper, but focused on a search based on global descriptors
exists as well [21]. This paper contains a proposal to
combine bit strings with an arbitrary metric index. Seidl and
Kriegel [22] have analysed lower bounding, and they have
discussed optimality of searching algorithms. The tightness
of lower bounds determines their usefulness, that is the key
motivation behind this paper.

II. HAMMING WEIGHT TREE

The Hamming Weight Tree (HWT) [10] have been pro-
posed to efficiently evaluate similarity queries in the Ham-
ming space. It utilises the L1 norm of bit string o, i.e. the
number of bits set to 1 in o, to provide a lower bound on
the Hamming distance h(o1, o2). We denote this L1 norm
of bit string o the weight w(o). The lower bound is defined
as:

h(o1, o2) ≥ |w(o1)− w(o2)|. (1)

The HWT built on bit strings of length λ is a tree with
a root and up to λ + 1 nodes in level 1 (see Figure 12).

2Figure adopted from [10]

(Sλ, h) Hamming space (domain and Hamming distance)
λ length of bit strings
X,X′ ⊆ Sλ dataset and its transformation
q, k query bit strings, number of objects to be found
o = (0, 1) bit string o with two bits 0 and 1
w(o) weight of a bit string o (number of 1s)
o[a..b] the bits in bit string o from position a to position

b (including)
l level of the HWT
π = 2l−1 number of parts into which bit strings o are split

at level l of the HWT
β = λ/2l−1 number of bits in a part of o
[a, b, c, d] weights in quarters of bit strings
lbl lower bound on the Hamming distance, as defined

by Equation 3
F indexes of bits to flip
flipD(X,F) function that flips bits F in dataset X
perm permutation of indexes {0, .., λ− 1}
corr(2, 4) Pearson correlation coefficient of the second and

fourth bit (numbered from 0)
M,Ξ correlation matrices
% ratio of 1s in particular bits of o ∈ X (for

unbalanced bits)

Table I: Notation used throughout this paper

Let us denote them N0..Nλ. Each node Ni covers the bit
strings o ∈ X such that w(o) = i, and only non-empty
nodes are stored to reduce the memory occupation. Since the
pruning capabilities based on Equation 1 are rather small,
authors [10] propose to split nodes of the HWT that contain
more than t bit strings for some selected threshold t. In
general, nodes in level l consider bit strings split into 2l−1

parts and weights are then evaluated on these disjunctive
parts. Let us denote o[a..b] the bits in bit string o from
position a to position b (including), and a size of block β:

β =
λ

2l−1
. (2)

Then the lower bound lbl provided by level l of the HWT
is defined as [10]:

lbl(o1, o2) =

2l−1−1∑
i=0

|w (o1[i · β..(i+ 1)β − 1])−

w (o2[i · β..(i+ 1)β − 1]) |

(3)

This lower bound has a potential to be tighter in deep
levels of the HWT. For instance, having a query bit string q
with weights [32, 32] in its halves, it cannot be in the
distance lower than 2 from bit strings in node [31, 33].
However, when the HWT just with level 1 is used, no lower
bound on the Hamming distance can be set on these bit
strings.
KNN queries with query bit string q are processed using

an incremental search strategy. It tries to find the k bit
strings within distance 0 to q, and then increments the
searching radius rad until the lower bounds lbl ensures that
unattended nodes cannot contain more similar bit strings.

The algorithm is formally described on-line3. Please notice
that this approach provides the precise query evaluation.

The efficiency of the HWT is mainly influenced by (1) the
tightness of the provided lower bounds, and (2) the query
radius, defined as the distance h(q, ok) to the kth nearest
neighbour of q. Query evaluation time increases rapidly
with this radius, so we focus on both these features in the
following sections to speed up the query evaluation with
HWT.

III. DATA MODIFICATIONS FOR TIGHTER LOWER
BOUNDS

We consider the Hamming space (Sλ, h) with the domain
Sλ of bit strings of length λ and the Hamming distance
h. Having a dataset X ⊆ Sλ and a set of indexes F ⊆
{0, .., λ − 1} we introduce a transformation flipD of the
dataset X to create another dataset X ′ ⊆ Sλ:

flipD(X,F) = X ′. (4)

Function flipD perform XOR of bits indexed in F on each
bit string o ∈ X . Formally, it apply a function flipS:

flipS(o,F) = o′,

on each o ∈ X and o′ = o′[0, .., λ− 1] such that:

o′[i] =

{
¬o[i] if i ∈ F
o[i] otherwise.

The key property of function flipD is described by the
following Lemma:

Lemma 1 (Preserving of the Hamming distances):
Using an arbitrary set F , function flipD(X,F) preserves
the pairwise Hamming distances of bit strings. Formally:

∀F ⊆ {0, .., λ− 1} : ∀o1, o2 ∈ X :

h(o1, o2) = h(flipS(o1,F), flipS(o2,F))

Proof: Lemma holds trivially for F = ∅. If |F| = 1
and arbitrary bit strings o1, o2 have the same value in bit
i ∈ F , i.e. o1[i] = o2[i], the equality is not influenced by the
flipping, and if originally o1[i] 6= o2[i] then the flipping does
not change this inequality as well. Therefore h(o1, o2) =
h(o′1, o

′
2). The induction step is trivially done for |F| > 1,

so the Hamming distances are not influenced by the flipping
flipD.
We use terms flip and flipping further in this paper to refer
to the dataset X modifications by function flipD defined by
Equation 4.

While the flipping of bits does not influence pairwise
Hamming distances, it may change weights w(o), o ∈ X and
a tightness of the lower bounds defined by Equation 3. A
trivial example is given by a dataset |X| = 2 with bit strings
o1 = (0, 1), o2 = (1, 0). The Hamming distance h(o1, o2)
is 2, and lbl(o1, o2) for level l = 1 of the HWT is 0, since

3https://fi.muni.cz/∼xmic/sketches/HWT-knn.pdf

w(o1) = w(o2) = 1. However, after flipping the second bit
of these bit strings, we get o1 = (0, 0), o2 = (1, 1) and thus
the lower bound lbl(o1, o2) on this level is 2, i.e. tight.

A. Selecting Bits to Flip

Having a dataset X ⊆ Sλ, the task is to select the set F
to utilize lower bounds lbl at maximum, i.e. to make them
as tight as possible.

Intuitively, lower bound defined in Equation 1 results
in higher value if weight w(o) have extreme values across
o ∈ X . Having more extreme values in w(o) (either close
to 0 or λ) for bit strings o ∈ X means, that more bits
of o ∈ X have the same values. This trend is exactly
expressed by bit correlations over bit strings in X . In this
paper, we use the Pearson correlation coefficient corr(i, j) to
describe correlation of bits i, j. Please notice, that this is well
illustrated by the above mentioned example as well: Having
the bit strings o1 = (0, 1) and o2 = (1, 0), the correlation
corr(0, 1) of their bits is −1. After the flipping of their one
bit, this correlation is +1. The following lemma allows to
better understand the influence of the flipping on pairwise
bit correlations:

Lemma 2: Having two arbitrary lists of binary values I
and J , e.g. values in the ith and jth bit of bit strings o ∈
X , and list ¬I of the negated values from I , the following
holds4 for the Pearson correlation coefficient corr:

corr(I, J) = −corr(¬I, J).

Lemma 2 is used in the following to formalise the problem
of the selection of the set F .

We transform the challenge to select the set F to another
problem defined on a general correlation matrix:

Challenge 1: Having a correlation matrix M : λ × λ
(calculated for dataset X) and operation flipD(X,F) which
for each i ∈ F changes the sign of all values in ith column
and row of the matrix M (thus value M(i, i) is changed
twice, i.e. remains equal to +1). The goal is to select the
set F to maximize sum C of all values in M :

C =
∑

0≤i<j<λ

M(i, j). (5)

For now, we postpone a solution of this challenge, as we
further enhance it and solve it in the following sections.

B. Selecting Bits to Flip For HWT Levels

Next, we focus on a pruning ability of the HWT in its
particular levels. As described above, the maximisation of
the sum of correlations over the whole correlation matrix M
is motivated by pushing weights w(o) of bit strings o ∈ X
to extreme values, i.e. towards 0 and λ. Such an approach

4Proof of this lemma is provided at http://fi.muni.cz/∼xmic/sketches/
Corr flipped bit.pdf

https://fi.muni.cz/~xmic/sketches/HWT-knn.pdf
http://fi.muni.cz/~xmic/sketches/Corr_flipped_bit.pdf
http://fi.muni.cz/~xmic/sketches/Corr_flipped_bit.pdf

Figure 2: Correlations summed in Equation 6 for λ = 12
and π = 4

leads to an efficient space pruning at level l = 1 of the HWT,
in which it compares the weights of the whole bit strings o
– see Equation 3.

However, pruning ability of the HWT at level 1 is rather
weak, since the weights w(o), o ∈ X tends to cluster around
their mean value and the nodes with most of the bit strings
o are usually accessed.

Therefore, we propose to focus on the other levels of
the HWT, i.e. we consider bit strings split into π = 2l−1

parts where l ≥ 2. In this scenario, we want to maximise
the sum of correlations in subparts of the correlation matrix
M : λ × λ, which corresponds to pairwise bit correlations
in particular substrings of o ∈ X . Visualisation of these
correlations within matrix M is provided in Figure 2 for
λ = 12 and π = 4. Pairwise correlations within 4 blocks
of bits are shown in grey colours. When summing them,
we focus just on those in dark grey, since each correlation
matrix have 1s in the main diagonal, and it is symmetric. Let
us formalize the whole problem in the following challenge:

Challenge 2: Having a value π = 2l−1, the goal is to
employ the flipping of bits as defined by Equation 4 and
Challenge 1 to maximize value:

C =

π−1∑
p=0

(p+1)· λπ−2∑
i=p· λπ

(p+1)· λπ−1∑
j=i+1

M(i, j)

 (6)

We point out, that for π = 1, i.e. in case of no splitting of
bit strings o ∈ X , the Equation 6 degrades to Equation 5, as
was defined in Challenge 1. The solution to this challenge is
postponed again, as we enhance and solve it in the following
section.

C. Flipping and Permuting Bits

The Challenge 2 tries to maximise correlations in sub-
parts of the bit strings by flipping individual bits. There is
another way to increase these correlations: we may permute
bits of bit strings o ∈ X to put highly correlated bits to the
same block. Permuting bits of o ∈ X does not influence the
pairwise Hamming distances as well. Let us formulate the
third and final challenge to transform dataset X to dataset

X ′ in a way that preserves the pairwise Hamming distances
and it increases the pruning ability of the HWT:

Challenge 3: Given a dataset X , the goal is to find:

• set F ⊆ {0, .., λ− 1}, and
• permutation perm of bits

in a way, that flipping bits as defined by Equation 4 and
then their permuting according to perm maximize value C
for a given value π as defined by Equation 6.
The selection of bits F and permutation perm should be
probably solved together, as one task influences the second
one and vice versa. It constitutes a complicated problem
from the linear algebra, that deserves to be solved indepen-
dently of this paper. We verify our findings using an efficient
greedy algorithm to find the set F and permutation perm (see
Algorithm 1). Our approach is proposed to utilise the maxi-
mum absolute values of correlations. It flips particular bits to
make these correlations positive, and it puts corresponding
bits into the same blocks.

Algorithm 1 Selection of bits F and permutation perm
Input: number of parts π into which bit strings o are split
Input: correlation matrix M
Output: F : set of bits to flip
Output: perm: the permutation of bits
β ← λ/π . size of block
idxToProc← {0, .., λ}
F ← ∅
perm = array()
while idxToProc 6= ∅ do

currBlock← array() . permutation for 1 block
select i, j such that i, j ∈ idxToProc to maximize value

|M(i, j)|
currBlock.add(i, j)
idxToProc.remove(i, j)
if M(i, j) < 0 then
F .add(j)
switch sign of values in jth column and row of M

while currBlock.size < β do
find j to maximize value |

∑
i∈currBlock M(i, j)|

if
∑
i∈currBlock M(i, j) < 0 then
F .add(j)
switch sign of values in jth column and row

of M
currBlock.add(j)

perm.addAll(currBlock)

In particular, this algorithm keeps an array of indexes to
process idxToProc, and it processes them per blocks of size
β = λ/π. At the beginning of a block processing, it finds
indexes i, j such that i, j ∈ idxToProc and the absolute
value of correlation |M(i, j)| is the largest. If M(i, j) < 0

then the jth bit is flipped5. Then it repeatedly finds index j
which maximizes value |

∑
i∈currBlock M(i, j)|, and if this is

negative, the bit j is flipped. Such indexes j are being added
until the current block of bits has the desired size. Then the
rest of the blocks is found in the same way.

D. Bit Strings with Unbalanced Bits

The bit strings are often made as sketches of complex data
objects utilised to speed up similarity search (see Section I-A
for details). The transformation techniques typically produce
sketches with balanced bits, i.e. each bit i is set to 1
in half of the bit string sketches o ∈ X . At the same
time, sketches o usually have low correlated bits, as low
pairwise correlations lead to good compression ratio [4].
However, these two properties cause a poor indexability [5],
as the balanced bit strings have a maximum mean Hamming
distance h(o1, o2) [12] and if their bits are uncorrelated,
they have the smallest variance [4]. Therefore, they have
maximum distances to nearest neighbours [5].

This reasoning resulted in a recent proposal to use
sketches with unbalanced bits [5]. In this proposal each
bit of o ∈ X contains a fixed ratio % 6= 0.5 of 1s. These
bit strings have lower distances to their nearest neighbours
thanks to lower mean Hamming distance [5]6:

mean = 2λ · % · (1− %) (7)

Authors of paper [5] experimentally verify that if the
sketches with unbalanced bits have sufficient length λ, they
have a similar ability to describe similarity relationships as
the sketches with balanced bits. Quite a lot of transformation
techniques are tunable to produce bit strings with unbalanced
bits. However, according to our best knowledge, there is
no paper that experimentally verifies a hypothesis from [5]
that such bit strings are easier indexable. Therefore, we
conduct experiments with the HWT to compare indexability
of balanced and unbalanced bit strings in this paper.

IV. EXPERIMENTS – TIGHTNESS OF THE LOWER
BOUNDS

We verify theoretical findings about the permuting and
flipping bits. At first, we describe testing data in Sec-
tion IV-A, then we present results in Section IV-B.

A. Testing data

We use two datasets of visual descriptors extracted from
images, and we further transform them into bit strings.
The first dataset consists of a combination of five MPEG-7

5 It can be seen further, that the selection of bit to flip here (i or j) does
not play a role, since if i is flipped instead of j, complementary set of F
is selected at a given block. Please notice, that if a complementary bits are
flipped, it does not influence pairwise bit correlations at all.

6More precisely, lower distances to nearest neighbours are a consequence
of a lower mean value and lower bounded variance of the Hamming
distance [5].

(a) GHP to set values in
one bit

(b) Two GHPs to set two bits of bit strings

Figure 3: Generalized hyperplane partitioning to binarize
space

visual descriptors [23] that were provided by the CoPhIR7

data collection [24]. Each descriptor is accompanied with
a suitable similarity function [23], and all five descriptor
spaces are combined into a single space by a weighted
sum of particular distances. In total, this representation
can be considered as a 280-dimensional vector. We use
the 10-million and 100-million collections of these MPEG7
descriptors.

The second dataset is formed by 20 million DECAF [25],
[26] descriptors from the Profiset collection8. These descrip-
tors are 4,096-dimensional vectors of float numbers taken as
an output from the last hidden layer of a deep convolutional
neural net [27]. These descriptors are compared with the
Euclidean distance L2.

We binarize these datasets by the technique adopted from
paper [4], which is based on generalized hyperplane parti-
tioning (GHP) (see Figure 3). A pair of pivoting descriptors
(pivots) pi1, pi2 is selected for each bit i ∈ {0, .., λ − 1},
and value of bit o[i] expresses which of these two pivots is
closer to o. Therefore, one instance of GHP determines one
bit of all bit strings o ∈ X . The pivot pairs are selected [4]
to produce low correlated and balanced bits, i.e. each bit i of
bit strings o ∈ X contains a half of ones and a half of zeros.
In particular: (1) an initial set of pivots Psup is selected at
random, (2) balance of GHP is evaluated using a sample set
of descriptors for all pivot pairs (p1, p2), p1, p2 ∈ Psup, (3)
set Pbal is formed by all pivot pairs that divide the sample set
into two parts balanced with tolerance 0.05 (at least 45 % to
55 %) and corresponding bit strings obal with balanced bits
are created. (4) The absolute value of the Pearson correlation
coefficient is evaluated for all pairs of bits of bit strings
obal to form correlation matrix Ξ, and (5) a heuristic9 is
applied to select rows and columns of Ξ, which form its
sub-matrix of size λ× λ with low values. Finally, the pivot
pairs which produce the corresponding low correlated bits
define bit strings o. We denote the datasets produced by this
technique MPEG7 10M, MPEG7 100M and DECAF 20M.

Besides this technique, we employ the technique proposed
in [5], which is similar to the previous one, but the pivots

7http://cophir.isti.cnr.it/
8http://disa.fi.muni.cz/profiset/
9available at https://www.fi.muni.cz/∼xmic/sketches/SelLowCorBits.pdf

http://cophir.isti.cnr.it/
http://disa.fi.muni.cz/profiset/
https://www.fi.muni.cz/~xmic/sketches/SelLowCorBits.pdf

Figure 4: Distances to 1 nearest neighbour on particular
datasets

Figure 5: Pairwise bit correlations in blocks of bit strings
with balanced bits

Pbal are selected to produce bits containing 80 % of ones
and 20 % of zeros. It has been discussed [5] that when
sufficient length λ of bit strings is used, these unbalanced bit
strings are of similar quality, i.e. they approximate similarity
relationships of the original descriptors at the similar level
as bit strings with balanced bits. However, these bit strings
should be indexable more easily due to their lower intrinsic
dimensionality [5]. The mean Hamming distance on these
bit strings is 0.32 · λ according to Equation 7. We denote
the datasets produced by this technique MPEG7 10M 80,
MPEG7 100M 80 and DECAF 20M 80.

We are using bit strings of lengths 64 and 128 bits. Since
the distance between the query bit string q and its nearest
neighbour (query radius) strongly influences the efficiency
of the HWT, we depict these values for 1,000 query objects
in Figure 4. We use standard box plots to show distribution
of measured values in this paper.

B. Correlations & Lower Bounds: Balanced Bit Strings

We conduct experiments on the dataset MPEG7 10M with
balanced bit strings of length λ = 128 to show the influence

Figure 6: Difference between the Hamming distance and
lower bound h(o1, o2)−lbl(o1, o2), bit strings with balanced
bits

Figure 7: Pairwise bit correlations in blocks of bit strings
with unbalanced bits

Figure 8: Difference between the Hamming distance and
lower bound h(o1, o2) − lbl(o1, o2), bit strings with unbal-
anced bits

of Algorithm 1 on pairwise bit correlations. We focus on
correlations M(i, j) summed in Equation 6 that are key to
tighten lower bounds lbl. We consider bit strings split into
π ∈ {1, 2, 4, 8, 16} parts10, and we depict distribution of
these correlations in a box plot in Figure 5. Correlations in
the original dataset X are in dark grey, and correlations in
the dataset X ′ which is made from X by the Algorithm 1 are
in light grey. This experiment illustrates that Algorithm 1 rise
correlations M(i, j) summed in Equation 6. Let us remind,
that positive pairwise bit correlations within the blocks of bit
strings split into 2l−1 parts tighten lower bounds lbl on the

10 If π = 1 then permuting bits does not influence the result and just the
flipping of bits matters.

Hamming distance h(q, o), o ∈ X as provided by the level
l of the HWT. We verify this in the following experiment.

Figure 6 depicts differences h(o1, o2) − lbl(o1, o2). We
depict results for the HWT with unmodified bit strings
o ∈ X in dark grey. In light grey are shown results for
dataset X transformed to X ′ by Algorithm 1 with the π
value corresponding to the proper level l. Please notice, that
for the final experiments we are going to select just one11

value π. The median of this difference h(o1, o2)−lbl(o1, o2)
is decreased by 21 % (from 58 to 46) at the level 1, and up
to 42 % (from 32 to 22) at level 5. The final measurements
of efficiency of the HWT are presented in Section V.

C. Correlations & Lower Bounds: Unbalanced Bit Strings

We employ dataset MPEG7 10M 80 in the following
experiments, and we show the influence of Algorithm 1 on
pairwise bit correlations summed in Equation 6 in Figure 7.
Therefore Figure 7 is analogue to Figure 5. Beside an
increase of summed correlations, we can observe a property
of bit strings with bits balanced to ratio12 %: The correlations
of the unbalanced bits are strictly lower bounded [5], in case
of % = 0.8 by −0.25 (for our data, it is −1/3 because of
a tolerance 0.05 on % = 0.8). Since the correlations of un-
balanced bits are upper bounded by +1, as usual, maximum
correlations have usually significantly higher absolute values
than negative ones (see dark grey box plots in Figure 7). As
a consequence, average pairwise correlation of unbalanced
bits tends to be slightly positive. This is another property of
unbalanced bits favourable for the HWT, according to our
previous investigation of the lower bounds lbl.

Let us focus on tightness of the lower bounds lbl(o1, o2).
We conduct a similar experiment as in Section IV-B to show
differences between the actual Hamming distance h(o1, o2)
and lower bounds lbl(o1, o2) provided by different levels l
of the HWT. Results in Figure 8 confirm that the approach
proposed in this paper makes lower bounds lbl tighter.
Let us emphasize a 50% decrease of median of difference
h(o1, o2) − lbl(o1, o2) for level l = 5 (from 20 to 10).
Moreover, depicted differences are significantly smaller than
in case of balanced bits (compare Figures 8 and 6), and
therefore these results comply with the hypothesis, that bit
strings with unbalanced bits form an easier indexable search
space.

V. EXPERIMENTS – EFFICIENCY OF THE HWT
We measure the efficiency of the HWT precise similarity

search regarding search time (in seconds). Our implemen-
tation is based on the C++ code used in [10]. We evaluate
1,000 1NN queries on each configuration, and we present

11The reason is, that if the bit strings are modified for each tree level
independently, the tree structure changes. Since the optimisation of such a
tree is a different and complex problem, we consider it separately of this
paper as future work.

12therefore it is valid just for dark grey box plots, since if a bit i is
flipped, it is balanced to ratio 1− %

average values. We split the nodes of the HWT when they
contain t = 1000 bit strings, and the max depth of HWT is
l = 5.

A. Results on datasets MPEG7 10M and MPEG7 10M 80

Table II contains search times for the datasets
MPEG7 10M (balanced bits) and MPEG7 10M 80 (unbal-
anced bits). We present result using two lengths of bit strings
λ ∈ {64, 128} bits. Let us remind, that bit strings with
unbalanced bits must be of a sufficient length λ to provide
similar quality13 as bit strings with balanced bits [5]. For
this reason, we do not show results for % = 0.8, λ = 64:
these bit strings represent a too strong simplification of the
search space. As a consequence, the search times with the
HWT are drastically lower using these bit strings (usually
approximately 0.003 s – 0.005 s).

The first two lines of Table II contain average times of
sequential evaluation of all distances h(q, o), o ∈ X . The
next two lines show results on queries with the HWT on
the original (not modified) datasets X . Evaluation with the
HWT on bit strings λ = 64, % = 0.5 is 2.4 times more
efficient than the sequential evaluation, but it is about 8 times
slower using bit strings λ = 128, % = 0.5. For unbalanced
bits (% = 0.8), the HWT is about 1.5 times slower than the
sequential evaluation using length λ = 128 bits.

The rest of the Table II contains results measured with the
same implementation of the HWT, but on datasets modified
by Algorithm 1. We examine values π ∈ {1, 2, 4, 8, 16}.
Evaluations with the HWT built on short and balanced bit
strings λ = 64, % = 0.5 are up to 1.6 times more efficient
when the proposed modifications are employed – (0.026 s
versus 0.042 s), and it is 3.9 times faster then with the
sequential evaluation.

Evaluations on longer and balanced bit strings λ =
128, % = 0.5 are sped up 6.1 times (0.196 s vs. 1.196 s), but
even this is insufficient to outperform the efficiency of the
sequential evaluation (0.146 s). When the HWT is employed
with unbalanced and modified bit strings λ = 128, % = 0.8,
query evaluations are up to 1.8 times more efficient than the
sequential scan (0.083 s vs. 0.148 s) and they are 14.5 times
faster then the HWT on unmodified bit strings with balanced
bits (1.196 s).

B. Results on datasets MPEG7 100M and
MPEG7 100M 80

Table III provides results measured on 100 million
datasets MPEG7 100M and MPEG7 100M 80. Query eval-
uations with our modifications on short bit strings λ =
64, % = 0.5 are up to 34 times faster than the sequential
evaluation of all distances (0.03 s vs. 1.017 s). Our proposals
speed up the HWT evaluation 6 times (0.03 s vs. 0.182 s).

13that is an ability to approximate similarity relationships of original data
objects

Balance of bits λ = 64 λ = 128
Sequential % = 0.5 0.103 0.146
evaluation % = 0.8 – 0.148
HWT % = 0.5 0.042 1.196
original % = 0.8 – 0.219
HWT % = 0.5 0.036 0.335
π = 1 % = 0.8 – 0.116
HWT % = 0.5 0.037 0.269
π = 2 % = 0.8 – 0.116
HWT % = 0.5 0.036 0.196
π = 4 % = 0.8 – 0.083
HWT % = 0.5 0.031 0.320
π = 8 % = 0.8 – 0.129
HWT % = 0.5 0.026 0.585
π = 16 % = 0.8 – 0.182

Table II: Datasets MPEG7 10M and MPEG7 10M 80,
query evaluation times (in seconds)

Balance of bits λ = 64 λ = 128
Sequential % = 0.5 1.017 1.498
evaluation % = 0.8 – 1.503
HWT % = 0.5 0.182 6.463
original % = 0.8 – 0.886
HWT % = 0.5 0.064 2.704
π = 1 % = 0.8 – 0.327
HWT % = 0.5 0.057 2.478
π = 2 % = 0.8 – 0.291
HWT % = 0.5 0.040 1.845
π = 4 % = 0.8 – 0.269
HWT % = 0.5 0.030 2.237
π = 8 % = 0.8 – 0.214
HWT % = 0.5 0.059 2.540
π = 16 % = 0.8 – 0.270

Table III: Datasets MPEG7 100M and MPEG7 100M 80,
query evaluation times (in seconds)

Evaluations on longer and balanced bit strings λ =
128, % = 0.5 remain slower than the sequential scan, but
evaluations with unbalanced bits λ = 128, % = 0.8 are
up to 7 times faster then sequential processing (0.214 s
vs. 1.503 s). We emphasize, that the HWT is up to 30
times faster using unbalanced bit strings λ = 128, % = 0.8
modified by Algorithm 1 than the HWT build on unmodified
balanced bit strings λ = 128, % = 0.5 (0.214 s vs. 6.463 s),
and and it is 4.1 times faster than the HWT on unmodified
unbalanced bit strings (0.214 s vs. 0.886 s).

C. Results on datasets DECAF 20M and DECAF 20M 80

Last experiments are conducted on datasets DECAF 20M
and DECAF 20M 80, which are hard to index due to big
distances to nearest neighbours (see Figure 4). The times of
sequential scan are linear with the size of the datasets and
in compliance with the previous measurements. Search on
short bit strings λ = 64, % = 0.5 is sped up 3.8 times with
respect to the sequential evaluation (0.054 s vs 0.204 s). Our

Balance of bits λ = 64 λ = 128
Sequential % = 0.5 0.204 0.301
evaluation % = 0.8 – 0.301
HWT % = 0.5 0.122 2.798
original % = 0.8 – 0.427
HWT % = 0.5 0.065 1.111
π = 1 % = 0.8 – 0.264
HWT % = 0.5 0.067 0.974
π = 2 % = 0.8 – 0.249
HWT % = 0.5 0.061 0.817
π = 4 % = 0.8 – 0.231
HWT % = 0.5 0.054 1.218
π = 8 % = 0.8 – 0.229
HWT % = 0.5 0.062 1.643
π = 16 % = 0.8 – 0.262

Table IV: Datasets DECAF 20M and DECAF 20M 80,
query evaluation times (in seconds)

modifications speeded up the HWT 2.3 times in this case.
The HWT does not outperform the sequential evaluations

using longer bit strings λ = 128 with balanced bits.
However, searching with the HWT is about 1.3 times faster
than the sequential evaluation using unbalanced bit strings
λ = 128, % = 0.8 (0.229 s vs. 0.301).

VI. CONCLUSIONS

We have focused on indexing in the Hamming space
which is based on evaluating the number of ones in the
indexed bit strings. In particular, we have employed the
recently proposed Hamming Weight Tree (HWT) which uses
this type of lower bounding to prune the search space,
and we have introduced two distance-preserving bit string
modifications which make these lower bounds tighter. Our
experiments on several real-life datasets have shown a
significant speed-up of the HWT evaluating (even 6-times)
induced by the proposed modifications.

Further, we have discussed that the bit strings are often
created as sketches of complex objects, e.g. multimedia
descriptors, and that they usually have balanced bits. Con-
versely, bit strings with unbalanced bits have been pro-
posed [5] as a better indexable alternative to balanced bit
strings. It has been reported [5] that unbalanced bit strings
with sufficient length have a similar ability to describe
pairwise similarity of the original data objects as balanced
bit strings of the same length.

Since the theoretical properties of the unbalanced bit
strings are favourable for the efficiency of the HWT, we
have investigated our distance preserving data modifications
with these bit strings as well. In this way, we have speeded
up the search with the HWT up to 30 times comparing to
the HWT on unmodified bit strings with balanced bits.

We have considered bit string optimisations for one se-
lected level of the HWT. Naturally, these modifications could
be done for each level of the HWT independently which

should further improve the pruning effect. However, our
preliminary experiments indicate that this idea imply radical
changes of the HWT structure and therefore we postpone it
as future work.

VII. ACKNOWLEDGMENTS

This research was supported by ERDF ,,CyberSecurity,
CyberCrime and Critical Information Infrastructures Center
of Excellence” (No. CZ.02.1.01/0.0/0.0/16 019/0000822).

REFERENCES

[1] M. Charikar, “Similarity estimation techniques from rounding
algorithms,” in Proceedings on 34th Annual ACM Symposium
on Theory of Computing, 2002, Montréal, Québec, Canada,
2002, pp. 380–388.

[2] W. Dong, M. Charikar, and K. Li, “Asymmetric distance esti-
mation with sketches for similarity search in high-dimensional
spaces,” in Proceedings of the ACM SIGIR conf. on Research
and development in information retrieval. ACM, 2008.

[3] Q. Lv, M. Charikar, and K. Li, “Image similarity search with
compact data structures,” in Proc. of the 2004 ACM CIKM
Int. Conf. on Information and Knowledge Management, USA,
2004, 2004, pp. 208–217.

[4] V. Mic, D. Novak, and P. Zezula, “Designing sketches for
similarity filtering,” in IEEE International Conference on
Data Mining Workshops, ICDMW 2016, December 12-15,
2016, Barcelona, Spain., 2016, pp. 655–662.

[5] ——, “Sketches with unbalanced bits for similarity search,” in
Similarity Search and Applications - 10th International Con-
ference, SISAP 2017, Munich, Germany, 2017, Proceedings,
2017, pp. 53–63.

[6] A. J. Muller-Molina and T. Shinohara, “Efficient similarity
search by reducing i/o with compressed sketches,” in Pro-
ceedings of the 2nd Int. Workshop on Similarity Search and
Applications, 2009, pp. 30–38.

[7] Z. Wang, W. Dong, W. Josephson, Q. Lv, M. Charikar, and
K. Li, “Sizing sketches: a rank-based analysis for similarity
search,” in Proceedings of the 2007 ACM SIGMETRICS Int.
Conf. on Measurement and Modeling of Computer Systems,
USA, 2007, pp. 157–168.

[8] P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity
search: the metric space approach. Springer, 2006, vol. 32.

[9] E. Ong and M. Bober, “Improved hamming distance search
using variable length hashing,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016, USA,
2016, 2016, pp. 2000–2008.

[10] S. Eghbali, M. H. Z. Ashtiani, and L. Tahvildari, “Online
nearest neighbor search in binary space,” in 2017 IEEE
International Conference on Data Mining, ICDM, 2017, pp.
853–858.

[11] M. Skala, “Measuring the difficulty of distance-based in-
dexing,” in String Processing and Information Retrieval,
12th International Conference, SPIRE 2005, Buenos Aires,
Argentina, 2005, Proceedings, 2005, pp. 103–114.

[12] ——, “Aspects of metric spaces in computation,” Ph.D.
dissertation, University of Waterloo, Ontario, Canada, 2008.

[13] M. E. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, and
A. Zimek, “Can shared-neighbor distances defeat the curse
of dimensionality?” in Int. Conf. on Scientific and Statistical
Database Management. Springer, 2010, pp. 482–500.

[14] J. Wang, W. Liu, S. Kumar, and S. Chang, “Learning to hash
for indexing big data - A survey,” Proceedings of the IEEE,
vol. 104, no. 1, pp. 34–57, 2016.

[15] M. Norouzi, A. Punjani, and D. J. Fleet, “Fast exact search
in hamming space with multi-index hashing,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 36, no. 6, pp. 1107–1119,
2014.

[16] M. Mitzenmacher, R. Pagh, and N. Pham, “Efficient estima-
tion for high similarities using odd sketches,” in Proceedings
of the 23rd international conference on World wide web.
ACM, 2014, pp. 109–118.

[17] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of
massive datasets. Cambridge University Press, 2014.

[18] P. Li and A. C. König, “Theory and applications of b-bit
minwise hashing,” Commun. ACM, vol. 54, no. 8, pp. 101–
109, Aug. 2011.

[19] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding
and weak geometric consistency for large scale image search,”
in 10th European Conference on Computer Vision (ECCV),
France, 2008, Proceedings, 2008, pp. 304–317.

[20] J. Sivic and A. Zisserman, “Video google: A text retrieval
approach to object matching in videos,” in null. IEEE, 2003,
p. 1470.

[21] V. Mic, D. Novak, and P. Zezula, “Speeding up similarity
search by sketches,” in Similarity Search and Applications:
9th International Conference, SISAP 2016, Proceedings.
Cham: Springer International Publishing, 2016, pp. 250–258.

[22] T. Seidl and H.-P. Kriegel, “Optimal multi-step k-nearest
neighbor search,” in Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, ser. SIG-
MOD ’98. USA: ACM, 1998, pp. 154–165.

[23] MPEG7, Multimedia content description interfaces. Part 3:
Visual, ISO/IEC ISO 15 938-3:2002, 2002.

[24] M. Batko, P. Kohoutkova, and D. Novak, “Cophir image
collection under the microscope,” in Similarity Search and
Applications, SISAP’09. IEEE, 2009.

[25] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell, “Decaf: A deep convolutional
activation feature for generic visual recognition.” in Icml,
vol. 32, 2014, pp. 647–655.

[26] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and
transferring mid-level image representations using convolu-
tional neural networks,” in Proceedings of the IEEE CVPR
conference, 2014.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet clas-
sification with deep convolutional neural networks,” vol. 60,
no. 6, 2017, pp. 84–90.

