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Motivation
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Log Analysis via Complex Event Processing (CEP)

Data stream processing: real-time data processing paradigm
▶ commonly used to deal with high-velocity data

CEP: detection of complex patterns in streams of data elements
▶ visions for use in real-time log analysis, especially security monitoring
▶ as opposed to full-text indexing and column-based indexing of log data

Event objects: actual representation of the elements in the stream
▶ expected to be properly structured and described via an explicit data schema
▶ much like in RDBMS

Unstructured log entries , event objects
▶ semi-structured log entries , event objects
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Logging and Log Data – 5Vs of Big Data

Traditional manifestation – log files with arbitrary text messages

Value: widely-used source of monitoring information
▶ debugging, troubleshooting, fault detection, security, forensics, compliance

Veracity: poor-quality, unstructured nature, complicated analysis
▶ 2017-07-23T19:35:45Z [0] ERR!: Jack said he will take care of this!
▶ this stems from the way logs are generated – messages in natural language

Variability: pervasive devel. practice spanning SW on all IT layers
▶ data source and data format heterogeneity

Velocity + Volume: can exceed 100,000 entries/sec, 1 MB/s per node
▶ HP company – 1 × 1012 entries/day generated, 3 × 109 entries/day processed
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Bridging the Gap by Normalization

Data integration perspective: bridge the gap by normalization
▶ known pattern to improve interoperability
▶ missing structure is added via transformation and enrichment
▶ overall heterogeneity is eliminated thanks to a single canonical form

Normalization: unification of data on any of its 4 layers
▶ data structures
▶ data types
▶ data representation
▶ transport

Our Goal:
Improve the way log data can be represented and accessed by normalizing them
into streams of event objects.
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Research Goal (Simplified)
Dec 03 2016 10:03:44 [147.251.11.100] --- INFO: User bob logged in
2016-12-03T10:03:45Z 147.251.20.110 sshd[1551]: session closed for user alice
Dec 03 2016 10:03:46 [147.251.10.125] --- WARN: User alice failed to log in
3.12.2016 10:03:47 147.251.19.160 [Super.java]: {service=Billing, status=0x2A}

↓ NORMALIZATION ↓

UserLogin() {ts=...424, host="147.251.11.100", success=True, user="bob"}
SessionClosed() {ts=...425, host="147.251.20.110", user="alice", app="sshd"}

UserLogin() {ts=...426, host="147.251.10.125", success=False, user="alice"}
ServiceCrash() {ts=...427, host="147.251.19.160", service="Billing", code=42}

⇓ UserLogin ⇓ ⇓ SessionClosed ⇓ ⇓ ServiceCrash ⇓

CREATE MAP SCHEMA UserLogin(host string, success boolean, user string);

SELECT host, user, count(*) AS attempts
FROM UserLogin.win:time(30 sec)
WHERE attempts > 1000, success=false
GROUP BY host, user
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Reactive Normalization
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Log Abstraction (Separation)

Log Messages ⇒ Message Types ⇒ Regular Expressions

User Jack logged in

User John logged out

Service sshd started

User Bob logged in

Service httpd started

User Ruth logged out

User * logged * : [$1, $2]

Service * started : [$1]

User (\w+) logged (\w+)

Service (\w+) started

LOG.info("User {} logged {}", user, action);

↓
Dec 03 2016 10:03:44 -- INFO: User bob logged in

{
User (?<user>\w+) logged (?<action>\w+)

Log abstraction is a two-tier procedure:
▶ message type discovery
▶ pattern-matching via regular expressions
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Message Type Discovery

Manual discovery: tiresome process, which leads to errors
▶ automated approaches are necessary

Static code analysis: perfectly possible
▶ we were able to discover approx. 4500 message types in Hadoop source code
▶ source code is not always available (e.g. for network devices)

Data mining: use already generated log messages (historical data)
▶ 9 existing approaches were studied, e.g. SLCT, IPLoM, logSig, N-V, …

Existing approaches have accuracy and usability issues
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Shortcomings of Existing Approaches

Generation of Overlapping Message Types
▶ User root logged *
▶ User * logged in
▶ User * logged *

No Support for Multiple Token Delimiters
▶ only a single delimiter for tokenization, e.g. ’space’
▶ limited accuracy

Complicated Parameterization
▶ each dataset is different and the algortihms sometimes need to be fine-tuned
▶ some approaches use up to 5 unbounded parameters

No Support for Multi-Word Variables
▶ User foo bar logged in
▶ User root logged in
▶ User {1:2} logged {1:1}
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Extended Nagappan-Vouk Algorithm

Service sshd started | [4,2,4]

Service httpd started | [4,2,4]

Service sshd started | [4,2,4]

Service httpd started | [4,2,4]

Service * started

1 2 3
Service 4 0 0
httpd 0 2 0
sshd 0 2 0

started 0 0 4

Method of n-th percentile: frequency table + percentile threshold
▶ log messages are tokenized via a set of delimiters
▶ [4,2,4] in example is a log message score
▶ word is a variable, if it has a frequency lower than n-th percentile of score

Post-processing to improve accuracy and usability
1. eliminate overlapping message types by merging
2. identify multi-word variable positions
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Discovered Pattern-Set Example

Start processing (xor) Jen=user Service sshd:22 started
User John logged out Start processing (xor) Daniel=user
User Bob logged in User Ruth logged out
Start processing (xor) Thomas=user Start processing (xor) Tom Sawyer=user
Service httpd:8080 started Start processing (nor) Root=user

⇓ percentile=60, delimiters=' :=\(\)' ⇓

regexes: # regex tokens
INT: [integer, "[0-9]+"]
BOOL: [boolean, "\btrue\b|\bfalse\b"]
WORD: [string, "[0-9a-zA-Z]+"]
ARBITRARY: [string, "[^ \n\r]+"]
MWRD_1_2: [string, "[^ \n\r]+([\\s][^ \n\r]+){0,1}"]

patterns: # patterns describing the message types
grp0:

mt1: 'User %{WORD:var1} logged %{WORD:var2}'
mt2: 'Start processing (%{WORD:var1}) %{MWRD_1_2:var2}=%{WORD:var3}'
mt3: 'Service %{WORD:var1}:%{INT:var2} started'
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Evaluation

Discovered message types partition the log messages into groups

F-measure: common accuracy metric in IR, higher is better
▶ F = 2·Precision ·Recall

Precision+Recall – how “close“ our grouping is to the ground truth

Ground truth: 5 real-life data-sets, MTs manually discovered
▶ P. He, et al. An Evaluation Study on Log Parsing and Its Use in Log Mining
▶ best average F-measure (IPLoM) – 0.892

BGL HPC HDFS Zookeeer Proxifier AVG
SLCT 0.61 0.81 0.86 0.92 0.89 0.818
IPLoM 0.99 0.64 0.99 0.94 0.90 0.892
LKE 0.67 0.17 0.57 0.78 0.81 0.600
LogSig 0.26 0.77 0.91 0.96 0.84 0.748
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Results & Findings

BGL HPC HDFS Zook. Proxif. AVG
n = 50, d =space 0.8556 0.8778 1.0000 0.7882 0.8162 0.86756
n = 50, d =default 0.9251 0.9861 1.0000 0.9999 0.8547 0.95316
n = 15, d =default 0.9191 0.9861 0.6965 0.9182 0.8220 0.86838
n = 85, d =default 0.4949 0.9856 1.0000 0.9979 0.8547 0.86662
n = 50, d =best* 0.9985 0.9861 1.0000 0.9999 1.0000 0.99690
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Summary
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Summary & Future Work

The designed algorithm has a very high accuracy on real-world data

Logging code is constantly evolving

How to switch to online (streaming) operation mode?

How to switch to fully-automated mode?

How to version the discovered pattern-sets?
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