Modifying Hamming Spaces for Efficient Search

Vladimir Mic, David Novak, Pavel Zezula

Masaryk University Brno, Czech Republic

17th November 2018

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search

Similarity Search on Bit Strings - Motivation

• Searching for similar objects

- Wide range of applications
 - recommender systems, searching in biometrics, event detection, ...

Similarity Search on Bit Strings - Motivation

• Searching for similar objects

- Wide range of applications
 - recommender systems, searching in biometrics, event detection, ...
- Original complex objects are often described by bit strings
 - We assume mapping 1 to 1 between bit strings and objects
- Similarity of objects \approx similarity of bit strings
 - Hamming distance h:

having two bit strings o_1, o_2 , it evaluates number of different bits

- Use case: *Query by example*
 - Search for the most similar bit strings to a given query bit string
- Problem: time needed for a query execution
- Evaluation of the Hamming distance *h* is very efficient
 - $\bullet~\approx 10^7$ Hamming distances are evaluated per second on an ordinary computer
- Problem: big datasets
- Solution: indexes

- The Hamming Weight Tree (HWT): indexing structure based on weights w of bit strings
 - Sepehr Eghbali et al.: Online Nearest Neighbor Search in Hamming Space, ICDM 2017¹

• Weight w(o) of a bit string o is a number of bits in o set to 1

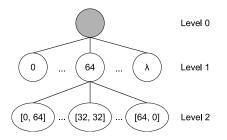
• Observation: lower bound on the Hamming distance h:

$$h(o_1, o_2) \ge |w(o_1) - w(o_2)|$$

¹www.cas.mcmaster.ca/ashtiani/papers/online-nearest_neighbor_pdf 🛓 🗠 🔍

The Hamming Weight Tree (paper from ICDM 2017) (2/5)

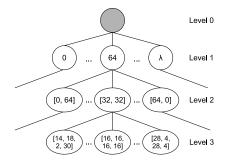
- Pruning ability of the weights of whole bit strings is weak
 - Lower bounds can be defined on a subparts of bit strings
- HWT exploits these lower bounds in a tree-like structure:
 - Artificial root
 - Level 1: up to $\lambda + 1$ nodes
 - Node labelled *i* covers bit strings *o* with weight w(o) = i
 - λ is maximum length of bit strings



The Hamming Weight Tree (paper from ICDM 2017) (3/5)

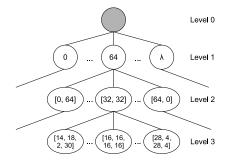
• Level 2: Nodes labelled by [a, b]

• *a* and *b* are weights of first and second half of bit strings



- Level n: weights of 2^{n-1} parts of bit strings
 - Stored are just non-empty nodes
 - Dynamic depth of the HWT maximum capacity of nodes, splitting
 - HWT is usually very unbalanced

The Hamming Weight Tree (paper from ICDM 2017) (4/5)



• Overall lower bound on Hamming distance of two bit strings: sum of partial lower bounds

• Example:

partial weights of o_1	10	20	15	12
partial weights of o_2	10	15	5	20
partial lower bounds	0	5	10	8

Lower bound on $h(o_1, o_2)$ is: 0 + 5 + 10 + 8 = 23

The Hamming Weight Tree (paper from ICDM 2017) (5/5)

- Search for k most similar bit strings to bit string q
 - Incremental search strategy: search for bit strings o in distance h(q, o) equal to 0, then 1, 2 ...

... until the lower bounds in the HWT ensures that the rest of bit strings is less similar to q then those already found²

• A tightness of the lower bounds is crucial

 • We investigate two ways to tighten lower bounds exploited by the HWT

• ... both preserves pairwise Hamming distances h of bit strings

Flipping bits

• Flipping bits

- Having dataset X of bit strings, XORing some bits of all o ∈ X may improve the lower bounds
- Example: dataset with just two bit strings of length 2:

	Before flipping	After flipping
<i>o</i> ₁ :	0 1	0 0
<i>o</i> ₂ :	1 0	1 1
$h(o_1, o_2)$:	2	2
lower bound on $h(o_1, o_2)$:	1 - 1 = 0	0-2 = 2

Flipping bits – Results of Our Analysis

- Which bits should be flipped?
- Consider the level 1 of the HWT (weight of all bit strings is compared)
 - Weights of bit strings should be *extreme* (either close to 0 or to λ)

$$h(o_1, o_2) \ge |w(o_1) - w(o_1)|$$

- ... i.e. pairwise bit correlations should be positive³
- Lemma⁴: When *i*th bit of all *o* ∈ X is flipped, just signs of all pairwise correlations Corr(*i*, *j*), 0 ≤ *j* < λ ∧ *j* ≠ *i* is changed:

$$Corr(i, j) = -Corr(\neg i, j)$$

⁴Proved in the paper

³We use *Pearson correlation coefficient*

Bit number	0 1	0 1
	Before flipping	After flipping
<i>o</i> ₁ :	0 1	0 0
<i>o</i> ₂ :	1 1	1 0
<i>0</i> 3:	0 1	0 0
04:	1 0	1 1
Corr(0, 1)	-0.577	+0.577

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search

< □ > < /□ >

12/17

æ

• Extension for other levels of the HWT:

- Weights of particular subparts of bit strings should be extreme
- ... we need to maximise pairwise bit correlations of bits within the parts (*i.e. halves, quarters, ...*) of bit strings

• Let us now focus on a second way to tighten lower bounds ...

Permuting bits

- Focus on levels deeper then 1 of the HWT
 - weights of subparts of bit strings are compared
 - Permutation of bits may improve the tightness of the lower bound provided by particular levels of the HWT
- Example: lower bounds provided by weights of the halves of bit strings

	Before permuting	After permuting
Bit index:	0 1 2 3	0 3 2 1
<i>o</i> ₁ :	0 1 1 0	0 0 1 1
<i>o</i> ₂ :	1 0 0 0	1 0 0 0
$h(o_1, o_2)$:	3	3
lower bound: on $h(o_1, o_2)$:	1-1 + 1-0 =1	0-1 + 2-0 =3

Flipping and Permuting Bits

- We propose a greedy algorithm to determine
 - bits of bit strings to flip and
 - permutation of bits

at once to put correlated bit to the same blocks of bit strings

• ... and therefore to tighten lower bounds exploited by the HWT

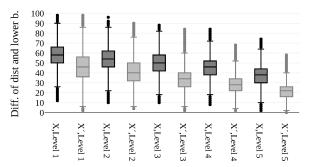


Figure: Differences of the Hamming distances h and lower bounds provided by particular levels of the HWT Dark: original bit strings, light: with proposed modifications

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search

17th November 2018 15 / 17

Dataset of 20 million bit strings (DeCAF)	$\lambda = 64$
Sequential evaluation	0.204 s
HWT original	0.122 s
HWT with modified bit strings	0.054 s

Dataset of 100 million bit strings (MPEG7)	$\lambda = 64$
Sequential evaluation	1.017 s
HWT original	0.182 s
HWT with modified bit strings	0.030 s

Table: Times of the search for 1 most similar bit string to a query bit string q (averages over 1,000 randomly selected q)

• We are analysing weights of bit strings to exploit lower bounds on the Hamming distance

• We propose a heuristic that flips some bits of bit strings and permute them to tighten lower bounds exploited by the *Hamming Weight Tree* (HWT)

• Despite the progress in an efficiency of query evaluation, the HWT suffers from complex spaces